Showing 1 - 20 results of 125 for search '"клеточный цикл"', query time: 0.85s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Source: IX Всероссийская Пущинская конференция «Биохимия, физиология и биосферная роль микроорганизмов».

  4. 4
    Academic Journal

    Contributors: This work was supported by the Russian Science Foundation grant No. 23-25-00382., Исследование выполнено при финансовой̆ поддержке Российского научного фонда (грант РНФ №23-25-00382).

    Source: Siberian journal of oncology; Том 23, № 6 (2024); 81-88 ; Сибирский онкологический журнал; Том 23, № 6 (2024); 81-88 ; 2312-3168 ; 1814-4861

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/3357/1301; Состояние онкологической помощи населению России в 2022 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М., 2023. 252 с.; Ozols R.F., Bundy B.N., Greer B.E., Fowler J.M., Clarke-Pearson D., Burger R.A., Mannel R.S., DeGeest K., Hartenbach E.M., Baergen R.; Gynecologic Oncology Group. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol. 2003; 21(17): 3194–200. doi:10.1200/JCO.2003.02.153.; Gorodnova T.V., Sokolenko A.P., Kuligina E., Berlev I.V., Imyanitov E.N. Principles of clinical management of ovarian cancer. Chin Clin Oncol. 2018; 7(6): 56. doi:10.21037/cco.2018.10.06.; Galmarini C.M., Mackey J.R., Dumontet C. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol. 2002; 3(7): 415–24. doi:10.1016/s1470-2045(02)00788-x.; Pfisterer J., Plante M., Vergote I., du Bois A., Hirte H., Lacave A.J., Wagner U., Stähle A., Stuart G., Kimmig R., Olbricht S., Le T., Emerich J., Kuhn W., Bentley J., Jackisch C., Lück H.J., Rochon J., Zimmermann A.H., Eisenhauer E.; AGO-OVAR; NCIC CTG; EORTC GCG. Gemcitabine plus carboplatin compared with carboplatin in patients with platinum-sensitive recurrent ovarian cancer: an intergroup trial of the AGO-OVAR, the NCIC CTG, and the EORTC GCG. J Clin Oncol. 2006; 24(29): 4699–707. doi:10.1200/JCO.2006.06.0913.; Савинкова А.В., Жидкова Е.М., Тилова Л.Р., Лаврова М.Д., Лылова Е.С., Кузин К.А., Портянникова А.Ю., Максимова В.П., Холодова А.В., Власова О.А., Фетисов Т.И., Кирсанов К.И., Белицкий Г.А., Якубовская М.Г., Лесовая Е.А. Варианты и перспективы перепрофилирования лекарственных препаратов для использования в терапии онкологических заболеваний. Сибирский онкологический журнал. 2018; 17(3): 77–87. doi:10.21294/1814-4861-2018-17-3-77-87.; Huq S., Casaos J., Serra R., Peters M., Xia Y., Ding A.S., Ehresman J., Kedda J.N., Morales M., Gorelick N.L., Zhao T., Ishida W., Perdomo-Pantoja A., Cecia A., Ji C., Suk I., Sidransky D., Brait M., Brem H., Skuli N., Tyler B. Repurposing the FDA-Approved Antiviral Drug Ribavirin as Targeted Therapy for Nasopharyngeal Carcinoma. Mol Cancer Ther. 2020; 19(9): 1797–808. doi:10.1158/1535-7163.MCT-19-0572.; Chen J., Xu X., Chen J. Clinically relevant concentration of antiviral drug ribavirin selectively targets pediatric osteosarcoma and increases chemosensitivity. Biochem Biophys Res Commun. 2018; 506(3): 604–10. doi:10.1016/j.bbrc.2018.10.124. Erratum in: Biochem Biophys Res Commun. 2023; 686. doi:10.1016/j.bbrc.2023.09.081.; Teng L., Ding D., Chen Y., Dai H., Liu G., Qiao Z., An R. Anti-tumor effect of ribavirin in combination with interferon-α on renal cell carcinoma cell lines in vitro. Cancer Cell Int. 2014; 14: 63. doi:10.1186/1475-2867-14-63.; Pettersson F., Yau C., Dobocan M.C., Culjkovic-Kraljacic B., Retrouvey H., Puckett R., Flores L.M., Krop I.E., Rousseau C., Cocolakis E., Borden K.L., Benz C.C., Miller W.H. Jr. Ribavirin treatment effects on breast cancers overexpressing eIF4E, a biomarker with prognostic specificity for luminal B-type breast cancer. Clin Cancer Res. 2011; 17(9): 2874–84. doi:10.1158/1078-0432.CCR-10-2334. Erratum in: Clin Cancer Res. 2011; 17(21): 6952. Retrouvay, Hélène [corrected to Retrouvey, Hélène].; Casaos J., Huq S., Lott T., Felder R., Choi J., Gorelick N., Peters M., Xia Y., Maxwell R., Zhao T., Ji C., Simon T., Sesen J., Scotland S.J., Kast R.E., Rubens J., Raabe E., Eberhart C.G., Jackson E.M., Brem H., Tyler B., Skuli N. Ribavirin as a potential therapeutic for atypical teratoid/rhabdoid tumors. Oncotarget. 2018; 9(8): 8054–67. doi:10.18632/oncotarget.23883.; Shen X., Zhu Y., Xiao Z., Dai X., Liu D., Li L., Xiao B. Antiviral Drug Ribavirin Targets Thyroid Cancer Cells by Inhibiting the eIF4E-β-Catenin Axis. Am J Med Sci. 2017; 354(2): 182–89. doi:10.1016/j.amjms.2017.03.025.; Ochiai Y., Sano E., Okamoto Y., Yoshimura S., Makita K., Yamamuro S., Ohta T., Ogino A., Tadakuma H., Ueda T., Nakayama T., Hara H., Yoshino A., Katayama Y. Efficacy of ribavirin against malignant glioma cell lines: Follow-up study. Oncol Rep. 2018; 39(2): 537–44. doi:10.3892/or.2017.6149.; Dominguez-Gomez G., Cortez-Pedroza D., Chavez-Blanco A., Taja-Chayeb L., Hidalgo-Miranda A., Cedro-Tanda A., Beltran-Anaya F., Diaz-Chavez J., Schcolnik-Cabrera A., Gonzalez-Fierro A., Dueñas-Gonzalez A. Growth inhibition and transcriptional effects of ribavirin in lymphoma. Oncol Rep. 2019; 42(3): 1248–56. doi:10.3892/or.2019.7240.; Urtishak K.A., Wang L.S., Culjkovic-Kraljacic B., Davenport J.W., Porazzi P., Vincent T.L., Teachey D.T., Tasian S.K., Moore J.S., Seif A.E., Jin S., Barrett J.S., Robinson B.W., Chen I.L., Harvey R.C., Carroll M.P., Carroll A.J., Heerema N.A., Devidas M., Dreyer Z.E., Hilden J.M., Hunger S.P., Willman C.L., Borden K.L.B., Felix C.A. Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia. Oncogene. 2019; 38(13): 2241–62. doi:10.1038/s41388-018-0567-7.; Kökény S., Papp J., Weber G., Vaszkó T., Carmona-Saez P., Oláh E. Ribavirin acts via multiple pathways in inhibition of leukemic cell proliferation. Anticancer Res. 2009; 29(6): 1971–80.; Li W., Shen F., Weber G. Ribavirin and quercetin synergistically downregulate signal transduction and are cytotoxic in human ovarian carcinoma cells. Oncol Res. 1999; 11(5): 243–7.; Wambecke A., Laurent-Issartel C., Leroy-Dudal J., Giffard F., Cosson F., Lubin-Germain N., Uziel J., Kellouche S., Carreiras F. Evaluation of the potential of a new ribavirin analog impairing the dissemination of ovarian cancer cells. PLoS One. 2019; 14(12). doi:10.1371/journal.pone.0225860.; De la Cruz-Hernandez E., Medina-Franco J.L., Trujillo J., Chavez-Blanco A., Dominguez-Gomez G., Perez-Cardenas E., Gonzalez-Fierro A., Taja-Chayeb L., Dueñas-Gonzalez A. Ribavirin as a tri-targeted antitumor repositioned drug. Oncol Rep. 2015; 33(5): 2384–92. doi:10.3892/or.2015.3816.; Kentsis A., Topisirovic I., Culjkovic B., Shao L., Borden K.L. Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap. Proc Natl Acad Sci U S A. 2004; 101(52): 18105–10. doi:10.1073/pnas.0406927102.; Pettersson F., Del Rincon S.V., Miller W.H. Jr. Eukaryotic translation initiation factor 4E as a novel therapeutic target in hematological malignancies and beyond. Expert Opin Ther Targets. 2014; 18(9): 1035–48. doi:10.1517/14728222.2014.937426.; Zheng J., Li X., Zhang C., Zhang Y. eIF4E Overexpression Is Associated with Poor Prognoses of Ovarian Cancer. Anal Cell Pathol (Amst). 2020. doi:10.1155/2020/8984526.; Zhidkova E., Stepanycheva D., Grebenkina L., Mikhina E., Maksimova V., Grigoreva D., Matveev A., Lesovaya E. Synthetic 1,2,4-triazole-3-carboxamides Induce Cell Cycle Arrest and Apoptosis in Leukemia Cells. Curr Pharm Des. 2023; 29(43): 3478–87. doi:10.2174/0113816128275084231202153602.; da Costa A.A.B.A., Chowdhury D., Shapiro G.I., D'Andrea A.D., Konstantinopoulos P.A. Targeting replication stress in cancer therapy. Nat Rev Drug Discov. 2023; 22(1): 38–58. doi:10.1038/s41573-022-00558-5.; Tan H., He L., Cheng Z. Inhibition of eIF4E signaling by ribavirin selectively targets lung cancer and angiogenesis. Biochem Biophys Res Commun. 2020; 529(3): 519–25. doi:10.1016/j.bbrc.2020.05.127.; Lim S., Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013; 140(15): 3079–93. doi:10.1242/dev.091744.; Taylor W.R., DePrimo S.E., Agarwal A., Agarwal M.L., Schönthal A.H., Katula K.S., Stark G.R. Mechanisms of G2 arrest in response to overexpression of p53. Mol Biol Cell. 1999; 10(11): 3607–22. doi:10.1091/mbc.10.11.3607.; https://www.siboncoj.ru/jour/article/view/3357

  5. 5
  6. 6
    Academic Journal

    Source: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 120-128 ; Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 120-128

    File Description: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907965-64-5; https://phsreda.com/e-articles/10716/Action10716-139147.pdf; Алексашина С.А., Сравнительное изучение химического состава и антиоксидантной активности клубней сортового картофеля / С.А. Алексашина, Н.В. Макарова // Химия растительного сырья. – 2022. – №2. – С. 221–231. DOI:10.14258/jcprm.20220210129. – EDN GENQHP; Анисимов Б.В. Мировое производство картофеля: тенденции рынка, прогнозы и перспективы (аналитический обзор) / Б.В. Анисимов // Картофель и овощи. – 2021. – №10. – С. 3–8. DOI:10.25630/PAV.2021.45.71.008. – EDN OQKWFB; Анципович В. Депонирование национальной коллекции картофеля / В. Анципович // Наука и инновации. – 2019. – №6 (196). – С. 12–16 [Электронный ресурс]. – Режим доступа: https://www.elibrary.ru/item.asp?id=38514904 (дата обращения: 02.06.2025). – EDN UFCBUG; Бутенко Р.Г. Биология клеток высших растений in vitro и биотехнологии на их основе / Р.Г. Бутенко. – М.: ФБК-Пресс, 1999. – 160 с.; Бутенко Р.Г. Культура изолированных тканей и физиология морфогенеза растений / Р.Г. Бутенко. – М.: Наука, 1964. – 272 с.; Васильченко Е.Н. Технология создания реституционных линий сахарной свёклы / Е.Н. Васильченко // Вестник ВГАУ. – 2018. – Вып. 1 (56). – С. 42–50.; Государственный реестр селекционных достижений, допущенных к использованию. – Т. 1. Сорта растений. – М.: Росинформагротех, 2022.; Ерёмченко О.А. Риски реализации комплексной научно-технологической программы, направленной на развитие селекции и семеноводства картофеля в Российской Федерации. / О.А. Ерёмченко, О.В. Черченко // Экономика науки. – 2018. – №4 (3). – С. 175–197. DOI:10.22394/2410-132X-2018-4-3-175-197. – EDN YMQQJV; Коломиец О.О. Цитометрический анализ плоидности и пролиферации клеток у растущих in vitro линий овощных культур / О.О. Коломиец, И.В. Павлова, С.В Глушен // Генетика. – 2015. – Т. 10. – С. 116.; Способы получения безвирусного картофеля in vitro / Р.В. Папихин, Г.М. Пугачева, С.А. Муратова, Н.С. Чусова [и др.] // Наука и образование. – 2020. – Т. 3. №1. – С. 88.; Технология протопластов и соматическая гибридизация картофеля – современное состояние и перспективы (обзор) / О.Б. Поливанова, А.С. Егорова, А.Б. Сиволапова, С.В. Горюнова // Аграрная наука Евро-Северо-Востока. – 2023. – №24 (1). – С. 7–19. DOI:10.30766/2072-9081.2023.24.1.7-19. – EDN QLNZXP; Продовольственная и сельскохозяйственная организация Объединенных Наций. Продукты животноводства и сельскохозяйственных культур [Электронный ресурс]. – Режим доступа: https://www.fao.org/home/ru (дата обращения: 06.06.2025).; Актуальные направления развития селекции и семеноводства картофеля в России / Е.А. Симаков, Б.В. Анисимов, С.В. Жевора [и др.] // Картофель и овощи. – 2020.; Сорта картофеля [Электронный ресурс]. – Режим доступа: https://potato.professorhome.ru/about (дата обращения: 02.06.2025).; Тимофеева О.А. Клональное микроразмножение растений / О.А. Тимофеева, Ю.Ю Невмержицкая – Казань: Казанский университет, 2012. – 56 с.; Основные этапы разработки и применения метода проточной цитометрии в ФГУ РНЦРХТ / А.С. Ягунов, А.В. Карташев, С.В. Токалов, Л.Н. Киселева // Вопросы онкологии. – 2008. – Т. 54. №4. – С. 494–497. EDN JVSUZB; Campos H. (eds.) The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind / H. Campos, O. Ortiz. Cham: Springer, 2020.; Doležel J. (1995). Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry / J Doležel, W. Göhde. Cytometry 19:103–106. https://doi.org/10.1002/cyto.990190203.; Doležel J. Flow cytometry with plants: an overview. In: J. Doležel, J. Greilhuber, J. Suda (eds) Flow cytometry with plant cells. Weinheim: Wiley-VCH, 2007. DOI:10.1002/9783527610921.ch3. EDN SSMBLJ; George E.F. Micropropagation: uses and methods. In: George E.F., Hall M.A., De Klerk G.-J. (eds) Plant propagation by tissue culture. Dordrecht: Springer, 2008. Pp. 29–64. DOI:10.1007/978-1-4020-5005-3_2.; Mohapatra P.P. Tissue Culture of Potato (Solanum tuberosum L.): A Review. International Journal of Current Microbiology and Applied Sciences. 2017; 6(4) : 489–495. DOI:10.20546/ijcmas.2017.604.058.; Pellicer J. The application of flow cytometry for estimating genome size and ploidy level in plants. In: Besse P. (ed) Molecular plant taxonomy: methods and protocols. Totowa, NJ: Humana Press, 2014. Pp. 279–307. DOI:10.1007/978-1-62703-767-9_14.; Pradana O.C.P., Maulida D., Andini S.N. Micropropagation of potato (Solanum tuberosum L.). Atlantic on various culture media composition. International Conference On Agriculture and Applied Science (ICoAAS). 2020. Pp. 27–34. DOI:10.25181/icoaas.v1i1.2006. EDN GALMRV; Robinson J.P. Principles of flow cytometry. In: Flow Cytometry with Plant Cells. – Weinheim: Wiley-VCH, 2007. Pp. 19–40. DOI:10.1002/9783527610921.ch2.; Suda J., Kron P., Husband B.C., Trávníček P. Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology. Flow cytometry with plant cells. Weinheim: Wiley-VCH, 2007. P. 103–130. DOI:10.1002/9783527610921.ch5.; Wear E.E., Concia L., Brooks A.M., Markham E.A., Lee T.J., Allen G.C. Isolation of plant nuclei at defined cell cycle stages using EdU labeling and flow cytometry. Plant Cell Division: Methods and Protocols, 2016. Pp. 69–86.; https://phsreda.com/article/139147/discussion_platform

  7. 7
    Academic Journal

    Contributors: The study was carried out with the support of the Russian Science Foundation (RSF) (grant No. 20-15-00001) and was performed as a part of Russia Strategic Academic Leadership Program (“Priority-2030”) of Kazan (Volga Region) Federal University, Исследование выполнено при поддержке Российского научного фонда (грант № 20-15-00001) и проведено в рамках Программы стратегического академического лидерства ФГАОУ ВО «Казанский (Приволжский) федеральный университет» («Приоритет-2030»)

    Source: Advances in Molecular Oncology; Vol 11, No 2 (2024); 130-146 ; Успехи молекулярной онкологии; Vol 11, No 2 (2024); 130-146 ; 2413-3787 ; 2313-805X

    File Description: application/pdf

  8. 8
    Academic Journal

    Contributors: The work was sponsored by the Belarusian Republican Foundation for Fundamental Research (agreement no. X23РНФ-087), Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (договор № Х23РНФ-087)

    Source: Doklady of the National Academy of Sciences of Belarus; Том 68, № 1 (2024); 28-35 ; Доклады Национальной академии наук Беларуси; Том 68, № 1 (2024); 28-35 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2024-68-1

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1172/1173; Khripach V. A., Zhabinskii V. N., de Groot A. Brassinosteroids. A New Class of Plant Hormones. San Diego, 1999. 456 p. https://doi.org/10.1016/b978-0-12-406360-0.x5000-x; Litvinovskaya R. P., Minin P. S., Raiman M. E., Zhilitskaya G. A., Kurtikova A. L., Kozharnovich K. G., Derevyanchuk M. V., Kravets V. S., Khripach V. A. Indolyl-3-acetoxy derivatives of brassinosteroids: synthesis and growth-regulating activity. Chemistry of Natural Compounds, 2013, vol. 49, pp. 478–485. https://doi.org/10.1007/s10600-013-0643-8; Litvinovskaya R. P., Manzhalesava N. E., Savachka A. P., Khripach V. A. Synthesis of brassinosteroid tetrahemisuccinates and their effect on the initial growth of spring barley plants. Russian Journal of Bioorganic Chemistry, 2022, vol. 48, pp. 543–547. https://doi.org/10.1134/s1068162022030128; Litvinovskaya R. P., Vayner A. A., Zhylitskaya H. A., Kolupaev Yu. E., Savachka A. P., Khripach V. A. Synthesis and stress-protective action on plants of brassinosteroid conjugates with salicylic acid. Chemistry of Natural Compounds, 2016, vol. 52, pp. 452–457. https://doi.org/10.1007/s10600-016-1671-y; Zhabinskii V. N., Khripach N. B., Khripach V. A. Steroid plant hormones: effects outside plant kingdom. Steroids, 2015, vol. 97, pp. 87–97. https://doi.org/10.1016/j.steroids.2014.08.025; Malíková J., Swaczynová J., Kolář Z., Strnad M. Anticancer and antiproliferative activity of natural brassinosteroids. Phytochemistry, 2008, vol. 69, no. 2, pp. 418–426. https://doi.org/10.1016/j.phytochem.2007.07.028; Al-Nasiry S., Geusens N., Hanssens M., Luyten C., Pijnenborg R. The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Human Reproduction, 2007, vol. 22, no. 5, pp. 1304–1309. https://doi.org/10.1093/humrep/dem011; Riccardi C., Nicoletti I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nature Protocols, 2006, vol. 1, pp. 1458–1461. https://doi.org/10.1038/nprot.2006.238; Witte I., Horke S. Assessment of endoplasmic reticulum stress and the unfolded protein response in endothelial cells. Methods in Enzymology, 2011, vol. 489, pp. 127–146. https://doi.org/10.1016/b978-0-12-385116-1.00008-x; Rieger A. M., Nelson K. L., Konowalchuk J. D., Barreda D. R. Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. Journal of Visualized Experiments: JoVE, 2011, vol. 50, art. 2597. https://doi.org/10.3791/2597; Tardito S., Isella C., Medico E., Marchiò L., Bevilacqua E., Hatzoglou M., Bussolati O., Franchi-Gazzola R. The thioxotriazole copper (II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. Journal of Biological Chemistry, 2009, vol. 284, no. 36, pp. 24306–24319. https://doi.org/10.1074/jbc.m109.026583; Bourzikat O., El Abbouchi A., Ghammaz H., El Brahmi N., El Fahime E., Paris A., Daniellou R., Suzenet F., Guillaumet G., El Kazzouli S. Synthesis, Anticancer Activities and Molecular Docking Studies of a Novel Class of 2-Phenyl5,6,7,8-tetrahydroimidazo [1,2-b]pyridazine Derivatives Bearing Sulfonamides. Molecules, 2022, vol. 27, no. 16, art. 5238. https://doi.org/10.3390/molecules27165238; McGahon A. J., Brown D. G., Martin S. J., Amarante-Mendes G. P., Cotter T. G., Cohen G. M., Green D. R. Downregulation of Bcr-Abl in K562 cells restores susceptibility to apoptosis: characterization of the apoptotic death. Cell Death and Differentiation, 1997, vol. 4, pp. 95–104. https://doi.org/10.1038/sj.cdd.4400213; Dachineni R., Kumar D. R., Callegari E., Kesharwani S. S., Sankaranarayanan R., Seefeldt T., Tummala H., Bhat G. J. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirin’s chemopreventive effects against colorectal cancer. International Journal of Oncology, 2017, vol. 51, no. 6, pp. 1661–1673. https://doi.org/10.3892/ijo.2017.4167; Ding L., Cao J., Lin W., Chen H., Xiong X., Ao H., Yu M., Lin J., Cui Q. The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. International Journal of Molecular Sciences, 2020, vol. 21, no. 6, art. 1960. https://doi.org/10.3390/ijms21061960; https://doklady.belnauka.by/jour/article/view/1172

  9. 9
    Academic Journal

    Contributors: Исследование поддержано бюджетным проектом НИИКЭЛ – филиала ИЦиГ СО РАН (FWNR-2022-0009). В работе использовано оборудование Центра генетических ресурсов лабораторных животных (ИЦиГ СО РАН) и оборудования ЦКП ФИЦ ФТМ «Протеомный анализ», поддержанного финансированием Минобрнауки России (соглашение № 075-15-2021-691).

    Source: Acta Biomedica Scientifica; Том 9, № 3 (2024); 239-248 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/4836/2808; Koronowski KB, Sassone-Corsi P. Communicating clocks shape circadian homeostasis. Science. 2021; 37(6530): eabd0951. doi:10.1126/science.abd0951; Arendt J. Melatonin: Countering chaotic time cues. Front Endocrinol (Lausanne). 2019; 10: 391. doi:10.3389/fendo.2019.00391; Brown LA, Fisk AS, Pothecary CA, Peirson SN. Telling the time with a broken clock: Quantifying circadian disruption in animal models. Biology (Basel). 2019; 8(1): 18. doi:10.3390/biology8010018; Taves MD, Ashwell JD. Glucocorticoids in T cell development, differentiation and function. Nat Rev Immunol. 2021; 21(4): 233-243. doi:10.1038/s41577-020-00464-0; Cowan JE, Takahama Y, Bhandoola A, Ohigashi I. Postnatal involution and counter-involution of the thymus. Front Immunol. 2020; 11: 897. doi:10.3389/fimmu.2020.00897; Kinsella S, Dudakov JA. When the damage is done: Injury and repair in thymus function. Front Immunol. 2020; 11: 1745. doi:10.3389/fimmu.2020.01745; Miller JFAP. The discovery of thymus function and of thymus-derived lymphocytes. Immunol Rev. 2002; 185: 7-14. doi:10.1034/j.1600-065x.2002.18502.x; Dai X, Zhang D, Wang C, Wu Z, Liang C. The pivotal role of thymus in atherosclerosis mediated by immune and inflammatory response. Int J Med Sci. 2018; 15(13): 1555-1563. doi:10.7150/ijms.27238; Бородин Ю.И., Коненков В.И., Пармон В.Н., Любарский М.С., Рачковская Л.Н., Бгатова Н.П., и др. Биологические свойства сорбентов и перспективы их применения. Успехи современной биологии. 2014; 134(3): 236-248.; Королев М.А., Рачковская Л.Н., Мадонов П.Г., Шурлыгина А.В., Рачковский Э.Э., Летягин А.Ю., и др. Оценка острой токсичности лекарственного средства на основе комплекса лития цитрата, полиметилсилоксана, оксида алюминия. Сибирский научный медицинский журнал. 2020; 40(5): 46-52. doi:10.15372/SSMJ20200505; Шурлыгина А.В., Мичурина С.В., Рачковская Л.Н., Серых А.Е., Мирошниченко С.М., Рачковский Э.Э., и др. Влияние комплекса мелатонина, оксида алюминия и полиметилсилоксана на клеточный состав селезенки мышей, содержавшихся в условиях круглосуточного освещения. Acta biomedica scientifica. 2021; 6(4): 252-264. doi:10.29413/ABS.2021-6.4.23; Michurina SV, Miroshnichenko SM, Serykh AE, Ishchenko IYu, Letyagin AYu, Zavjalov EL. Light-induced functional pinealectomy. Effect on the thymus of C57BL/6 mice. Bull Exp Biol Med. 2022; 174(1): 152-158. doi:10.1007/s10517-022-05665-2; Pinheiro RGR, Alves NL. The early postnatal life: A dynamic period in thymic epithelial cell differentiation. Front Immunol. 2021; 12: 668528. doi:10.3389/fimmu.2021.668528; Qiao S, Li X, Zilioli S, Chen Z, Deng H, Pan J, et al. Hair measurements of cortisol, DHEA, and DHEA to cortisol ratio as biomarkers of chronic stress among people living with HIV in China: Known-group validation. PLoS One. 2017; 12(1): e0169827. doi:10.1371/journal.pone.0169827; Бгатова Н.П., Рачковская Л.Н. Влияние длительного введения в рацион животных углеродминерального сорбента СУМС-1 на ультраструктурную организацию кишечной ворсинки. Проблемы саногенного и патогенного эффектов экологических воздействий на внутреннюю среду организма: Материалы 2-го международного симпозиума (Чолпон-Ата, 1995). 1995: 14-15.; Huo R, Zeng B, Zeng L, Cheng K, Li B, Luo Y, et al. Microbiota modulate anxiety-like behavior and endocrine abnormalities in hypothalamic-pituitary-adrenal axis. Front Cell Infect Microbiol. 2017; 7: 489. doi:10.3389/fcimb.2017.00489; Moya-Pérez A, Perez-Villalba A, Benítez-Páez A, Campillo I, Sanz Y. Bifidobacterium CECT 7765 modulates early stress-induced immune, neuroendocrine and behavioral alterations in mice. Brain Behav Immun. 2017; 65: 43-56. doi:10.1016/j.bbi.2017.05.01; Cohen Kadosh K, Basso M, Knytl P, Johnstone N, Lau JYF, Gibson GR. Psychobiotic interventions for anxiety in young people: A systematic review and meta-analysis, with youth consultation. Transl Psychiatry. 2021; 11(1): 352. doi:10.1038/s41398-021-01422-7; Wong ML, Inserra A, Lewis MD, Mastronardi CA, Leong L, Choo J, et al. Inflammasome signaling affects anxiety- and depressive- like behavior and gut microbiome composition. Mol Psychiatry. 2016; 21(6): 797-805. doi:10.1038/mp.2016.46; https://www.actabiomedica.ru/jour/article/view/4836

  10. 10
  11. 11
    Academic Journal

    Contributors: The study was carried out with the support of the Russian Science Foundation (grant No. 21-75-00014) and was performed as a part of Russia Strategic Academic Leadership Program (PRIORITY-2030) of Kazan Federal University of Ministry of Health., Исследование выполнено при поддержке Российского научного фонда (грант № 21-75-00014) и в рамках Программы стратегического академического лидерства Казанского (Приволжского) федерального университета (ПРИОРИТЕТ-2030).

    Source: Advances in Molecular Oncology; Том 10, № 3 (2023); 59-71 ; Успехи молекулярной онкологии; Том 10, № 3 (2023); 59-71 ; 2413-3787 ; 2313-805X ; 10.17650/2313-805X-2023-10-3

    File Description: application/pdf

    Relation: https://umo.abvpress.ru/jour/article/view/571/312; Parker A.L., Kavallaris M., McCarroll J.A. Microtubules and their role in cellular stress in cancer. Front Oncol 2014;4:1–19. DOI:10.3389/fonc.2014.00153; Dumontet C., Jordan M.A. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 2010;9(10): 790–803. DOI:10.1038/nrd3253; Gigant B., Wang C., Ravelli R.B. et al. Structural basis for the regulation of tubulin by vinblastine. Nature 2005;435(7041):519–22. DOI:10.1038/nature03566; Ravelli R.B., Gigant G., Curmi B. et al. Insight into tubulin regulation from a complex with colchicine and a stathminlike domain. Nature 2004;428(6979):198–202. DOI:10.1038/nature02393; Yang J., Wang Y., Wang T. et al. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. Nat Commun 2016;7:12103. DOI:10.1038/ncomms12103; Prota A.E., Setter J., Waight A.B. et al. Pironetin binds covalently to αCys316 and perturbs a major loop and helix of α-tubulin to inhibit microtubule formation. J Mol Biol 2016;428(15):2981–8. DOI:10.1016/j.jmb.2016.06.023; Steinmetz M.O., Prota A.E. Microtubule-targeting agents: strategies to hijack the cytoskeleton. Trends Cell Biol 2018;28(10):776–92. DOI:10.1016/j.tcb.2018.05.001; Fanale D., Bronte G., Passiglia F. et al. Stabilizing versus destabilizing the microtubules: a double-edge sword for an effective cancer treatment option? Anal Cell Pathol 2015;2015:690916. DOI:10.1155/2015/690916; Mooberry S.L., Tien G., Hernandez A.H. et al. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stabilizing agents. Cancer Res 1999;59(3):653–60.; West L.M., Northcote P.T., Battershill C.N., Peloruside A. A potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem 2000;65(2):445–9. DOI:10.1021/jo991296y; Prota A.E., Bargsten K., Northcote P.T. et al. Structural basis of microtubule stabilization by laulimalide and peloruside A. Angew Chem Int Ed Engl 2014;53(6):1621–5. DOI:10.1002/anie.201307749; Munshi N., Jeay S., Li Y. et al. ARQ 197, a novel and selective inhibitor of the human c-met receptor tyrosine kinase with antitumor activity. Mol Cancer Ther 2010;9(6):1544–53. DOI:10.1158/1535-7163.MCT-09-1173; Katayama R., Aoyama A., Yamori T. et al. Cytotoxic activity of tivantinib (ARQ 197) is not due solely to c-MET inhibition. Cancer Res 2013;73(10):3087–96. DOI:10.1158/0008-5472.CAN-12-3256; Aoyama A., Katayama R., Oh-Hara T. et al. Tivantinib (ARQ 197) exhibits antitumor activity by directly interacting with tubulin and overcomes ABC transporter-mediated drug resistance. Mol Cancer Ther 2014;13(12):2978–90. DOI:10.1158/1535-7163.MCT-14-0462; Gumireddy K., Reddy M.V.R., Cosenza S.C. et al. ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 2005;7:275–86. DOI:10.1016/j.ccr.2005.02.009; Jost M., Chen Y., Gilbert L.A. et al. Combined CRISPRi/a-based chemical genetic screens reveal that rigosertib is a microtubuledestabilizing agent. Mol Cell 2017;68(1):210–23. DOI:10.1016/j.molcel.2017.09.012; Park H., Hong S., Hong S. Nocodazole is a high-affinity ligand for the cancer-related kinases ABL, c-KIT, BRAF, and MEK. Chem Med Chem 2012;7(1):53–6. DOI:10.1002/cmdc.201100410; Guo X., Zhang X., Li Y. et al. Nocodazole increases the ERK activity to enhance MKP-1 expression which inhibits p38 activation induced by TNF-α. Mol Cell Biochem 2012;364(1–2):373–80. DOI:10.1007/s11010-012-1239-5; Tanabe K. Microtubule depolymerization by kinase inhibitors: unexpected findings of dual inhibitors. Int J Mol Sci 2017;18(12):2508. DOI:10.3390/ijms18122508; Ramirez-Rios S., Michallet S., Peris L. et al. A new quantitative cell-based assay reveals unexpected microtubule stabilizing activity of certain kinase inhibitors, clinically approved or in the process of approval. Front Pharmacol 2020;11:543. DOI:10.3389/fphar.2020.00543; Krishna R., Mayer L.D. Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 2000;11(4):265–83. DOI:10.1016/S0928-0987(00)00114-7; Mechetner E., Kyshtoobayeva A., Zonis S. et al. Levels of multidrug resistance (MDR1) P-glycoprotein expressing by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin Cancer Res 1998;4(2):389–98.; Kavallaris M., Kuo D.Y., Burkhart C.A. et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Investig 1997;100(5):1282– 93. DOI:10.1172/JCI119642; Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 2010;10(3):194–204. DOI:10.1038/nrc2803; Зыкова С.С., Бойчук С.В., Галембикова А.Р. и др. 3-гидрокси-1,5-диарил-4-пивалоил-2,5-дигидро-2-пирролоны нарушают процессы митоза и индуцируют гибель опухолевых клеток in vitro. Цитология 2014;56:439–42.; Boichuk S., Galembikova A., Zykova S. et al. Ethyl-2-aminopyrrole-3-carboxylates are novel potent anticancer agents that affect tubulin polymerization, induce G2/M cell-cycle arrest, and effectively inhibit soft tissue cancer cell growth in vitro. Anti-Cancer Drugs 2016;27(7):620–34. DOI:10.1097/CAD.0000000000000372; Boichuk S., Galembikova A., Dunaev P. et al. Ethyl-2-aminopyrrole-3-carboxylates are active against imatinib-resistant gastrointestinal stromal tumors in vitro and in vivo. Anti-Cancer Drugs 2019;30(5):475–84. DOI:10.1097/CAD.0000000000000753; Carta D., Bortolozzi R., Sturlese M. et al. Synthesis, structureactivity relationships and biological evaluation of 7-phenyl-pyrroloquinolinone 3-amide derivatives as potent antimitotic agents. Eur J Med Chem 2017;127:643–60. DOI:10.1016/j.ejmech.2016.10.026; Brindisi M., Ulivieri C., Alfano G. et al. Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. Eur J Med Chem 2019;162:290–320. DOI:10.1016/j.ejmech.2018.11.004; Boichuk S., Galembikova A., Syuzov K. et al. The design, synthesis, and biological activities of pyrrole-based carboxamides: the novel tubulin inhibitors targeting the colchicine-binding site. Molecules 2021;26(19):5780. DOI:10.3390/molecules26195780; Boichuk S., Galembikova A., Sitenkov A. et al. Establishment and characterization of a triple negative basal-like breast cancer cell line with multi-drug resistance. Oncol Lett 2017;14(4):5039–45. DOI:10.3892/ol.2017.6795; Zykova S., Kizimova I., Syutkina A. et al. Synthesis and cytostatic activity of (E)-ethyl-2-amino-5-(3,3-dimethyl-4-oxobutyliden-4oxo-1-(2-phenylaminobenzamido)-4,5-dihydro-1Hpyrrol-3carboxylate. Pharm Chem J 2020;53:895–8. DOI:10.1007/s11094020-02096-z; Boichuk S., Bikinieva F., Valeeva E. et al. Establishment and characterization of multi-drug resistant p53-negative osteosarcoma SaOS-2 subline. Diagnostics 2023;13:2646. DOI:10.3390/diagnostics13162646; Boichuk S., Dunaev P., Mustafin I. et al. Infigratinib (BGJ 398), a pan-FGFR inhibitor, targets P-glycoprotein and increases chemotherapeutic-induced mortality of multidrug-resistant tumor cells. Biomedicines 2022;10(3):601. DOI:10.3390/biomedicines10030601; Distefano M., Scambia G., Ferlini C. et al. Antitumor activity of paclitaxel (taxol) analogues on MDR-positive human cancer cells. Anticancer Drug Des 1998;13(5):489–99.; Pirol Ş.C., Çalışkan B., Durmaz I. et al. Synthesis and preliminary mechanistic evaluation of 5-(p-tolyl)-1-(quinolin-2-yl)pyrazole-3carboxylic acid amides with potent anti-proliferative activity on human cancer cell lines. Eur J Med Chem 2014;87:140–9. DOI:10.1016/j.ejmech.2014.09.056; Ke J., Lu Q., Wang X. et al. Discovery of 4,5-dihydro-1Hthieno[2’,3’:2,3]thiepino [4,5-c]pyrazole-3-carboxamide derivatives as the potential epidermal growth factor receptors for tyrosine kinase inhibitors. Molecules 2018;23:1980. DOI:10.3390/molecules23081980; Lin T., Li J., Liu L. et al. Design, synthesis, and biological evaluation of 4-benzoylamino-1H-pyrazole-3-carboxamide derivatives as potent CDK2 inhibitors. Eur J Med Chem 2021;215:113281. DOI:10.1016/j.ejmech.2021.113281; Yasuda Y., Arakawa T., Nawata Y. et al. Design, synthesis, and structure-activity relationships of 1-ethylpyrazole-3-carboxamide compounds as novel hypoxia-inducible factor (HIF)-1 inhibitors. Bioorg Med Chem 2015;23(8):1776–87. DOI:10.1016/j.bmc.2015.02.038; Gul H.I., Mete E., Eren S.E. et al. Designing, synthesis and bioactivities of 4-[3-(4-hydroxyphenyl)-5-aryl-4,5-dihydropyrazol-1-yl]benzenesulfonamides. J Enzyme Inhib Med Chem 2017;32(1):169–75. DOI:10.1080/14756366.2016.1243536; Gul H.I., Yamali C., Bulbuller M. et al. Anticancer effects of new dibenzenesulfonamides by inducing apoptosis and autophagy pathways and their carbonic anhydrase inhibitory effects on hCA I, hCA II, hCA IX, hCA XII isoenzymes. Bioorg Chem 2018;78: 290–7. DOI:10.1016/j.bioorg.2018.03.027; Gul H.I., Yamali C., Sakagami H. et al. New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors. Bioorg Chem 2018;77:411–9. DOI:10.1016/j.bioorg.2018.01.021; Yamali C., Sakagami H., Uesawa Y. et al. Comprehensive study on potent and selective carbonic anhydrase inhibitors: synthesis, bioactivities and molecular modelling studies of 4-(3-(2-arylidenehydrazine-1-carbonyl)-5-(thiophen-2-yl)-1Hpyrazole-1-yl) benzenesulfonamides. Eur J Med Chem 2021;217:113351. DOI:10.1016/j.ejmech.2021.113351; Mooberry S.L., Weiderhold K.N., Dakshanamurthy S. et al. Identification and characterization of a new tubulin-binding tetrasubstituted brominated pyrrole. Mol Pharmacol 2007;72(1):132–40. DOI:10.1124/mol.107.034876; Da C., Telang N., Barelli P. et al. Pyrrole-based antitubulin agents: two distinct binding modalities are predicted for C-2 analogues in the colchicine site. ACS Med Chem Lett 2012;3(1):53–7. DOI:10.1021/ml200217u; Romagnoli R., Oliva P., Salvador M.K. et al. A facile synthesis of diary l pyrroles led to the discovery of potent colchicine site antimitotic agents. Eur J Med Chem 2021;214:113229. DOI:10.1016/j.ejmech.2021.113229; https://umo.abvpress.ru/jour/article/view/571

  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
    Academic Journal

    Contributors: The work was supported by the National Medical Research Centre for Oncology of the Ministry of Health of Russia, Работа проведена при поддержке ФГБУ «НМИЦ онкологии» Минздрава России

    Source: Research and Practical Medicine Journal; Том 8, № 3 (2021); 118-132 ; Research'n Practical Medicine Journal; Том 8, № 3 (2021); 118-132 ; 2410-1893 ; 10.17709/2410-1893-2021-8-3

    File Description: application/pdf

    Relation: https://www.rpmj.ru/rpmj/article/view/683/451; https://www.rpmj.ru/rpmj/article/downloadSuppFile/683/429; https://www.rpmj.ru/rpmj/article/downloadSuppFile/683/430; Qu N, Itoh M, Sakabe K. Effects of Chemotherapy and Radiotherapy on Spermatogene-sis: The Role of Testicular Immunology. Int J Mol Sci. 2019 Feb 22;20(4):957. https://doi.org/10.3390/ijms20040957; Damia G, Broggini M. Platinum Resistance in Ovarian Cancer: Role of DNA Repair. Cancers (Basel). 2019 Jan 20;11(1):119. https://doi.org/10.3390/cancers11010119; Varricchi G, Ameri P, Cadeddu C, Ghigo A, Madonna R, Marone G, et al. Antineo-plastic Drug-Induced Cardiotoxicity: A Redox Perspective. Front Physiol. 2018;9:167. https://doi.org/10.3389/fphys.2018.00167; Кит О.И., Шихлярова А.И., Жукова Г.В., Марьяновская Г.Ю., Барсукова Л.П., Ко-робейникова Е.П. и др. Теоретические и прикладные аспекты активационной терапии. Cardiometry. 2015;7:22–29. https://doi.org/10.12710/cardiometry.2015.7.2229; Сагакянц А.Б. Объединенный иммунологический форум: современные направле-ния развития фундаментальной и прикладной онкоиммунологии (Новосибирск, 2019). Южно-Российский онкологический журнал. 2020;1(2):36–45. https://doi.org/10.37748/2687-0533-2020-1-2-5; Lloyd D. Carbocyclic Non-Benzenoid Aromatic Compounds. Elsevier. Amsterdam-London-New-York. 1966, 220 p.; Liu S, Yamauchi H. Hinokitiol, a metal chelator derived from natural plants, suppresses cell growth and disrupts androgen receptor signaling in prostate carcinoma cell lines. Biochem Biophys Res Commun. 2006 Dec 8;351(1):26–32. https://doi.org/10.1016/j.bbrc.2006.09.166; Li L-H, Wu P, Lee J-Y, Li P-R, Hsieh W-Y, Ho C-C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS One. 2014;9(8):e104203. https://doi.org/10.1371/journal.pone.0104203; Ononye SN, Vanheyst MD, Giardina C, Wright DL, Anderson AC. Studies on the anti-proliferative effects of tropolone derivatives in Jurkat T-lymphocyte cells. Bioorg Med Chem. 2014 Apr 1;22(7):2188–2193. https://doi.org/10.1016/j.bmc.2014.02.018; Bang DN, Sayapin YA, Lam H, Duc ND, Komissarov VN. Synthesis and cytotoxic activ-ity of [benzo[b][1,4]oxazepino[7,6,5-de]quinolin-2-yl]-1,3-tropolones. Chem Heterocycl Comp. 2015 Mar 1;51(3):291–294. https://doi.org/10.1007/s10593-015-1697-2; Tkachev VV, Sayapin YuA, Tupaeva IO, Gusakov EA, Shilov GV, Aldoshin SM, et al. Structure of 2-(benzoxazole-2-Yl)- 5,7-di(tert-butyl)-4-nitro-1,3-tropolone. J Struct Chem. 2018 Jan 1;59(1):197–200. https://doi.org/10.1134/S0022476618010316; Zhao J. Plant troponoids: chemistry, biological activity, and biosynthesis. Curr Med Chem. 2007;14(24):2597–2621. https://doi.org/10.2174/092986707782023253; Shih Y-H, Chang K-W, Hsia S-M, Yu C-C, Fuh L-J, Chi T-Y, et al. In vitro antimicrobi-al and anticancer potential of hinokitiol against oral pathogens and oral cancer cell lines. Mi-crobiol Res. 2013 Jun 12;168(5):254–262. https://doi.org/10.1016/j.micres.2012.12.007; Elagawany M, Hegazy L, Cao F, Donlin MJ, Rath N, Tavis J, et al. Identification of 4-isopropyl–thiotropolone as a novel anti-microbial: regioselective synthesis, NMR characteriza-tion, and biological evaluation. RSC Adv. 2018 Aug 20;8(52):29967–29975. https://doi.org/10.1126/science.2475911; Çankaya N, Bulduk İ, Çolak AM. Extraction, development and validation of HPLC-UV method for rapid and sensitive determination of colchicine from Colchicum autumnale L. Bulbs. Saudi J Biol Sci. 2019 Feb;26(2):345–351. https://doi.org/10.1016/j.sjbs.2018.10.003; Bhattacharyya B, Panda D, Gupta S, Banerjee M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev. 2008 Jan;28(1):155–183. https://doi.org/10.1002/med.20097; Alkadi H, Khubeiz MJ, Jbeily R. Colchicine: A Review on Chemical Structure and Clin-ical Usage. Infect Disord Drug Targets. 2018;18(2):105–121. https://doi.org/10.2174/1871526517666171017114901; Бурбаева Г.Ш., Андросова Л.В., Савушкина О.К. Связывание колхицина с тубули-ном в структурах головного мозга в норме и при шизофрении. Нейрохимия. 2020;37(2):183–187. https://doi.org/10.31857/S1027813320010069; Maldonado EN, Patnaik J, Mullins MR, Lemasters JJ. Free tubulin modulates mito-chondrial membrane potential in cancer cells. Cancer Res. 2010 Dec 15;70(24):10192–10201. https://doi.org/10.1158/0008-5472.CAN-10-2429; Lin Z-Y, Kuo C-H, Wu D-C, Chuang W-L. Anticancer effects of clinically acceptable colchicine concentrations on human gastric cancer cell lines. Kaohsiung J Med Sci. 2016 Feb;32(2):68–73. https://doi.org/10.1016/j.kjms.2015.12.006; Kurek J, Kwaśniewska-Sip P, Myszkowski K, Cofta G, Barczyński P, Murias M, et al. Antifungal, anticancer, and docking studies of colchiceine complexes with monovalent metal cation salts. Chem Biol Drug Des. 2019 Sep;94(5):1930–1943. https://doi.org/10.1111/cbdd.13583; Florian S, Mitchison TJ. Anti-Microtubule Drugs. Methods Mol Biol. 2016;1413:403–421. https://doi.org/10.1007/978-1-4939-3542-0_25; Matsumura E, Morita Y, Date T, Tsujibo H, Yasuda M, Okabe T, et al. Cytotoxicity of the hinokitiol-related compounds, gamma-thujaplicin and beta-dolabrin. Biol Pharm Bull. 2001 Mar;24(3):299–302. https://doi.org/10.1248/bpb.24.299; Максимов А.Ю., Лукбанова Е.А., Саяпин Ю.А., Гусаков Е.А., Гончарова А.С., Лы-сенко И.Б. и др. Противоопухолевая активность алкалоидов трополонового ряда in vitro и in vivo. Современные проблемы науки и образования. 2020:(2);169. https://doi.org/10.17513/spno.29722; Lee Y-S, Choi K-M, Kim W, Jeon Y-S, Lee Y-M, Hong J-T, et al. Hinokitiol inhibits cell growth through induction of S-phase arrest and apoptosis in human colon cancer cells and suppresses tumor growth in a mouse xenograft experiment. J Nat Prod. 2013 Dec 27;76(12):2195–2202. https://doi.org/10.1021/np4005135; Seo JS, Choi YH, Moon JW, Kim HS, Park S-H. Hinokitiol induces DNA demethylation via DNMT1 and UHRF1 inhibition in colon cancer cells. BMC Cell Biol. 2017 Feb 27;18(1):14. https://doi.org/10.1186/s12860-017-0130-3; Chen S-M, Wang B-Y, Lee C-H, Lee H-T, Li J-J, Hong G-C, et al. Hinokitiol up-regulates miR-494-3p to suppress BMI1 expression and inhibits self-renewal of breast cancer stem/progenitor cells. Oncotarget. 2017 Sep 29;8(44):76057–76068. https://doi.org/10.18632/oncotarget.18648; Zhang G, He J, Ye X, Zhu J, Hu X, Shen M, et al. β-Thujaplicin induces autophagic cell death, apoptosis, and cell cycle arrest through ROS-mediated Akt and p38/ERK MAPK signal-ing in human hepatocellular carcinoma. Cell Death Dis. 2019 Mar 15;10(4):255. https://doi.org/10.1038/s41419-019-1492-6; Morita Y, Matsumura E, Tsujibo H, Yasuda M, Okabe T, Sakagami Y, et al. Biological activity of 4-acetyltropolone, the minor component of Thujopsis dolabrata SIeb. et Zucc. hon-dai Mak. Biol Pharm Bull. 2002 Aug;25(8):981–985. https://doi.org/10.1248/bpb.25.981; Ido Y, Muto N, Inada A, Kohroki J, Mano M, Odani T, et al. Induction of apoptosis by hinokitiol, a potent iron chelator, in teratocarcinoma F9 cells is mediated through the activation of caspase-3. Cell Prolif. 1999 Feb;32(1):63–73. https://doi.org/10.1046/j.1365-2184.1999.3210063.x; Zhang L, Peng Y, Uray IP, Shen J, Wang L, Peng X, et al. Natural product β-thujaplicin inhibits homologous recombination repair and sensitizes cancer cells to radiation therapy. DNA Repair (Amst). 2017 Dec;60:89–101. https://doi.org/10.1016/j.dnarep.2017.10.009; Tu D-G, Yu Y, Lee C-H, Kuo Y-L, Lu Y-C, Tu C-W, et al. Hinokitiol inhibits vasculo-genic mimicry activity of breast cancer stem/progenitor cells through proteasome-mediated degradation of epidermal growth factor receptor. Oncol Lett. 2016 Apr;11(4):2934–2940. https://doi.org/10.3892/ol.2016.4300; Huang C-H, Jayakumar T, Chang C-C, Fong T-H, Lu S-H, Thomas PA, et al. Hinokitiol Exerts Anticancer Activity through Downregulation of MMPs 9/2 and Enhancement of Catalase and SOD Enzymes: In Vivo Augmentation of Lung Histoarchitecture. Molecules. 2015 Sep 25;20(10):17720–17734. https://doi.org/10.3390/molecules201017720; Tsao Y-T, Huang Y-F, Kuo C-Y, Lin Y-C, Chiang W-C, Wang W-K, et al. Hinokitiol Inhibits Melanogenesis via AKT/mTOR Signaling in B16F10 Mouse Melanoma Cells. Int J Mol Sci. 2016 Feb 18;17(2):248. https://doi.org/10.3390/ijms17020248; Ahn J-H, Woo J-H, Rho J-R, Choi J-H. Anticancer Activity of Gukulenin A Isolated from the Marine Sponge Phorbas gukhulensis In Vitro and In Vivo. Mar Drugs. 2019 Feb 21;17(2):126. https://doi.org/10.3390/md17020126; Yamato M, Ando J, Sakaki K, Hashigaki K, Wataya Y, Tsukagoshi S, et al. Synthesis and antitumor activity of tropolone derivatives. 7. Bistropolones containing connecting meth-ylene chains. J Med Chem. 1992 Jan 24;35(2):267–273. https://doi.org/10.1021/jm00080a010; Ishihara M, Wakabayashi H, Motohashi N, Sakagami H. Quantitative structure-cytotoxicity relationship of newly synthesized tropolones determined by a semiempirical mo-lecular-orbital method (PM5). Anticancer Res. 2010 Jan;30(1):129–133.; Li J, Falcone ER, Holstein SA, Anderson AC, Wright DL, Wiemer AJ. Novel α-substituted tropolones promote potent and selective caspase-dependent leukemia cell apoptosis. Pharmacol Res. 2016 Nov;113(Pt A):438–448. https://doi.org/10.1016/j.phrs.2016.09.020; Haney SL, Allen C, Varney ML, Dykstra KM, Falcone ER, Colligan SH, et al. Novel tropolones induce the unfolded protein response pathway and apoptosis in multiple myeloma cells. Oncotarget. 2017 Sep 29;8(44):76085–76098. https://doi.org/10.18632/oncotarget.18543; Iwatsuki M, Takada S, Mori M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, et al. In vitro and in vivo antimalarial activity of puberulic acid and its new analogs, viticolins A-C, produced by Penicillium sp. FKI-4410. J Antibiot (Tokyo). 2011 Feb;64(2):183–188. https://doi.org/10.1038/ja.2010.124; Bang DN, Sayapin YA, Lam H, Duc ND, Komissarov VN. Synthesis and cytotoxic activ-ity of [benzo[b][1,4]oxazepino[7,6,5-de]quinolin-2-yl]-1,3-tropolones. Chem Heterocycl Comp. 2015;51(3):291–294. https://doi.org/10.1007/s10593-015-1697-2; Gusakov EA, Topchu IA, Mazitova AM, Dorogan IV, Bulatov ER, Serebriiskii IG, et al. Design, synthesis and biological evaluation of 2-quinolyl-1,3-tropolone derivatives as new anti-cancer agents. RSC Adv. 2021;11(8):4555–4571. https://doi.org/10.1039/d0ra10610k; Thieffry D. Dynamical roles of biological regulatory circuits. Brief Bioinform. 2007 Jul;8(4):220–225. https://doi.org/10.1093/bib/bbm028; https://www.rpmj.ru/rpmj/article/view/683

  17. 17
    Academic Journal

    Source: Acta Biomedica Scientifica; Том 6, № 4 (2021); 252-264 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/2996/2210; Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML. MT1 and MT2 melatonin receptors: A therapeutic perspective. Annu Rev Pharmacol Toxicol. 2016; 56: 361-383. doi:10.1146/annurev-pharmtox-010814-124742; ArendtJ. Melatonin: Characteristics, concerns, and prospects. J Biol Rhythms. 2005; 20(4):291-303. doi:10.1177/0748730405277492; Pandi-Perumal SR, Esquifino A, Cardinali DP. The role of melatonin in immunoenhancement: Potential application in cancer. Int J Exp Pathol. 2006; 87(2): 81-87. doi:10.1111/j.0959-9673.2006.00474.x; Srinivasan V, Pandi-Perumal SR, Maestroni GJ, Esquifino AI, Hardeland R, Cardinali DP. Role of melatonin in neurodegenerative diseases. Neurotox Res. 2005; 7(4): 293-318. doi:10.1007/BF03033887; Regodon S, Martin-Palomino P, Fernadez-Montesinos R, Herrera JL, Carrascosa-Salmoral MP, Piriz SS, et al. The use of melatonin as a vaccine agent. Vaccine. 2005; 23(46-47): 5321-5327. doi:10.1016/j.vaccine.2005.07.003; Hardeland R, Pandi-Perumal SR. Melatonin, a potent agent in antioxidative defense: Actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutr Metab (Lond). 2005: 2: 22. doi:10.1186/1743-7075-2-22; Esquifino AI, Cano P, Jiménez-Ortega V, Fernández-Mateos P, Cardinali DP. Neuroendocrine-immune correlates of circadian physiology: Studies in experimental models of arthritis, ethanol feeding, aging, social isolation, and calorie restriction. Endocrine. 2007; 32(1): 1-19. doi:10.1007/s12020-007-9009-y; Borugian MJ, Gallagher RP, Friesen MC, Switzer TF, Aronson KJ. Twenty-four-hour light exposure and melatonin levels among shift workers. J Occup Environ Med. 2005; 47(12): 1268-1275. doi:10.1097/01.jom.0000184855.87223.77; Luo J, Zhang Z, Sun H, Song J, Chen X, Huang J, et al. Effect of melatonin on T/B cell activation and immune regulation in pinealectomy mice. Life Sci. 2020; 242: 117191. doi:10.1016/j.lfs.2019.117191; Мичурина С.В., Рачковская Л.Н., Ищенко И.Ю., Рачковский Э.Э., Климонтов В.В., Коненков В.И. Пористый сорбент с хронотропными свойствами на основе оксида алюминия: Патент № 2577580 Рос. Федерация; МПК B01J 20/08 (2006.01) B01J 20/22 (2006.01); заявитель и патентообладатель ФГБНУ «Научно-исследовательский институт клинической и экспериментальной лимфологии». № 2015100920/05; заявл. 12.01.2015; опубл. 20.03.2016. 2016; (8).; Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Med Rev. 2005; 9(1): 11-24. doi:10.1016/j.smrv.2004.08.001; Carrillo-Vico A, Guerrero JM, Lardone PJ, Reiter RJ. A review of the multiple actions of melatonin on the immune system. Endocrine. 2005; 27(2): 189-200. doi:10.1385/ENDO:27:2:189; Rai S, Haldar C. Pineal control of immune status and hematological changes in blood and bone marrow of male squirrels (funambulus pennanti) during their reproductively active phase. Comp Biochem Physiol Toxicol Pharmacol. 2003; 136(4): 319-328. doi:10.1016/j.cca.2003.10.008; Capelli E, Campo I, Panelli S, Damiani G, Barbone V, Lucchelli A, et al. Evaluation of gene expression in human lymphocytes activated in the presence of melatonin. Int Immunopharmacol. 2002; 2(7): 885-892. doi:10.1016/s1567-5769(02)00021-8; Sze SF, Liu WK, Ng TB. Stimulation of murine splenocytes by melatonin and methoxytryptamine. J Neural Transm Gen Sect. 1993; 94(2): 115-126. doi:10.1007/BF01245005; Demas GE, Nelson RJ. Exogenous melatonin enhances cell-mediated, but not humoral, immune function in adult male deer mice (peromyscus maniculatus). J Biol Rhythms. 1998; 13(2): 245-252. doi:10.1177/074873098129000084; Carrillo-Vico A, Reiter RJ, Lardone PJ, Herrera JL, Fernandez-Montesinos R, Guerrero JM, et al. The modulatory role of melatonin on immune responsiveness. Curr Opin Investig Drugs. 2006; 7(5): 423-431.; Труфакин В.А., Шурлыгина А.В. Проблемы гистофизиологии иммунной системы. Иммунология. 2002; 23(1): 4-8.; Brazão V, Santello FH, Colato RP, Duarte A, Goulart A, Sampaio PA, et al. Melatonin down-regulates steroidal hormones, thymocyte apoptosis and inflammatory cytokines in middle-aged T. cruzi infected rats. Biochim Biophys Acta Mol Basis Dis. 2020; 1866(11): 165914. doi:10.1016/j.bbadis.2020.165914; Бородин Ю.И., Коненков В.И., Пармон В.Н., Любарский М.С., Рачковская Л.Н., Бгатова Н.П., и др. Биологические свойства сорбентов и перспективы их применения. Успехи современной биологии. 2014; 134(3): 236-248.; Мичурина С.В., Ищенко И.Ю., Архипов С.А., Климонтов В.В., Рачковская Л.Н., Коненков В.И., и др. Влияние комплекса мелатонина, оксида алюминия и полиметилсилоксана на экспрессию LYVE-1 в печени мышей с моделью ожирения и сахарного диабета 2-го типа.Бюллетень экспериментальной биологии и медицины. 2016; 162(8): 238-242. doi:10.1007/s10517-016-3592-у; https://www.actabiomedica.ru/jour/article/view/2996

  18. 18
    Academic Journal

    Source: Сборник статей

    File Description: application/pdf

    Relation: Актуальные вопросы современной медицинской науки и здравоохранения: сборник статей IV Международной научно-практической конференции молодых учёных и студентов, IV Всероссийского форума медицинских и фармацевтических вузов «За качественное образование», (Екатеринбург, 10-12 апреля 2019): в 3-х т. - Екатеринбург: УГМУ, CD-ROM.; http://elib.usma.ru/handle/usma/3977

  19. 19
    Academic Journal

    Source: Medical Immunology (Russia); Том 22, № 1 (2020); 135-142 ; Медицинская иммунология; Том 22, № 1 (2020); 135-142 ; 2313-741X ; 1563-0625

    File Description: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/1807/1230; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1807/5189; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1807/5190; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1807/5191; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1807/5192; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1807/5193; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1807/5194; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1807/5195; https://www.mimmun.ru/mimmun/article/downloadSuppFile/1807/5196; Захаров Ю.М. Цитопротекторные функции эритропоэтина // Клиническая нефрология. 2009. № 1. С. 16-21. [Zakharov Yu.M. Citoprotective effects of erythropoietin. Klinicheskaya nefrologiya = Clinical Nephrology, 2009, no. 1, pp. 16-21. (In Russ.)]; Лыков А.П., Бондаренко Н.А., Сахно Л.В., Шевела Е.Я., Повещенко О.В., Ким И.И., Никонорова Ю.В., Коненков В.И. Влияние секреторных факторов эндотелиальных клеток на пролиферативную и миграционную способность мультипотентных мезенхимальных стромальных клеток человека // Фундаментальные исследования, 2014. № 4, ч. 2. С. 36-42. [Lykov A.P., Bondarenko N.A., Sakhno L.V., Shevela E.Ya., Poveschenko O.V., Kim I.I., Nikonorova Yu.V., Konenkov V.I. The impact of secretory factors endothelial cells on the functional activity of human multipotent mesenchymal stromal cells. Fundamentalnye issledovaniya = Fundamental Research, 2014, no. 4, Pt 2, pp. 36-42. (In Russ.)]; Лыков А.П., Никонорова Ю.В., Бондаренко Н.А., Повещенко О.В., Ким И.И., Повещенко А.Ф., Коненков В.И. Изучение пролиферации, миграции и продукции оксида азота костномозговыми мультипотентными мезенхимными стромальными клетками крыс Вистар при гипоксии и гипергликемии // Бюллетень экспериментальной биологии и медицины, 2015. Т. 159, № 4. С. 432-434. [Lykov A.P., Nikonorova Yu.V., Bondarenko N.A., Poveshchenko O.V., Kim I.I., Poveshchenko A.F., Konenkov V.I. Proliferation, migration, and production of nitric oxide by bone marrow multipotent mesenchymal stromal cells from Wistar rats in hypoxia and hyperglycemia. Byulleten eksperimentalnoy biologii i meditsiny = Bulletin of Experimental Biology and Medicine, 2015, Vol. 159, no. 4, pp. 432-434. (In Russ.)]; Осиков М.В., Ахматов В.Ю., Телешева Л.Ф., Федосов А.А., Агеев Ю.И., Суровяткина Л.Г. Плейотропные эффекты эритропоэтина при хронической почечной недостаточности // Фундаментальные исследования, 2013. № 7, ч. 1. С. 218-224. [Osikov M.V., Akhmatov V.Yu., Telesheva L.F., Fedosov A.A., Ageev Yu.I., Surovyatkina L.G. Pleiotropic effects of erythropoietin in chronic renal failure. Fundamentalnye issledovaniya = Fundamental Research, 2013, no. 7, Pt 1, pp. 218-224. (In Russ.)]; Bennis Y., Sarlon-Bartoli G., Guillet B., Lucas L., Pellegrini L., Velly L., Blot-Chabaud M., Dignat-Georges F., Sabatier F., Pisano P. Priming of late endothelial progenitor cells with erythropoietin before transplantation requires the CD131 receptor subunit and enhances their angiogenic potential. J. Thromb. Haemost. 2012, Vol. 10, no. 9, pp. 1914-1928.; Hristov M., Zernecke A., Bidzhekov K., Liehn E.A., Shagdarsuren E., Ludwig A., Weber C. Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ. Res., 2007, Vol. 100, no. 4, pp. 590-597.; Hu R., Cheng Y., Jing H., Wu H. Erythropoietin promotes the protective properties of transplanted endothelial progenitor cells against acute lung injury via PI3K/Akt pathway. Shock, 2014, Vol. 42, no. 4, pp. 327-336.; Jang W.Y., Kim H.J., Li H., Jo K.D., Lee M.K., Yang H.O. The neuroprotective effect of erythropoietin on rotenone-induced neurotoxicity in SH-SY5Y cells through the induction of autophagy. Mol. Neurobiol., 2016, Vol. 53, pp. 3812-3821.; Kahraman S., Yilmaz R., Kirkpantur A., Genctoy G., Arici M., Altun B., Erdem Y., Yasavul U., Turgan C. Impact of rHuEPO therapy initiation on soluble adhesion molecule levels in haemodialysis patients. Nephrology (Carlton), 2005, Vol. 10, no. 3, pp. 264-269.; Kamianowska M., Szczepanski M., Skrzydlewska E. Effects of erythropoietin on ICAM-1 and PECAM-1 expressions on human umbilical vein endothelial cells subjected to oxidative stress. Cell Biochem. Funct., 2011, Vol. 29, no. 6, pp. 437-441.; Kandala J., Upadhyay G.A., Pokushalov E., Wu S., Drachman D.E., Singh J.P. Meta-analysis of stem cell therapy in chronic ischemic cardiomyopathy. Am. J. Cardiol., 2013, Vol. 112, no. 2, pp. 217-225.; Kang J., Yun J.Y., Hur J., Kang J.A., Choi J.I., Ko S.B., Lee J., Kim J.Y., Hwang I.C., Park Y.B., Kim H.S. Erythropoietin priming improves the vasculogenic potential of G-CSF mobilized human peripheral blood mononuclear cells. Cardiovasc. Res., 2014, Vol. 104, no. 1, pp. 171-182.; Lykov A.P., Poveshchenko O.V., Cherniavsky A.M., Fomichev A.V., Surovtseva M.A., Bondarenko N.A., Kim I.I., Kareva Y.E., Tarkova A.R. Phenotype of bone marrow mononuclear cells before and after short-time precondition with Erythropoietin from patients with ischemic heart failure. Russian Open Medical Journal, 2018, Vol. 7, no. 2, pp. 202-208.; Liu N.M., Tian J., Wang W.W., Han G.F., Cheng J., Huang J., Zhang J.Y. Effects of erythropoietin on mesenchymal stem cells function of differentiation and secretion cultured under acute kidney injury microenvironment. Zhonghua Yi Xue Za Zhi, 2012, Vol. 92, no. 6, pp. 417-421.; Madigan M., Atoui R. Therapeutic use of stem cells for myocardial infarction. Bioengineering (Basel), 2018, Vol. 5, no. 2, E28. doi:10.3390/bioengineering5020028.; Seurder D., Radrizzani M., Turchetto L., Lo Cicero V., Soncin S., Muzzarelli S., Auricchio A., Moccetti T. Combined delivery of bone marrow-derived mononuclear cells in chronic ischemic heart disease: rationale and study design. Clin. Cardiol., 2013, Vol. 36, no. 8, pp. 435-441.; Mohler E.R. 3rd, Lifeng Zhang, Medenilla E., Rogers W., French B., Bantly A., Moore J.S., Yonghong Huan, Murashima M., Berns J.S. Effect of darbepoetin alfa on endothelial progenitor cells and vascular reactivity in chronic kidney disease. Vasc. Med., 2011, Vol. 16, no. 3, pp. 183-189.; Tse H.F., Siu C.W., Zhu S.G., Songyan L., Zhang Q.Y., Lai W.H., Kwong Y.L., Nicholls J., Lau C.P. Paracrine effects of direct intramyocardial implantation of bone marrow derived cells to enhance neovascularization in chronic ischaemic myocardium. Eur. J. Heart Failure, 2007, Vol. 9, pp. 747-753.; Wang Q.R., Wang B.H., Zhu W.B., Huang Y.H., Li Y., Yan Q. An in vitro study of differentiation of hematopoietic cells to endothelial cells. Bone Marrow Res., 2011, Vol. 2011, 846096. doi:10.1155/2011/846096.; https://www.mimmun.ru/mimmun/article/view/1807

  20. 20