Εμφανίζονται 1 - 1 Αποτελέσματα από 1 για την αναζήτηση '"количественная протеомика"', χρόνος αναζήτησης: 0,40δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: The work was performed within the framework of the Program for Basic Research in the Russian Federation for a long-term period (2021–2030) (No. 122030100168-2) using “Human Proteome” Core Facility, Работа выполнена в рамках Программы фундаментальных научных исследований в Российской Федерации на долгосрочный период (2021–2030 годы) (№122030100168-2) с использованием оборудования ЦКП «Протеом человека»

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 1 (2024); 46-60 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 1 (2024); 46-60 ; 2619-1156 ; 2221-996X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/517/820; https://www.biopreparations.ru/jour/article/view/517/807; https://www.biopreparations.ru/jour/article/view/517/813; https://www.biopreparations.ru/jour/article/downloadSuppFile/517/825; https://www.biopreparations.ru/jour/article/downloadSuppFile/517/826; https://www.biopreparations.ru/jour/article/downloadSuppFile/517/827; https://www.biopreparations.ru/jour/article/downloadSuppFile/517/828; https://www.biopreparations.ru/jour/article/downloadSuppFile/517/829; https://www.biopreparations.ru/jour/article/downloadSuppFile/517/830; https://www.biopreparations.ru/jour/article/downloadSuppFile/517/831; https://www.biopreparations.ru/jour/article/downloadSuppFile/517/842; Lukasheva EV, Babayeva G, Karshieva SS, Zhdanov DD, Pokrovsky VS. L-lysine α-oxidase: enzyme with anticancer properties. Pharmaceuticals (Basel). 2021;14(11):1070. https://doi.org/10.3390/ph14111070; Pokrovskaya MV, Pokrovsky VS, Aleksandrova SS, Sokolov NN, Zhdanov DD. Molecular analysis of L-asparaginases for clarification of the mechanism of action and optimization of pharmacological functions. Pharmaceutics. 2022;14(3):599. https://doi.org/10.3390/pharmaceutics14030599; Liska AJ, Shevchenko A. Combining mass spectrometry with database interrogation strategies in proteomics. TrAC Trends Anal Chem. 2003;22(5):291–8. https://doi.org/10.1016/S0165-9936(03)00507-7; Голощапова ЕО, Рунова ОБ, Минеро АС, Фадейкина ОВ, Волкова РА, Дегтерев МБ и др. Разработка и аттестация фармакопейного стандартного образца для подтверждения подлинности первичной структуры очищенного рекомбинантного интерферона бета-1b методом пептидного картирования. БИОпрепараты Профилактика, диагностика, лечение. 2022;22(1):23–37. https://doi.org/10.30895/2221-996X-2022-22-1-23-37; Zhang Y, Ling Z, Du G, Chen J, Kang Z. Improved production of active Streptomyces griseus trypsin with a novel auto-catalyzed strategy. Sci Rep. 2016;6(1):23158. https://doi.org/10.1038/srep23158; Huang CT. Vertebrate serum inhibitors of Aedes aegypti trypsin. Insect Biochem. 1971;1(1):27–38. https://doi.org/10.1016/0020-1790(71)90019-9; Toropygin IYu, Kugaevskaya EV, Mirgorodskaya OA, Elisseeva YuE, Kozmin YuP, Popov IA, et al. The N-domain of angiotensin-converting enzyme specifically hydrolyzes the Arg-5-His-6 bond of Alzheimer’s Aβ-(1-16) peptide and its isoAsp-7 analogue with different efficiency as evidenced by quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2008;22(2):231–9. https://doi.org/10.1002/rcm.3357; Li M, Rauf A, Guo Y, Kang X. Real-time label-free kinetics monitoring of trypsin-catalyzed ester hydrolysis by a nanopore sensor. ACS Sens. 2019;4(11):2854–7. https://doi.org/10.1021/acssensors.9b01783; Treetharnmathurot B, Ovartlarnporn C, Wungsintaweekul J, Duncan R, Wiwattanapatapee R. Effect of PEG molecular weight and linking chemistry on the biological activity and thermal stability of PEGylated trypsin. Int J Pharm. 2008;357(1–2):252–9. https://doi.org/10.1016/j.ijpharm.2008.01.016; Senphan T, Benjakul S, Kishimura H. Purification and characterization of trypsin from hepatopancreas of Pacific white shrimp. J Food Biochem. 2015;39(4):388–97. https://doi.org/10.1111/jfbc.12147; Homola J, Yee S, Gauglitz G. Surface plasmon resonance sensors: review. Sensors Actuators B Chem. 1999;54(1):3-15. https://doi.org/10.1016/S0925-4005(98)00321-9; Shumyantseva VV, Kuzikov AV, Masamrekh RA, Bulko TV, Archakov AI. From electrochemistry to enzyme kinetics of cytochrome P450. Biosens Bioelectron. 2018;121:192–204. https://doi.org/10.1016/j.bios.2018.08.040; Filippova TA, Masamrekh RA, Shumyantseva VV, Latsis IA, Farafonova TE, Ilina IY, et al. Electrochemical biosensor for trypsin activity assay based on cleavage of immobilized tyrosine-containing peptide. Talanta. 2023;257:124341. https://doi.org/10.1016/j.talanta.2023.124341; Rappsilber J, Ryder U, Lamond AI, Mann M. Large-scale proteomic analysis of the human spliceosome. Genome Res. 2002;12(8):1231–45. https://doi.org/10.1101/gr.473902; Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics. 2005;4(9):1265–72. https://doi.org/10.1074/mcp.M500061-MCP200; Chen X, Wei S, Ji Y, Guo X, Yang F. Quantitative proteomics using SILAC: principles, applications, and developments. Proteomics. 2015;15(18):3175–92. https://doi.org/10.1002/pmic.201500108; Vogl DP, Conibear AC, Becker CFW. Segmental and site-specific isotope labelling strategies for structural analysis of posttranslationally modified proteins. RSC Chem Biol. 2021;2(5):1441–61. https://doi.org/10.1039/D1CB00045D; Chahrour O, Cobice D, Malone J. Stable isotope labelling methods in mass spectrometry-based quantitative proteomics. J Pharm Biomed Anal. 2015;113:2–20. https://doi.org/10.1016/j.jpba.2015.04.013; Petriz BA, Franco OL. Application of cutting-edge proteomics technologies for elucidating host-bacteria interactions. Adv Protein Chem Struct Biol. 2014;95:1–24. https://doi.org/10.1016/B978-0-12-800453-1.00001-4; Kozmin YP, Manoilov AV, Serebryakova MV, Mirgorodskaya OA. A direct introduction of ¹⁸О isotopes into peptides and proteins for quantitative mass spectroscopy analysis. Russ J Bioorganic Chem. 2011;37(6):719–31. https://doi.org/10.1134/S1068162011060094; Swaney DL, Wenger CD, Coon JJ. Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J Proteome Res. 2010;9(3):1323–9. https://doi.org/10.1021/pr900863u; Mach H, Middaugh CR, Lewis RV. Statistical determination of the average values of the extinction coefficients of tryptophan and tyrosine in native proteins. Anal Biochem. 1992;200(1):74–80. https://doi.org/10.1016/0003-2697(92)90279-G; Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C. Proteolytic ¹⁸О labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem. 2004;76(9):2675. https://doi.org/10.1021/ac049600x; Finehout EJ, Cantor JR, Lee KH. Kinetic characterization of sequencing grade modified trypsin. Proteomics. 2005;5(9):2319–21. https://doi.org/10.1002/pmic.200401268; https://www.biopreparations.ru/jour/article/view/517