-
1Academic Journal
Συγγραφείς: E. V. Virivskaya, I. V. Ignatko, I. A. Snimshchikova, K. R. Bakhtiyarov, A. S. Zueva, T. D. Kapyrina, Е. В. Виривская, И. В. Игнатко, И. А. Снимщикова, К. Р. Бахтияров, А. С. Зуева, Т. Д. Капырина
Πηγή: Obstetrics, Gynecology and Reproduction; Vol 19, No 4 (2025); 534-544 ; Акушерство, Гинекология и Репродукция; Vol 19, No 4 (2025); 534-544 ; 2500-3194 ; 2313-7347
Θεματικοί όροι: таргетная терапия, Wnt/β-catenin signaling pathway, cell proliferation, fibrosis, microRNAs, adhesion formation, targeted therapy, Wnt/β-катениновый сигнальный путь, клеточная пролиферация, фиброз, микроРНК, спаечный процесс
Περιγραφή αρχείου: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2509/1372; Becker C.M., Bokor A., Heikinheimo O. et al. ESHRE guideline: endometriosis. Hum Reprod Open. 2022;2022(2):hoac009. https://doi.org/10.1093/hropen/hoac009.; Wilbur M.A., Shih I.M., Segars J.H., Fader A.N. Cancer implications for patients with endometriosis. Semin Reprod Med. 2017;35(1):110–6. https://doi.org/10.1055/s-0036-1597120.; Endometriosis. World Health Organization, 2023. Режим доступа: https://www.who.int/news-room/fact-sheets/detail/endometriosis. [Дата обращения: 25.02.2025].; Улумбекова Г.Э., Худова И.Ю. Оценка демографического, социального и экономического эффекта применения гормональной терапии при эндометриозе и аномальных маточных кровотечениях. ОРГЗДРАВ: новости, мнения, обучение. Вестник ВШОУЗ. 2022;8(1):82–113. https://doi.org/10.33029/2411-8621-2022-8-1-82-113.; Smolarz B., Szyłło K., Romanowicz H. Endometriosis: epidemiology, classification, pathogenesis, treatment and genetics (review of literature). Int J Mol Sci. 2021;22(19):10554. https://doi.org/10.3390/ijms221910554.; Sampson J.A. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol.1927;14:422–69. https://doi.org/10.1016/S0002-9378(15)30003-X.; Taylor H.S., Kotlyar A.M., Flores V.A. Endometriosis is a chronic systemic disease: clinical challenges and novel innovations. Lancet. 2021;397(10276):839–52. https://doi.org/10.1016/S0140-6736(21)00389-5.; Hayat R., Manzoor M., Hussain A. Wnt signaling pathway: a comprehensive review. Cell Biol Int. 2022;46(6):863–77. https://doi.org/10.1002/cbin.11797.; Steinhart Z., Angers S. Wnt signaling in development and tissue homeostasis. Development. 2018;145(11):dev146589. https://doi.org/10.1242/dev.146589.; Komiya Y., Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68–75. https://doi.org/10.4161/org.4.2.5851.; Pataki C.A., Couchman J.R., Brábek J. Wnt signaling cascades and the roles of syndecan proteoglycans. J Histochem Cytochem. 2015;63(7):465–80. https://doi.org/10.1369/0022155415586961.; Zhang Y., Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13(1):165. https://doi.org/10.1186/s13045-020-00990-3.; Ranes M., Zaleska M., Sakalas S. et al. Reconstitution of the destruction complex defines roles of AXIN polymers and APC in β-catenin capture, phosphorylation, and ubiquitylation. Mol Cell. 2021;81(16):3246–3261. e11. https://doi.org/10.1016/j.molcel.2021.07.013.; Yu F., Yu C., Li F. et al. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 2021;6(1):1–24. https://doi.org/10.1038/s41392-021-00701-5.; Matsuzaki S., Darcha C. Involvement of the Wnt/β-catenin signaling pathway in the cellular and molecular mechanisms of fibrosis in endometriosis. PLoS One. 2013;8(10):e76808. https://doi.org/10.1371/journal.pone.0076808.; Kawano Y., Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci. 2003;116(Pt 13):2627–34. https://doi.org/10.1242/jcs.00623.; Pazhohan A., Amidi F., Akbari-Asbagh F. et al. The Wnt/β-catenin signaling in endometriosis, the expression of total and active forms of β-catenin, total and inactive forms of glycogen synthase kinase-3β, WNT7a and DICKKOPF-1. Eur J Obstet Gynecol Reprod Biol. 2018;220:1–5. https://doi.org/10.1016/j.ejogrb.2017.10.025.; Heinosalo T., Gabriel M., Kallio L. et al. Secreted frizzled-related protein 2 (SFRP2) expression promotes lesion proliferation via canonical WNT signaling and indicates lesion borders in extraovarian endometriosis. Hum Reprod. 2018;33(5):817–31. https://doi.org/10.1093/humrep/dey026.; Yang M., Li L., Huang X. et al. The DNA demethylation-regulated SFRP2 dictates the progression of endometriosis via activation of the Wnt/β-catenin signaling pathway. BMC Mol Cell Biol. 2023;24(1):12. https://doi.org/10.1186/s12860-023-00470-9.; Xu H., Yang J.J., Wang C.H. et al. Effect of Wnt/β-catenin signal pathway on of matrix metalloproteinase-7 and vascular endothelial growth factor gene expressions in endometriosis. Clin Exp Obstet Gynecol. 2016;43(4):573–7.; Zhang L., Xiong W., Xiong Y. et al. Intracellular Wnt/beta-catenin signaling underlying 17beta-estradiol-induced matrix metalloproteinase 9 expression in human endometriosis. Biol Reprod. 2016;94(3):70. https://doi.org/10.1095/biolreprod.115.135574.; Wang Y., Hanifi-Moghaddam P., Hanekamp E.E. et al. Progesterone inhibition of Wnt/β-catenin signaling in normal endometrium and endometrial cancer. Clin Cancer Res. 2009;15(18):5784–93. https://doi.org/10.1158/1078-0432.CCR-09-0814.; Zhu X., Li Y., Zhou R. et al. Knockdown of E-cadherin expression of endometrial epithelial cells may activate Wnt/β-catenin pathway in vitro. Arch Gynecol Obstet. 2018;297(1):117–23. https://doi.org/10.1007/s00404-017-4560-0.; Yamamoto S., Nishimura O., Misaki K. et al. Cthrc1 selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex. Dev Cell. 2008;15(1):23–36. https://doi.org/10.1016/j.devcel.2008.05.007.; Lv Y., Zhang L., Ma J. et al. CTHRC1 overexpression promotes ectopic endometrial stromal cell proliferation, migration and invasion via activation of the Wnt/β-catenin pathway. Reprod Biomed Online. 2020;40(1):26–32. https://doi.org/10.1016/j.rbmo.2019.10.001.; Liu Y.-J., Du J., Li J. et al. CTHRC1, a novel gene with multiple functions in physiology, disease and solid tumors (Review). Oncol Lett. 2023;25(6):266. https://doi.org/10.3892/ol.2023.13852.; Zhang R., Lu H., Lyu Y.Y. et al. E6/E7-P53-POU2F1-CTHRC1 axis promotes cervical cancer metastasis and activates Wnt/PCP pathway. Sci Rep. 2017;7:44744. https://doi.org/10.1038/srep44744.; Ruan F., Ma J., Xu K. Silencing of CTHRC1 inhibits proliferation and metastasis of endometriotic stromal cells. Int J Clin Exp Pathol. 2016;9(10):10028–35.; Hu X., Bian Y., Wen X. et al. Collagen triple helix repeat containing 1 promotes endometrial cancer cell migration by activating the focal adhesion kinase signaling pathway. Exp Ther Med. 2020;20(2):1405–14. https://doi.org/10.3892/etm.2020.8833.; Chen J.-J., Xiao Z.-J., Meng X. et al. MRP4 sustains Wnt/β-catenin signaling for pregnancy, endometriosis and endometrial cancer. Theranostics. 2019;9(1):5049–64. https://doi.org/10.7150/thno.32097.; De P., Aske J.C., Dale A. et al. Addressing activation of WNT beta-catenin pathway in diverse landscape of endometrial carcinogenesis. Am J Transl Res. 2021;13(11):12168–80.; Ярмолинская М.И., Адамян Л.В. Эндометриоз-ассоциированный болевой синдром и спаечный процесс – новые аспекты патогенеза и возможности терапии. Проблемы репродукции. 2023;29(2):93–100. https://doi.org/10.17116/repro20232902193.; Guo S.W. Fibrogenesis resulting from cyclic bleeding: the Holy Grail of the natural history of ectopic endometrium. Hum Reprod. 2018;33(3):353–6. https://doi.org/10.1093/humrep/dey015.; Katoh M., Igarashi M., Fukuda H. et al. Cancer genetics and genomics of human FOX family genes. Cancer Lett. 2013;328(2):198–206. https://doi.org/10.1016/j.canlet.2012.09.017.; Shao X., Wei X. FOXP1 enhances fibrosis via activating Wnt/β-catenin signaling pathway in endometriosis. Am J Transl Res. 2018;10(11):3610–8.; Shi L., Xue X., Tian H. et al. WEE1 promotes endometriosis via the Wnt/β-catenin signaling pathway. Reprod Biol Endocrinol. 2021;19(1):161. https://doi.org/10.1186/s12958-021-00844-8.; Liu Y., Liang S., Yang F. et al. Biological characteristics of endometriotic mesenchymal stem cells isolated from ectopic lesions of patients with endometriosis. Stem Cell Res Ther. 2020;11(1): 346. https://doi.org/10.1186/s13287-020-01856-8.; Li J., Dai Y., Zhu H. et al. Endometriotic mesenchymal stem cells significantly promote fibrogenesis in ovarian endometrioma through the Wnt/β-catenin pathway by paracrine production of TGF-β1 and Wnt1. Hum Reprod. 2016;31(6):1224–35. https://doi.org/10.1093/humrep/dew058.; Zhang Y., Sun X., Li Z. et al. Interactions between miRNAs and the Wnt/β-catenin signaling pathway in endometriosis. Biomed Pharmacother. 2024;171:116182. https://doi.org/10.1016/j.biopha.2024.116182.; Cariello M., Squilla A., Piacente M. et al. Drug resistance: the role of exosomal miRNA in the microenvironment of hematopoietic tumors. Molecules. 2022;28(1):116. https://doi.org/10.3390/molecules28010116.; Zhang H., Li G., Sheng X., Zhang S. Upregulation of miR-33b promotes endometriosis via inhibition of Wnt/β-catenin signaling and ZEB1 expression. Mol Med Rep. 2019;19(3):2144–52. https://doi.org/10.3892/mmr.2019.9870.; Dávalos A., Goedeke L., Smibert P. et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A. 2011;108(22):9232–7. https://doi.org/10.1073/pnas.1102281108.; Pattanayak B., Garrido-Cano I., Adam-Artigues A. et al. MicroRNA-33b suppresses epithelial-mesenchymal transition repressing the MYC-EZH2 pathway in HER2+ breast carcinoma. Front Oncol. 2020;10:1661. https://doi.org/10.3389/fonc.2020.01661.; Wu H.T., Zhong H.T., Li G.W. et al. Oncogenic functions of the EMT-related transcription factor ZEB1 in breast cancer. J Transl Med. 2020;18(1):51. https://doi.org/10.1186/s12967-020-02240-z.; Eggers J.C., Martino V., Reinbold R. et al. microRNA miR-200b affects proliferation, invasiveness and stemness of endometriotic cells by targeting ZEB1, ZEB2 and KLF4. Reprod Biomed Online. 2016;32(4):434–45. https://doi.org/10.1016/j.rbmo.2015.12.013.; Furuya M., Masuda H., Hara K. et al. ZEB1 expression is a potential indicator of invasive endometriosis. Acta Obstet Gynecol Scand. 2017;96;(9):1128–35. https://doi.org/10.1111/aogs.13179.; Zhang Y., Chang X., Wu D. et al. Down-regulation of exosomal miR-214-3p tTargeting CCN2 contributes to endometriosis fibrosis and the role of exosomes in the horizontal transfer of miR-214-3p. Reprod Sci. 2021;28(3):715–27. https://doi.org/10.1007/s43032-020-00350-z.; Mani M., Carrasco D.E., Zhang Y. et al. BCL9 promotes tumor progression by conferring enhanced proliferative, metastatic, and angiogenic properties to cancer cells. Cancer Res. 2009;69(19):7577–86. https://doi.org/10.1158/0008-5472.CAN-09-0773.; Zhang M., Wang X., Xia X. et al. Endometrial epithelial cells-derived exosomes deliver microRNA-30c to block the BCL9/Wnt/CD44 signaling and inhibit cell invasion and migration in ovarian endometriosis. Cell Death Discov. 2022;8(1):151. https://doi.org/10.1038/s41420-022-00941-6.; Braza-Boïls A., Marí-Alexandre J., Gilabert J. et al. MicroRNA expression profile in endometriosis: its relation to angiogenesis and fibrinolytic factors. Hum Reprod. 2014;29(5):978–88. https://doi.org/10.1093/humrep/deu019.; Zhu H., Cao X.X., Liu J., Hua H. MicroRNA-488 inhibits endometrial glandular epithelial cell proliferation, migration, and invasion in endometriosis mice via Wnt by inhibiting FZD7. J Cell Mol Med. 2019;23(4):2419–30. https://doi.org/10.1111/jcmm.14078.; Peghaire C., Bats M.L., Sewduth R. et al. Fzd7 (Frizzled-7) Expressed by endothelial cells controls blood vessel formation through Wnt/β-catenin canonical signaling. Arterioscler Thromb Vasc Biol. 2016;36(12):2369–80. https://doi.org/10.1161/ATVBAHA.116.307926.; Mai H., Xu H., Lin H. et al. LINC01541 Functions as a ceRNA to modulate the Wnt/β-catenin pathway by decoying miR-506-5p in endometriosis. Reprod Sci. 2021;28(3):665–74. https://doi.org/10.1007/s43032-020-00295-3.; Qiao D., Qin X., Yang H. et al. Estradiol mediates the interaction of LINC01541 and miR-429 to promote angiogenesis of G1/G2 endometrioid adenocarcinoma in-vitro: a pilot study. Front Oncol. 2022;12:951573. https://doi.org/10.3389/fonc.2022.951573.; Wang Y.Y., Duan H., Wang S. et al. Talin1 induces epithelial-mesenchymal transition to facilitate endometrial cell migration and invasion in adenomyosis under the regulation of microRNA-145-5p. Reprod Sci. 2021;28(5):1523–39. https://doi.org/10.1007/s43032-020-00444-8.; https://www.gynecology.su/jour/article/view/2509
-
2Academic Journal
Πηγή: University Therapeutic Journal, Vol 6, Iss 2 (2024)
Θεματικοί όροι: клеточная пролиферация, CD95, желчнокаменная болезнь, билиарный гастрит, Medicine, холецистэктомия, урсодезоксихолевая кислота
Σύνδεσμος πρόσβασης: https://doaj.org/article/7e61643ace594d63b039e810e7b6a71d
-
3Academic Journal
-
4Academic Journal
Συγγραφείς: A. N. Khokhlov, А. Н. Хохлов
Συνεισφορές: This work was performed under the state assignment of Moscow State University, project number 121032300215-6., Работа выполнена в рамках государственного задания МГУ, ч. 2 (фундаментальные научные исследования, №121032300215-6), без использования животных и без привлечения людей в качестве испытуемых.
Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 78, № 3 (2023); 213-220 ; Вестник Московского университета. Серия 16. Биология; Том 78, № 3 (2023); 213-220 ; 0137-0952
Θεματικοί όροι: пресноводная гидра, aluminum, free radicals, aging, cell proliferation, beta-amyloid, postmitotic cells, non-senescing organisms, freshwater hydra, алюминий, свободные радикалы, старение, клеточная пролиферация, бета-амилоид, постмитотические клетки, нестареющие организмы
Περιγραφή αρχείου: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/1263/635; Crapper D.R., Dalton A.J. Alterations and short-term retention, conditioned avoidance response acquisition and motivation following aluminum induced neurofibrillary degeneration. Physiol. Behav. 1973;10(5):925–933.; Crapper D.R., Krishnan S.S., Dalton A.J. Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration. Science. 1973;180(4085):511–513.; Crapper D.R., Krishnan S.S., Quittkat S. Aluminum, neurofibrillary degeneration and Alzheimer’s disease. Brain. 1976;99(1):67–80.; Crapper D.R., Quittkat S., De Boni U. Altered chromatin conformation in Alzheimer’s disease. Brain. 1979;102(3):483–495.; Crapper D.R., Quittkat S., Krishnan S.S., Dalton A.J., De Boni U. Intranuclear aluminum content in Alzheimer’s disease, dialysis encephalopathy and experimental aluminum encephalopathy. Acta Neuropathol. (Berl). 1980;50(1):19–24.; De Boni U., Crapper McLachlan D.R. Senile dementia and Alzheimer’s disease: A current view. Life Sci. 1980;27(1):1–14.; Crapper McLachlan D.R., Krishnan S.S., Quittkat S., De Boni U. Brain aluminum in Alzheimer’s disease: influence of sample size and case selection. NeuroToxicology. 1980;1(4):25–32.; Crapper McLachlan D.R., Lewis P.N., Lukiw W.J., Senia A., Bergeron C., De Boni U. Chromatin structure in dementia. Ann. Neurol. 1984;15(4):329–334.; McLachlan D.R.C. Aluminum and Alzheimer’s disease. Neurobiol. Aging. 1986;7(6):525–532.; Wisniewski H.M., Moretz R.C., Iqbal K. No evidence for aluminum in etiology and pathogenesis of Alzheimer’s disease. Neurobiol. Aging. 1986;7(6):532–535.; McLachlan D.C., Lukiw W.J., Kruck T.P.A. New evidence for an active role of aluminum in Alzheimer’s disease. Canad. J. Neurol. Sci. 1989;16(S4):490–497.; Willhite C.C., Ball G.L., McLellan C.J. Total allowable concentrations of monomeric inorganic aluminum and hydrated aluminum silicates in drinking water. Crit. Rev. Toxicol. 2012;42(5):358–442.; Tuppo E.E., Forman L.J. Free radical oxidative damage and Alzheimer’s disease. J. Osteopath. Med. 2001;101(s121):11–15.; Retz W., Gsell W., Münch G., Rösler M., Riederer P. Free radicals in Alzheimer’s disease. Alzheimer’s Disease– From Basic Research to Clinical Applications. Ed. H.J. Hertz and Th. Arendt. Wien: Springer-Verlag; 1998:221–236.; Huang W.J., Zhang X.I.A., Chen W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 2016;4(5):519–522.; Peña-Bautista C., Baquero M., Vento M., CháferPericás C. Free radicals in Alzheimer’s disease: Lipid peroxidation biomarkers. Clin. Chim. Acta. 2019;491:85–90.; Ionescu-Tucker A., Cotman C.W. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol. Aging. 2021;107:86–95.; Sharma C., Kim S., Nam Y., Jung U.J., Kim S.R. Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer’s disease. Int. J. Mol. Sci. 2021;22(9):4850.; Stefanova N.A., Muraleva N.A., Skulachev V.P., Kolosova N.G. Alzheimer’s disease-like pathology in senescence-accelerated OXYS rats can be partially retarded with mitochondria-targeted antioxidant SkQ1. J. Alzheimer’s Dis. 2014;38(3):681–694.; Kolosova N.G., Tyumentsev M.A., Muraleva N.A., Kiseleva E., Vitovtov A.O., Stefanova N.A. Antioxidant SkQ1 alleviates signs of Alzheimer’s disease-like pathology in old OXYS rats by reversing mitochondrial deterioration. Curr. Alzheimer Res. 2017;14(12):1283–1292.; Chin J. Selecting a mouse model of Alzheimer’s Disease. Alzheimer’s Disease and Frontotemporal Dementia. Methods in Molecular Biology, vol. 670. Ed. E. Roberson. Totowa: Humana Press; 2010:169–189.; Hassanzadeh G., Hosseini A., Pasbakhsh P., Akbari M., Ghaffarpour M., Takzare N., Zahmatkesh M. Trimetazidine prevents oxidative changes induced in a rat model of sporadic type of Alzheimer’s disease. Acta Med. Iran. 2015;53(1):17–24.; Saleem S., Kannan R.R. Zebrafish: an emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery. Cell Death Discov. 2018;4(1):45.; Khokhlov A.N., Klebanov A.A., Morgunova G.V. On choosing control objects in experimental gerontological research. Moscow Univ. Biol. Sci. Bull. 2018;73(2):59–62.; Morgunova G.V., Shilovsky G.A., Khokhlov A.N. Effect of caloric restriction on aging: Fixing the problems of nutrient sensing in postmitotic cells? Biochemistry (Mosc.). 2021;86(10):1352–1367.; McCay C.M., Crowell M.F., Maynard L.A. The effect of retarded growth upon the length of life span and upon the ultimate body size. J. Nutr. 1935;10(1):63–79.; Chesky J.A., Rockstein M. Life span characteristics in the male Fischer rat. Exp. Aging Res. 1976;2(5):399–407.; Carey J.R., Judge D.S. Longevity records: life spans of mammals, birds, amphibians, reptiles, and fish. Odense monographs on population aging, 8. Odense: Odense Univ. Press; 2000. 241 pp.; Nistiar F., Racz O., Lukacinova A., Hubkova B., Novakova J., Lovasova E., Sedlakova E. Age dependency on some physiological and biochemical parameters of male Wistar rats in controlled environment. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2012;47(9):1224–1233.; Maronpot R.R., Nyska A., Foreman J.E., Ramot Y. The legacy of the F344 rat as a cancer bioassay model (a retrospective summary of three common F344 rat neoplasms). Crit. Rev. Toxicol. 2016;46(8):641–675.; McCay C.M., Pope F., Lunsford W. Experimental prolongation of the life span. Bull. N. Y. Acad. Med. 1956;32(2):91–101.; Anisimov V.N., Egorov M.V., Krasilshchikova M.S., et al. Effects of the mitochondria-targeted antioxidant SkQ1 on lifespan of rodents. Aging (Albany N.Y.). 2011;3(11):1110–1119.; Frolkis V.V., Muradian Kh.K. Life span prolongation. Boca Raton: CRC Press; 1991. 427 pp.; Khokhlov A.N., Morgunova G.V. Testing of geroprotectors in experiments on cell cultures: pros and cons. Anti-aging drugs: From basic research to clinical practice. Ed. A.M. Vaiserman. Royal Society of Chemistry; 2017:53–74.; Khokhlov A.N., Klebanov A.A., Morgunova G.V. Anti-aging drug discovery in experimental gerontological studies: from organism to cell and back. Aging: exploring a complex phenomenon. Ed. Sh.I. Ahmad. Boca Raton: Taylor & Francis; 2018:577–595.; Khokhlov A.N. Reflections of a pessimistic gerontologist or why we still do not live 1000 years. Moscow Univ. Biol. Sci. Bull. 2021;76(4):239–243.; Cramer P.E., Cirrito J.R., Wesson D.W., Lee C.D., Karlo J.C., Zinn A.E., Casali B.T., Restivo J.L., Goebel W.D., James M.J., Brunden K.R. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science. 2012;335(6075):1503–1506.; Balducci C., Paladini A., Micotti E., Tolomeo D., La Vitola P., Grigoli E., Richardson J.C., Forloni G. The continuing failure of bexarotene in Alzheimer’s disease mice. J. Alzheimer’s Dis. 2015;46(2):471–482.; O’Hare E., Jeggo R., Kim E.M., Barbour B., Walczak J.S., Palmer P., Lyons T., Page D., Hanna D., Meara J.R., Spanswick D. Lack of support for bexarotene as a treatment for Alzheimer’s disease. Neuropharmacol. 2016;100:124–130.; Vidal V., Puente A., García-Cerro S., García Unzueta M.T., Rueda N., Riancho J., Martínez-Cué C. Bexarotene impairs cognition and produces hypothyroidism in a mouse model of Down syndrome and Alzheimer’s disease. Front. Pharmacol. 2021;12:613211.; Khokhlov A.N. How scientometrics became the most important science for researchers of all specialties. Moscow Univ. Biol. Sci. Bull. 2020;75(4):159–163.; Aicardi G. New hope from an old drug: fighting Alzheimer’s disease with the cancer drug bexarotene (targretin)? Rejuvenation Res. 2013;16(6):524–528.; Khokhlov A.N. The immortality of the germ line: the neverending story. Moscow Univ. Biol. Sci. Bull. 2019;74(4):189–193.; Khokhlov A.N., Morgunova G.V., Klebanov A.A. Demographic approaches to the study of aging on cell cultures. Moscow Univ. Biol. Sci. Bull. 2019;74(4):262–267.; Morgunova G.V., Khokhlov A.N. Signs of similarities and differences in cellular models of aging: A scoping review. Moscow Univ. Biol. Sci. Bull. 2022;77(3):139–146.; Khokhlov A.N. On the cholesterol theory of aging–2022. Moscow Univ. Biol. Sci. Bull. 2022;77(4):292–296.; Khokhlov A.N. Basics of biology of aging for MSU non-biologists. Moscow Univ. Biol. Sci. Bull. 2023;78(2):115–120.; Khokhlov A.N., Morgunova G.V. Is it worth teaching biology students the basics of scientometrics and the instructions for the design of scientific articles, and if so, why? Moscow Univ. Biol. Sci. Bull. 2021;76(3):77–82.; Jenner E. An inquiry into the causes and effects of variolae vaccinae, a disease discovered in some western counties of England, particularly Gloucestershire, and known by the name of the cow pox. London: Sampson Low; 1798. 75 pp.; Khokhlov A.N. On the immortal hydra. Again. Moscow Univ. Biol. Sci. Bull. 2014;69(4):153–157.; Khokhlov A.N. Does aging need its own program, or is the program of development quite sufficient for it? Stationary cell cultures as a tool to search for anti-aging factors. Curr. Aging Sci. 2013;6(1):14–20.; Khokhlov A.N. Impairment of regeneration in aging: appropriateness or stochastics? Biogerontology. 2013;14(6):703–708.
-
5Academic Journal
Συγγραφείς: R. R. Khalikov, D. D. Gromenko, S. Sh. Galimova, K. V. Danilko, I. D. Gromenko, Sh. N. Galimov, P. F. Litvitsky, Р. Р. Халиков, Д. Д. Громенко, С. Ш. Галимова, К. В. Данилко, И. Д. Громенко, Ш. Н. Галимов, П. Ф. Литвицкий
Πηγή: Creative surgery and oncology; Том 12, № 2 (2022); 118-122 ; Креативная хирургия и онкология; Том 12, № 2 (2022); 118-122 ; 2076-3093 ; 2307-0501
Θεματικοί όροι: противоопухолевая терапия, prostate cancer, cell viability, cell proliferation, PC-3 cells, DU145 cells, LNCaP cells, antitumour therapy, рак предстательной железы, жизнеспособность клетки, клеточная пролиферация, клетки линии PC-3, клетки линии DU145, клетки линии LNCaP
Περιγραφή αρχείου: application/pdf
Relation: https://www.surgonco.ru/jour/article/view/692/495; Siegel R.L., Miller K.D., Fuchs H.E., Jemal A. Cancer Statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. DOI:10.3322/caac.21708; Arneth B. Comparison of Burnet’s clonal selection theory with tumor cell-clone development. Theranostics. 2018;8(12):3392–9. DOI:10.7150/thno.24083; Rady I., Siddiqui I.A., Rady M., Mukhtar H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 2017;402:16–31. DOI:10.1016/j.canlet.2017.05.010; Memariani H., Memariani M., Shahidi-Dadras M., Nasiri S., Akhavan M.M., Moravvej H. Melittin: from honeybees to superbugs. Appl Microbiol Biotechnol. 2019;103(8):3265–76. DOI:10.1007/s00253-019-09698-y; Guha S., Ferrie R.P., Ghimire J., Ventura C.R., Wu E., Sun L., et al. Applications and evolution of melittin, the quintessential membrane active peptide. Biochem Pharmacol. 2021;193:114769. DOI:10.1016/j.bcp.2021.114769; Memariani H., Memariani M., Moravvej H., Shahidi-Dadras M. Melittin: a venom-derived peptide with promising anti-viral properties. Eur J Clin Microbiol Infect Dis. 2020;39(1):5–17. DOI:10.1007/s10096-019-03674-0; Memariani H., Memariani M. Anti-fungal properties and mechanisms of melittin. Appl Microbiol Biotechnol. 2020;104(15):6513–26. DOI:10.1007/s00253-020-10701-0; Memariani H., Memariani M. Melittin as a promising anti-protozoan peptide: curent knowledge and future prospects. AMB Express. 2021;11(1):69. DOI:10.1186/s13568-021-01229-1; Paray B.A., Ahmad A., Khan J.M., Taufiq F., Pathan A., Malik A., et al. The role of the multifunctional antimicrobial peptide melittin in gene delivery. Drug Discov Today. 2021;26(4):1053–9. DOI:10.1016/j.drudis.2021.01.004; Павлов В.Н., Рахматуллина И.Р., Фархутдинов Р.Р., Пушкарев В.А., Данилко К.В., Галимова Э.Ф. и др. Свободно-радикальное окисление и канцерогенез: дискуссионные вопросы. Креативная хирургия и онкология. 2017;7(2):54–61. DOI:10.24060/2076-3093-2017-7-2-54-61; Jamasbi E., Mularski A., Separovic F. Model membrane and cell studies of antimicrobial activity of melittin analogues. Curr Top Med Chem. 2016;16(1):40–5. DOI:10.2174/1568026615666150703115919; Park M.H., Choi M.S., Kwak D.H., Oh K.W., Yoon D.Y., Han S.B., et al. Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-кB. Prostate. 2011;71(8):801–12. DOI:10.1002/pros.21296; Jeong Y.J., Choi Y., Shin J.M., Cho H.J., Kang J.H., Park K.K., et al. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells. Food Chem Toxicol. 2014;68:218–25. DOI:10.1016/j.fct.2014.03.022; Badr-Eldin S.M., Alhakamy N.A., Fahmy U.A., Ahmed O.A.A., Asfour H.Z., Althagafi A.A., et al. Cytotoxic and pro-apoptotic effects of a sub-toxic concentration of fluvastatin on OVCAR3 ovarian cancer cells after its optimized formulation to melittin nano-conjugates. Front Pharmacol. 2021;11:642171. DOI:10.3389/fphar.2020.642171; Yu X., Chen L., Liu J., Dai B., Xu G., Shen G., et al. Immune modulation of liver sinusoidal endothelial cells by melittin nanoparticles suppresses liver metastasis. Nat Commun. 2019;10(1):574. DOI:10.1038/s41467-019-08538-x; https://www.surgonco.ru/jour/article/view/692
-
6Academic Journal
Συγγραφείς: Boychuk, A. V., Nikitina, I. M., Kuziomenska, M. L., Smiyan, S. A.
Πηγή: Actual Problems of Pediatry, Obstetrics and Gynecology; No. 1 (2015) ; Актуальные вопросы педиатрии, акушерства и гинекологии; № 1 (2015) ; Актуальні питання педіатрії, акушерства та гінекології; № 1 (2015) ; 2415-301X ; 2411-4944 ; 10.11603/24116-4944.2015.1
Θεματικοί όροι: endometrial hyperplasia, progesterone receptor, cell proliferation, levonorgestrel-system, transvaginal ultrasonography, гиперплазия эндометрия, рецепторы прогестерона, клеточная пролиферация, система с левоноргестрелом, трансвагинальная ультрасонография, гіперплазія ендометрія, рецептори прогестерону, клітинна проліферація, система з левоноргестрелом, трансвагінальна ультрасонографія
Περιγραφή αρχείου: application/pdf
Relation: https://ojs.tdmu.edu.ua/index.php/act-pit-pediatr/article/view/4695/4334; https://repository.tdmu.edu.ua//handle/123456789/14374
-
7Academic Journal
Συγγραφείς: S. N. Lavrentiev, M. B. Aksenenko, A. S. Averchuk, A. V. Komina, N. V. Palkina, T. G. Ruksha, С. Н. Лаврентьев, М. Б. Аксененко, А. С. Аверчук, А. В. Комина, Н. В. Палкина, Т. Г. Рукша
Συνεισφορές: The study was supported by the grant from the Russian Science Foundation (project №14-15-00074), Финансирование Исследование выполнено при поддержке Российского научного фонда (проект № 14-15-00074П)
Πηγή: Siberian journal of oncology; Том 18, № 3 (2019); 45-53 ; Сибирский онкологический журнал; Том 18, № 3 (2019); 45-53 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2019-18-3
Θεματικοί όροι: химиорезистентность, miR-211, melanoma, dacarbazine, cell proliferation, chemotherapy, cell cultivation, PTsR, bioinformation analysis, chemoresistance, меланома, дакарбазин, клеточная пролиферация, химиотерапия, культивирование клеток, ПЦР, биоинформатический анализ
Περιγραφή αρχείου: application/pdf
Relation: https://www.siboncoj.ru/jour/article/view/1095/636; Maverakis E., Cornelius L.A., Bowen G.M., Phan T., Patel F.B., Fitzmaurice S., He Y., Burrall B., Duong C., Kloxin A.M., Sultani H., Wilken R., Martinez S.R., Patel F. Metastatic Melanoma – a review of current and future treatment options. Acta Derm Venereol. 2015 May; 95(5): 516–24. doi:10.2340/00015555-2035.; Xin Y., Huang Q., Zhang P., Yang M., Hou X.Y., Tang J.Q., Zhang L.Z., Jiang G. Meta-Analysis of the Safety and Efficacy of Interferon Combined With Dacarbazine Versus Dacarbazine Alone in Cutaneous Malignant Melanoma. Medicine (Baltimore). 2016 Apr; 95(16): e3406. doi:10.1097/MD.0000000000003406.; Hafeez A., Kazmi I. Dacarbazine nanoparticle topical delivery system for the treatment of melanoma. Sci Rep. 2017 Nov 28; 7(1): 16517. doi:10.1038/s41598-017-16878-1.; Zwergel1 C., Giulia, S., Valente S., Mai A. Histone Deacetylase Inhibitors: Updated Studies in Various Epigenetic-Related Diseases. J Clin Epigenet. 2016 Mar; 2(1/7): 1–15. doi:10.21767/2472-1158.100015.; Lujambio A., Lowe S.W. The microcosmos of cancer. Nature. 2012 Feb 15; 482(7385): 347–55. doi:10.1038/nature10888.; Palkina N., Komina A., Aksenenko M., Ruksha T. MicroRNA 2045p decreases proliferation/viability and the ability to form colonies in melanoma cells. J Clin Investig Dermatol. 2017 Oct; 137(10/2): 29. doi:10.1016/j.jid.2017.07.777.; Yin Y., Zhang B., Wang W., Fei B., Quan C., Zhang J., Song M., Bian Z., Wang Q., Ni S., Hu Y., Mao Y., Zhou L., Wang Y., Yu J., Du X., Hua D., Huang Z. MiR-204-5p inhibits proliferation and invasion and enhances chemotherapeutic sensitivity of colorectal cancer cells by downregulating RAB22A. Clin. Cancer Res. 2014 Oct 7; 20: 6187–99. doi:10.1158/1078-0432.CCR-14-1030.; Díaz-Martínez M., Benito-Jardón L., Alonso L., Koetz-Ploch L., Hernando E., Teixidó J. miR-204-5p and miR-211-5p Contribute to BRAF Inhibitor Resistance in Melanoma. Cancer Res. 2018 Feb 15; 78(4): 1017–30. doi:10.1158/0008-5472.CAN-17-1318.; Gao W., Wu Y., He X., Zhang C., Zhu M., Chen B., Liu Q., Qu X., Li W., Wen S., Wang B. MicroRNA-204-5p inhibits invasion and metastasis of laryngeal squamous cell carcinoma by suppressing forkhead box C1. J Cancer. 2017 Jul 21; 8(12): 2356–68. doi:10.7150/jca.19470.; Xia B., Yang S., Liu T., Lou G. miR-211 suppresses epithelial ovarian cancer proliferation and cell-cycle progression by targeting Cyclin D1 and CDK6. Mol Cancer. 2015 Mar 11; 14: 57. doi:10.1186/s12943015-0322-4.; Galasso M., Morrison C., Minotti L., Corrà F., Zerbinati C., Agnoletto C., Baldassari F., Fassan M., Bartolazzi A., Vecchione A., Nuovo G.J., Di Leva G., D’Atri S., Alvino E., Previati M., Nickoloff B.J., Croce C.M., Volinia S. Loss of miR-204 expression is a key event in melanoma. Mol Cancer. 2018 Mar 9; 17(1): 71. doi:10.1186/s12943018-0819-8.; Liu L., Wang J., Li X., Ma J., Shi C., Zhu H., Xi Q., Zhang J., Zhao X., Gu M. MiR-204-5p suppresses cell proliferation by inhibiting IGFBP5 in papillary thyroid carcinoma. Biochem. Biophys. Res. Commun. 2015 Nov 3; 457: 621–6. doi:10.1016/j.bbrc.2015.01.037.; Lou S., Zhao Z., Dezort M., Lohneis T., Zhang C. Multifunctional Nanosystem for Targeted and Controlled Delivery of Multiple ChemotherapeuticAgents for the Treatment of Drug-Resistant Breast Cancer. ACS Omega. 2018 Aug 31; 3(8): 9210–19. doi:10.1021/acsomega.8b00949.; Tian F., Dahmani F.Z., Qiao J., Ni J., Xiong H., Liu T., Zhou J., Yao J. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool toreverse multidrug resistance in breast cancer. Acta Biomater. 2018 Jul 15; 75: 398–412. doi:10.1016/j.actbio.2018.05.050.; Drusco A., Croce C.M. MicroRNAs and Cancer: A Long Story for Short RNAs. Adv Cancer Res. 2017; 135: 1–24. doi:10.1016/ bs.acr.2017.06.005.; Happold C., Roth P., Silginer M., Florea A.M., Lamszus K., Frei K., Deenen R., Reifenberger G., Weller M. Interferon-β induces loss of spherogenicity and overcomes therapy resistance of glioblastomastem cells. Mol Cancer Ther. 2014 Apr; 13(4): 948–61. doi:10.1158/1535-7163.MCT-13-0772.; Marusyka A., Polak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta. 2010 Jan; 1805(1): 105. doi:10.1016/j.bbcan.2009.11.002.; Tisty T., Coussens L. Tumor stroma and regulation of cancer development. Annu. Rev. Pathol. 2006. 1: 119–50. doi:10.1146/annurev.pathol.1.110304.100224.; Pistollato F., Abbadi S., Rampazzo E., Persano L., Puppa D., Frasson C., Sarto E., Scienza R., D’avella D., Basso G. Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells. 2010 May; 28(5): 851–62. doi:10.1002/stem.415.; Attaoua C., Vincent L., Jaoued A., Hadj-Kaddour K., Baï Q., De V., Vian L., Cuq P. Differential involvement of glutathione S-transferase mu 1 and multidrug resistance protein 1 in melanoma acquired resistance to vinca alkaloids. Fundam Clin Pharmacol. 2014 Oct; 29 (1): 62–71. doi:10.1111/fcp.12093.; Cabrini G., Fabbri E., Nigro L., Dechecchi M., Gambari R. Regulation of expression of O6-methylguanine-DNA methyltransferase and the treatment of glioblastoma (Review). Int J Oncol. 2015 May; 47 (2): 417–428. doi:10.3892/ijo.2015.3026.; https://www.siboncoj.ru/jour/article/view/1095
-
8Academic Journal
Συγγραφείς: A. N. Khokhlov, А. Н. Хохлов
Συνεισφορές: Работа выполнена в рамках государственного задания МГУ, ч. 2 (фундаментальные научные исследования, № АААА-А16-116021660098-8)
Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 74, № 4 (2019); 241-246 ; Вестник Московского университета. Серия 16. Биология; Том 74, № 4 (2019); 241-246 ; 0137-0952
Θεματικοί όροι: обзор, germ line, life span, evolution, development, germ cells, cell proliferation, stationary phase aging, review, зародышевая линия, продолжительность жизни, эволюция, развитие, половые клетки, клеточная пролиферация, «стационарное старение»
Περιγραφή αρχείου: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/790/484; Хохлов А.Н. Пролиферация и старение // Итоги науки и техники ВИНИТИ АН СССР, серия «Общие проблемы физико-химической биологии», том 9. М.: ВИНИТИ, 1988. 176 с.; Khokhlov A.N. Cell proliferation restriction: is it the primary cause of aging? // Ann. N.Y. Acad. Sci. 1998. Vol. 854. P. 519.; Khokhlov A.N. From Carrel to Hayflick and back, or what we got from the 100-year cytogerontological studies // Biophysics. 2010. Vol. 55. N 5. P. 859-864.; Khokhlov A.N., Klebanov A.A., Morgunova G.V. Does aging have a purpose? // Moscow Univ. Biol. Sci. Bull. 2017. Vol. 72. N 4. P. 222-224.; Khokhlov A.N., Morgunova G.V. Testing of geroprotectors in experiments on cell cultures: pros and cons // Anti-aging drugs: From basic research to clinical practice / Ed. A.M. Vaiserman. Royal Society of Chemistry, 2017. P. 53-74.; Weismann A. Die Kontinuitat des Keimplasmas als Grundlage einer Theorie der Vererbung. Jena: G. Fisher, 1885. 112 pp.; Weismann A. Das Keimplasma. Eine Theorie der Vererbung. Jena: G. Fisher, 1892. 628 p.; Nussbaum M. Zur Differenzierung des Geschlechts im Tierreich // Arch. Mikr. Anat. 1880. Vol. 18. P. 1-121.; Khokhlov A.N. On the immortal hydra. Again // Moscow Univ. Biol. Sci. Bull. 2014. Vol. 69. N 4. P. 153-157.; Medvedev Zh.A. On the immortality of the germ line: genetic and biochemical mechanisms. A review // Mech. Ageing Dev. 1981. Vol. 17. N. 4. P. 331-359.; Khokhlov A.N., Klebanov A.A., Morgunova G.V. Anti-aging drug discovery in experimental gerontological studies: from organism to cell and back / Aging: exploring a complex phenomenon. Ed. Sh.I. Ahmad. Boca Raton: Taylor & Francis, 2018. P. 577-595.; Bernstein C. Why are babies young? Meiosis may prevent aging of the germ line // Perspect. Biol. Med. 1979. Vol. 22. N 4. P. 539-544.; Khokhlov A.N. What will happen to molecular and cellular biomarkers of aging in case its program is canceled (provided such a program does exist)? // Adv. Gerontol. 2014. Vol. 4. N 2. P. 150-154.; Khokhlov A.N. Impairment of regeneration in aging: Appropriateness or stochastics? // Biogerontology. 2013. Vol. 14. N 6. P. 703-708.; Khokhlov A.N. Stationary cell cultures as a tool for gerontological studies // Ann. N.Y. Acad. Sci. 1992. Vol. 663. P. 475-476.; Morgunova G.V., Klebanov A.A., Khokhlov A.N. Interpretation of data about the impact of biologically active compounds on viability of cultured cells of various origin from a gerontological point of view // Moscow Univ. Biol. Sci. Bull. 2016. Vol. 71. N 2. P. 67-70.; Morgunova G.V., Klebanov A.A., Khokhlov A.N. Some remarks on the relationship between autophagy, cell aging, and cell proliferation restriction // Moscow Univ. Biol. Sci. Bull. 2016. Vol. 71. N 4. P. 207-211.; Morgunova G.V., Klebanov A.A., Marotta F, Khokhlov A.N. Culture medium pH and stationary phase/chronological aging of different cells // Moscow Univ. Biol. Sci. Bull. 2017. Vol. 72. N 2. P. 47-51.; Khokhlov A.N. Cell kinetic approaches to the search for anti-aging drugs: Thirty years after // Moscow Univ. Biol. Sci. Bull. 2018. Vol. 73. N 4. P. 185-190.; Khokhlov A.N., Klebanov A.A., Morgunova G.V. On choosing control objects in experimental gerontological research // Moscow Univ. Biol. Sci. Bull. 2018. Vol. 73. N 2. P. 59-62.; Morgunova G.V., Klebanov A.A. Impairment of the viability of transformed Chinese hamster cells in a nonsubcultured culture under the influence of exogenous oxidized guanoside is manifested only in the stationary phase of growth // Moscow Univ. Biol. Sci. Bull. 2018. Vol. 73. N 3. P. 124-129.; Baker T.G. Primordial germ cells // Reproduction in mammals. Book I: Germ cells and fertilization. Eds. C.R. Austin and R.V. Short. N.Y.: Cambridge Univ. Press, 1972. P. 1—13.; Gilbert S.F. Developmental biology, seventh edition. Sunderland: Sinauer Associates, Inc., 2003. 750 pp.; Khokhlov A.N. Cytogerontology at the beginning of the third millennium: From «correlative» to «gist» models // Russ. J. Dev. Biol. 2003. Vol. 34. N 5. P. 321-326.; Khokhlov A.N. Does aging need its own program, or is the program of development quite sufficient for it? Stationary cell cultures as a tool to search for anti-aging factors // Curr. Aging Sci. 2013. Vol. 6. N 1. P. 14-20.; Henderson S.A., Edwards R.G. Chiasma frequency and maternal age in mammals // Nature. 1968. Vol. 218. N 5136. P. 22-28.; Karnaukhov A.V., Karnaukhova E. V. Informational hypothesis of aging: How does the germ line “avoid” aging? // Biophysics. 2009. Vol. 54. N 4. P. 531-535.; Olovnikov A.M. Chronographic theory of development, aging, and origin of cancer: Role of chronomeres and printomeres // Curr. Aging Sci. 2015. Vol. 8. N 1. P. 76-88.; Khokhlov A.N. Which aging in yeast is «true»? // Moscow Univ. Biol. Sci. Bull. 2016. Vol. 71. N 1. P. 11-13.
Διαθεσιμότητα: https://vestnik-bio-msu.elpub.ru/jour/article/view/790
-
9Academic Journal
Συγγραφείς: A.N. Khokhlov A.N. Khokhlov A.N. Khokhlov, А. Н. Хохлов
Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 73, № 4 (2018); 227-232 ; Вестник Московского университета. Серия 16. Биология; Том 73, № 4 (2018); 227-232 ; 0137-0952
Θεματικοί όροι: обзор, cell cultures, geroprotectors, geropromoters, cell proliferation, stationary phase aging, kinetics, test systems, review, клеточные культуры, геропротекторы, геропромоторы, клеточная пролиферация, “стационарное старение”, кинетика, тест-системы
Περιγραφή αρχείου: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/655/445; Schneider E.L., Smith J.R. The relationship of in vitro studies to in vivo human aging // Int. Rev. Cytol. 1981. Vol. 69. P. 261–270.; Gazzola G.C., Bussolati O., Longo N., Dall’Asta V., Franchi-Gazzola R., Guidotti G.G. Effect of in vitro ageing on the transport of neutral amino acids in human fibroblasts // Cellular ageing. Monographs in developmental biology, vol. 17 / Ed. H.W. Sauer. Basel-N.Y.: S. Karger, 1984. P. 234–244.; Macieira-Coelho A., Loria E., Berumen L. Relationship between cell kinetic changes and metabolic events during cell senescence in vitro // Cell impairment in aging and development / Eds V.J. Cristofalo and E. Holećkova. N.Y.- London: Plenum Press, 1975. P. 51–65.; Macieira-Coelho A. Kinetics of the proliferation of human fibroblasts during their lifespan in vitro // Mech. Ageing Dev. 1977. Vol. 6. N 5. P. 341–343.; Ohashi M., Aizawa S., Ooka H., Ohsawa T., Kaji K., Kondo H., Kobayashi T., Noumura T., Matsuo M., Mitsui Y., Murota S., Yamamoto K., Ito H., Shimada H., Utakoji T. A new human diploid cell strain, TIG-1, for the research on cellular aging // Exp. Gerontol. 1980. Vol. 15. N 2. P. 121–133.; Wasko B.M., Carr D.T., Tung H. et al. Buffering the pH of the culture medium does not extend yeast replicative lifespan // F1000Research. 2013. Vol. 2:216.; Morgunova G.V., Klebanov A.A., Marotta F., Khokhlov A.N. Culture medium pH and stationary phase/chronological aging of different cells // Moscow Univ. Biol. Sci. Bull. 2017. Vol. 72. N 2. P. 47–51.; Чиркова Е.Ю., Головина М.Э., Наджарян Т.Л., Хохлов А.Н. Клеточно-кинетическая модель для изучения геропротекторов и геропромоторов // Докл. АН СССР. 1984. Т. 278. N 6. С. 1474–1476.; Хохлов А.Н., Головина М.Э., Чиркова Е.Ю., Наджарян Т.Л. Анализ некоторых кинетических закономерностей роста культивируемых клеток. I. Модель // Цитология. 1985. Т. 27. N 8. С. 960–965.; Khokhlov A.N. The cell kinetics model for determination of organism biological age and for geroprotectors or geropromoters studies // Biomarkers of aging: expression and regulation. Proceeding / Ed. F. Licastro and C.M. Caldarera. Bologna: CLUEB, 1992. P. 209–216.; Конев С.В., Мажуль В.М. Межклеточные контакты. Минск: Наука и техника, 1977. 312 с.; Kondo H., Kasuga H., Noumura T. Effects of various steroids on in vitro lifespan and cell growth of human fetal lung fibroblasts (WI-38) // Mech. Ageing Dev. 1983. Vol. 21. N 3–4. P. 335–344.; Macieira-Coelho A. Action of cortisone on human fibroblasts in vitro // Experientia. 1966. Vol. 22. N 6. P. 390–391.; Grünwald J., Mey J., Schönleben W., Hauss J., Hauss W.H. Cultivated human arterial smooth muscle cells. The effect of donor age, blood pressure, diabetes and smoking on in vitro cell growth // Pathol. Biol. (Paris). 1983. Vol. 31. N 10. P. 819–823.; Хохлов А.Н. Пролиферация и старение // Итоги науки и техники ВИНИТИ АН СССР, серия “Общие проблемы физико-химической биологии”. Т. 9. М.: ВИНИТИ, 1988. 176 с.; Khokhlov A.N. Cytogerontology at the beginning of the third millennium: from “correlative” to “gist” models // Russ. J. Dev. Biol. 2003. Vol. 34. N 5. P. 321–326.; Morgunova G.V., Kolesnikov A.V., Klebanov A.A., Khokhlov A.N. Senescence-associated β-galactosidase – a biomarker of aging, DNA damage, or cell proliferation restriction? // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N 4. P. 165–167.; Khokhlov A.N. Stationary cell cultures as a tool for gerontological studies // Ann. N.Y. Acad. Sci. 1992. Vol. 663. P. 475–476.; Khokhlov A.N. Cell proliferation restriction: is it the primary cause of aging? // Ann. N.Y. Acad. Sci. 1998. Vol. 854. P. 519.; Khokhlov A.N. From Carrel to Hayflick and back, or what we got from the 100-year cytogerontological studies // Biophysics. 2010. Vol. 55. N 5. P. 859–864.; Khokhlov A.N. Does aging need its own program, or is the program of development quite sufficient for it? Stationary cell cultures as a tool to search for anti-aging factors // Curr. Aging Sci. 2013. Vol. 6. N 1. P. 14–20.; Khokhlov A.N. Impairment of regeneration in aging: appropriateness or stochastics? // Biogerontology. 2013. Vol. 14. N 6. P. 703–708.; Khokhlov A.N., Klebanov A.A., Morgunova G.V. Does aging have a purpose? // Moscow Univ. Biol. Sci. Bull. 2017. Vol. 72. N 4. P. 222–224.; Shilovsky G.A., Shram S.I., Morgunova G.V., Khokhlov A.N. Protein poly(ADP-ribosyl)ation system: Changes in development and aging as well as due to restriction of cell proliferation // Biochemistry (Moscow). 2017. Vol. 82. N 11. P. 1391–1401.; Fabrizio P., Longo V.D. The chronological life span of Saccharomyces cerevisiae // Aging Cell. 2003. Vol. 2. N 2. P. 73–81.; Nyström T. Stationary-phase physiology // Annu. Rev. Microbiol. 2004. Vol. 58. P. 161–181.; Khokhlov A.N. Which aging in yeast is “true”? // Moscow Univ. Biol. Sci. Bull. 2016. Vol. 71. N 1. P. 11–13.; Morgunova G.V., Klebanov A.A., Khokhlov A.N. Some remarks on the relationship between autophagy, cell aging, and cell proliferation restriction // Moscow Univ. Biol. Sci. Bull. 2016. Vol. 71. N 4. P. 207–211.; Khokhlov A.N., Klebanov A.A., Karmushakov A.F., Shilovsky G.A., Nasonov M.M., Morgunova G.V. Testing of geroprotectors in experiments on cell cultures: choosing the correct model system // Moscow Univ. Biol. Sci. Bull. 2014. Vol. 69. N 1. P. 10–14.; Alinkina E.S., Vorobyova A.K., Misharina T.A., Fatkullina L.D., Burlakova E.B., Khokhlov A.N. Cytogerontological studies of biological activity of oregano essential oil // Moscow Univ. Biol. Sci. Bull. 2012. Vol. 67. N 2. P. 52–57.; Yablonskaya O.I., Ryndina T.S., Voeikov V.L., Khokhlov A.N. A paradoxical effect of hydrated C60-fullerene at an ultralow concentration on the viability and aging of cultured Chinese hamster cells // Moscow Univ. Biol. Sci. Bull. 2013. Vol. 68. N 2. P. 63–68.; Khokhlov A.N., Morgunova G.V., Ryndina T.S., Coll F. Pilot study of a potential geroprotector, “Quinton Marine Plasma”, in experiments on cultured cells // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N 1. P. 7–11.; Morgunova G.V., Klebanov A.A. Impairment of the viability of transformed Chinese hamster cells in a nonsubcultured culture under the influence of exogenous oxidized guanoside is manifested only in the stationary phase of growth // Moscow Univ. Biol. Sci. Bull. 2018. Vol. 73. N 3. P. 124–129.; Khokhlov A.N., Morgunova G.V. On the constructing of survival curves for cultured cells in cytogerontological experiments: a brief note with three hierarchy diagrams // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N 2. P. 67–71.; Morgunova G.V., Klebanov A.A., Khokhlov A.N. Interpretation of data about the impact of biologically active compounds on viability of cultured cells of various origin from a gerontological point of view // Moscow Univ. Biol. Sci. Bull. 2016. Vol. 71. N 2. P. 67–70.; Khokhlov A.N., Klebanov A.A., Morgunova G.V. On choosing control objects in experimental gerontological research // Moscow Univ. Biol. Sci. Bull. 2018. Vol. 73. N 2. P. 59–62.; Khokhlov A.N., Morgunova G.V. Testing of geroprotectors in experiments on cell cultures: pros and cons // Anti-aging drugs: From basic research to clinical practice / Ed. A.M. Vaiserman. Royal Society of Chemistry, 2017. P. 53–74.; Khokhlov A.N., Klebanov A.A., Morgunova G.V. Antiaging drug discovery in experimental gerontological studies: from organism to cell and back // Aging: Exploring a complex phenomenon / Ed. Sh.I. Ahmad. Boca Raton: Taylor & Francis, 2018. P. 577–595.; Charnov E.L. On evolution of age of maturity and the adult lifespan // J. Evol. Biol. 1990. Vol. 3. N 1–2. P. 139–144.; Charnov E.L., Berrigan D. Dimensionless numbers and life history evolution: age of maturity versus the adult lifespan // Evol. Ecol. 1990. Vol. 4. N 3. P. 273–275.; de Magalhães J.P., Costa J., Church G.M. An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts // J. Gerontol. A Biol. Sci. Med. Sci. 2007. Vol. 62. N 2. P. 149–160.; Bodnar A.G., Ouellette M., Frolkis M., Holt S.E., Chiu C.P., Morin G.B., Harley C.B., Shay J.W., Lichtsteiner S., Wright W.E. Extension of life-span by introduction of telomerase into normal human cells // Science. 1998. Vol. 279. N 5349. P. 349–352.
Διαθεσιμότητα: https://vestnik-bio-msu.elpub.ru/jour/article/view/655
-
10Academic Journal
Συγγραφείς: НИКИФОРОВ-НИКИШИН ДМИТРИЙ ЛЬВОВИЧ, БОРОДИН АЛЕКСЕЙ ЛЕОНИДОВИЧ, НИКИФОРОВ-НИКИШИН АЛЕКСЕЙ ЛЬВОВИЧ
Θεματικοί όροι: ЭКОЛОГИЯ РЫБ,МОРФОЛОГИЯ РЫБ,КЛЕТОЧНАЯ ПРОЛИФЕРАЦИЯ,ТЕПЛОВОЕ ЗАГРЯЗНЕНИЕ ВОДОЕМОВ,БЕНТОФАГИ
Περιγραφή αρχείου: text/html
-
11Academic Journal
Συγγραφείς: A. N. Khokhlov, А. Н. Хохлов
Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 4 (2014); 15-19 ; Вестник Московского университета. Серия 16. Биология; № 4 (2014); 15-19 ; 0137-0952 ; 10.1234/XXXX-XXXX-2014-4
Θεματικοί όροι: стволовые клетки, aging, life span, cell proliferation, evolution, stem cells, старение, продолжительность жизни, клеточная пролиферация, эволюция
Περιγραφή αρχείου: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/101/102; C.G., Schaible R., Casper B.B., Dahlgren J.P., Ehrlйn J., Garcнa M.B., Menges E.S., Quintana-Ascencio P.F., Caswell H., Baudisch A., Vaupel J.W. Diversity of ageing across the tree of life // Nature. 2014. Vol. 505. N 7482. P. 169—173.; Khokhlov A.N. Does aging need an own program or the existing development program is more than enough? // Russ. J. Gen. Chem. 2010. Vol. 80. N 7. P. 1507—1513.; Khokhlov A.N. From Carrel to Hayflick and back, or what we got from the 100-year cytogerontological studies // Biophysics. 2010. Vol. 55. N 5. P. 859—864.; Khokhlov A.N., Wei L., Li Y., He J. Teaching cytogerontology in Russia and China // Adv. Gerontol. 2012. Vol. 25. N 3. P. 513—516.; Wei L., Li Y., He J., Khokhlov A.N. Teaching the cell biology of aging at the Harbin Institute of Technology and Moscow State University // Moscow Univ. Biol. Sci. Bull. 2012. Vol. 67. N 1. P. 13—16.; Khokhlov A.N. Does aging need its own program, or is the program of development quite sufficient for it? Stationary cell cultures as a tool to search for anti-aging factors // Curr. Aging Sci. 2013. Vol. 6. N 1. P. 14—20.; Khokhlov A.N., Klebanov A.A., Karmushakov A.F., Shilovsky G.A., Nasonov M.M., Morgunova G.V. Testing of geroprotectors in experiments on cell cultures: choosing the correct model system // Moscow Univ. Biol. Sci. Bull. 2014. Vol. 69. N 1. P. 10—14.; Trembley A. Meґmoires pour servir a` l’histoire d’un genre de polypes d’eau douce, a` bras en forme de cornes. Leiden: Jean & Herman Verbeek, 1744.; Galliot B. Hydra, a fruitful model system for 270 years // Int. J. Dev. Biol. 2012. Vol. 56. N 6—8. P. 411—423.; Mьller W.A. Pattern formation in the immortal Hydra // Trends Genet. 1996. Vol. 12. N 3. P. 91—96.; Pearl R., Miner J.R. Experimental studies on the duration of life. XIV. The comparative mortality of certain lower organisms // Q. Rev. Biol. 1935. Vol. 10. N 1. P. 60—79.; Berrill N.J., Liu C.K. Germplasm, Weismann, and Hydrozoa // Q. Rev. Biol. 1948. Vol. 23. N 2. P. 124—132.; Loomis W.F., Lenhoff H.M. Growth and sexual differentiation of hydra in mass culture // J. Exp. Zool. 1956. Vol. 132. N 3. P. 555—573.; Stiven A.E. Concerning the survivorship curve of hydra // Ecology. 1962. Vol. 43. N 1. P. 173—174.; Forrest H. Immortality and Pearl’s survivorship curve for Hydra // Ecology. 1963. Vol. 44. N 3. P. 609—610.; Brien P. The fresh-water hydra // Amer. Scientist. 1960. Vol. 48. N 4. P. 348A, 461—475.; Brien P. Blastogenese et gametogenese // L’origine de la ligneґe germinale chez les verteґbreґs et chez quelques groupes d’inverteґbreґs. Seґminaire 1962 / Ed. Wolff E. Paris: Hermann, 1964. P. 19—76.; Brien P. Blastogenesis and morphogenesis // Adv. Morphog. 1968. Vol. 7. P. 151—203.; Хохлов А.Н. Пролиферация и старение // Итоги науки и техники ВИНИТИ АН СССР. Сер. “Общие проблемы физико-химической биологии”. Т. 9. М.: ВИНИТИ, 1988. 176 с.; Khokhlov A.N. Decline in regeneration during aging: appropriateness or stochastics? // Russ. J. Dev. Biol. 2013. Vol. 44. N 6. P. 336—341.; Khokhlov A.N. Impairment of regeneration in aging: appropriateness or stochastics? // Biogerontology. 2013. Vol. 14. N 6. P. 703—708.; Martнnez D.E., Bridge D. Hydra, the everlasting embryo, confronts aging // Int. J. Dev. Biol. 2012. Vol. 56. N 6—8. P. 479—487.; Martнnez D. Mortality patterns suggest lack of senescence in hydra // Exp. Gerontol. 1998. Vol. 33. N 3. P. 217—225.; Estep P.W. Declining asexual reproduction is suggestive of senescence in hydra: comment on Martinez, D., “Mortality patterns suggest lack of senescence in hydra” // Exp. Gerontol. 2010. Vol. 45. N 9. P. 645—646.; Boehm A.-M., Khalturin K., Anton-Erxleben F., Hemmrich G., Klostermeier U.C., Lopezuintero J.A., Oberg H.H., Puchert M., Rosenstiel P., Wittlieb J., Bosch T.C. FoxO is a critical regulator of stem cell maintenance in immortal Hydra // Proc. Natl. Acad. Sci. USA. 2012. Vol. 109. N 48. P. 19697—19702.; Nebel A., Bosch T.C.G. Evolution of human longevity: lessons from Hydra // Aging (Albany NY). 2012. Vol. 4. N 11. P. 730—731.; Chapman J.A., Kirkness E.F., Simakov O. et al. The dynamic genome of Hydra // Nature. 2010. Vol. 464. N 7288. P. 592—596.; Yoshida K., Fujisawa T., Hwang J.S., Ikeo K., Gojobori T. Degeneration after sexual differentiation in hydra and its relevance to the evolution of aging // Gene. 2006. Vol. 385. P. 64—70.; Watanabe H., Hoang V.T., Mдttner R., Holstein T.W. Immortality and the base of multicellular life: Lessons from cnidarian stem cells // Semin. Cell Dev. Biol. 2009. Vol. 20. N 9. P. 1114—1125.; Bosch T.C.G. Stem cells in immortal hydra // Stem cells: from hydra to man. Springer Netherlands, 2008. P. 37—57.; Bosch T.C. Hydra and the evolution of stem cells // BioEssays. 2009. Vol. 31. N 4. P. 478—486.; Boehm A.M., Rosenstiel P., Bosch T.C. Stem cells and aging from a quasi-immortal point of view // BioEssays. 2013. Vol. 35. N 11. P. 994—1003.; Cristofalo V.J., Allen R.G., Pignolo R.J., Martin B.G., Beck J.C. Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation // Proc. Natl. Acad. Sci. USA. 1998. Vol. 95. N 18. P. 10614—10619.; Khokhlov A.N. What will happen to molecular and cellular biomarkers of aging in case its program is canceled (provided such a program does exist)? // Adv. Gerontol. 2014. Vol. 4. N 2. P. 150—154.; Khokhlov A.N. Stationary cell cultures as a tool for gerontological studies // Ann. N.Y. Acad. Sci. 1992. Vol. 663. P. 475—476.; Khokhlov A.N. Cell proliferation restriction: is it the primary cause of aging? // Ann. N.Y. Acad. Sci. 1998. Vol. 854. P. 519.; Akimov S.S., Khokhlov A.N. Study of “stationary phase aging” of cultured cells under various types of proliferation restriction // Ann. N.Y. Acad. Sci. 1998. Vol. 854. P. 520.; Хохлов А.Н. Итоги и перспективы цитогеронтологических исследований на современном этапе // Цитология. 2002. Т. 44. № 12. С. 1143—1148.; Khokhlov A.N. Cytogerontology at the beginning of the third millennium: from “correlative” to “gist” models // Russ. J. Dev. Biol. 2003. Vol. 34. N 5. P. 321—326.; Khokhlov A.N. Evolution of the term “cellular senescence” and its impact on the current cytogerontological research // Moscow Univ. Biol. Sci. Bull. 2013. Vol. 68. N 4. P. 158—161.; Khokhlov A.N. Can cancer cells age? Stationary cell culture approach to the problem solution // Visualizing of senescent cells in vitro and in vivo. Programme and abstracts (Warsaw, Poland, 15—16 December 2012). Warsaw, 2012. P. 48—49.; Khokhlov A.N. Evolutionary cytogerontology as a new branch of experimental gerontology // Age. 1994. Vol. 17. N 4. P. 159.; Alinkina E.S., Vorobyova A.K., Misharina T.A., Fatkullina L.D., Burlakova E.B., Khokhlov A.N. Cytogerontological studies of biological activity of oregano essential oil // Moscow Univ. Biol. Sci. Bull. 2012. Vol. 67. N 2. P. 52—57.; Yablonskaya O.I., Ryndina T.S., Voeikov V.L., Khokhlov A.N. A paradoxical effect of hydrated C60-fullerene at an ultralow concentration on the viability and aging of cultured Chinese hamster cells // Moscow Univ. Biol. Sci. Bull. 2013. Vol. 68. N 2. P. 63—68.
-
12Academic Journal
Συγγραφείς: A. N. Khokhlov, G. V. Morgunova, T. S. Ryndina, F. Coll, А. Н. Хохлов, Г. В. Моргунова, Т. С. Рындина, Ф. Колл
Πηγή: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; № 1 (2015); 9-13 ; Вестник Московского университета. Серия 16. Биология; № 1 (2015); 9-13 ; 0137-0952 ; 10.1234/XXXX-XXXX-2015-1
Θεματικοί όροι: “стационарное старение”, cytogerontology, geroprotectors, cultured cells, cell proliferation, “stationary phase aging”, цитогеронтология, геропротекторы, культивируемые клетки, клеточная пролиферация
Περιγραφή αρχείου: application/pdf
Relation: https://vestnik-bio-msu.elpub.ru/jour/article/view/109/110; Yoshizawa Y., Tanojo H., Kim S.J., Maibach H.I. Sea water or its components alter experimental irritant dermatitis in man // Skin Res. Technol. 2001. Vol. 7. P. 36—39.; Kimata H., Tai H., Nakagawa K., Yokoyama Y., Nakajima H., Ikegami Y. Improvement of skin symptoms and mineral imbalance by drinking deep sea water in patients with atopic eczema/dermatitis syndrome (AEDS) // Acta Medica (Hradec Kralove). 2002. Vol. 45. N 2. P. 83—84.; Yoshioka S., Hamada A., Cui T., Yokota J., Yamamoto S., Kusunose M., Miyamura M., Kyotani S., Kaneda R., Tsutsui Y., Odani K., Odani I., Nishioka Y. Pharmacological activity of deep-sea water: examination of hyperlipemia prevention and medical treatment effect // Biol. Pharm. Bull. 2003. Vol. 26. N 11. P. 1552—1559.; Tabary O., Muselet C., Miesch M.C., Yvin J.C., Clйment A., Jacquot J. Reduction of chemokine IL-8 and RANTES expression in human bronchial epithelial cells by a sea-water derived saline through inhibited nuclear factor-kB activation // Biochem. Biophys. Res. Commun. 2003. Vol. 309. N 2. P. 310—316.; Miyamura M., Yoshioka S., Hamada A., Takuma D., Yokota J., Kusunose M., Kyotani S., Kawakita H., Odani K., Tsutsui Y., Nishioka Y. Difference between deep seawater and surface seawater in the preventive effect of atherosclerosis // Biol. Pharm. Bull. 2004. Vol. 27. N 11. P. 1784—1787.; Hataguchi Y., Tai H., Nakajima H., Kimata H. Drinking deep-sea water restores mineral imbalance in atopic eczema/dermatitis syndrome // Eur. J. Clin. Nutr. 2005. Vol. 59. P. 1093—1096.; Slapak I., Skoupб J., Strnad P., HornнkP.Efficacy of isotonic nasal wash (seawater) in the treatment and prevention of rhinitis in children // Arch. Otolaryngol. Head Neck Surg. 2008. Vol. 134. N 1. P. 67—74.; Original Quinton [Электронный ресурс]. 2010. (URL: http://www.originalquinton.com/ (дата обращения: 04.09.2014).; Alberola J., Coll F. Marine therapy and its healing properties // Curr. Aging Sci. 2013. Vol. 6. N 1. P. 63—75.; Martнnez-Peinado P., Maseres-Javaloy P., Martнnez-Lуpez J.E., Garcнa-Irles M., Sempere-Ortells J.M. In vitro and in vivo studies to evaluate a potential activity of Quinton Solution on the immune system // International Immunology Meeting Abstracts (Suppl. 1. Pt. 3). Oxford: Oxford University Press, 2010. P. iii93.; Хохлов А.Н. Пролиферация и старение // Итоги науки и техники ВИНИТИ АН СССР. Сер. Общие проблемы физико-химической биологии. Т. 9. М.: ВИНИТИ, 1988. 176 с.; Khokhlov A.N. Stationary cell cultures as a tool for gerontological studies // Ann. N.Y. Acad. Sci. 1992. Vol. 663. P. 475—476.; Khokhlov A.N. Cell proliferation restriction: is it the primary cause of aging? // Ann. N.Y. Acad. Sci. 1998. Vol. 854. P. 519.; Khokhlov A.N. Does aging need its own program, or is the program of development quite sufficient for it? Stationary cell cultures as a tool to search for anti-aging factors // Curr. Aging Sci. 2013. Vol. 6. N 1. P. 14—20.; Khokhlov A.N. Decline in regeneration during aging: appropriateness or stochastics? // Russ. J. Dev. Biol. 2013. Vol. 44 . N 6. P. 336—341.; Khokhlov A.N. Impairment of regeneration in aging: appropriateness or stochastics? // Biogerontology. 2013. Vol. 14. N 6. P. 703—708.; Khokhlov A.N. Evolution of the term “cellular senescence” and its impact on the current cytogerontological research // Moscow Univ. Biol. Sci. Bull. 2013. Vol. 68. N 4. P. 158—161.; Khokhlov A.N. What will happen to molecular and cellular biomarkers of aging in case its program is canceled (provided such a program does exist)? // Adv. Gerontol. 2014. Vol. 4. N 2. P. 150—154.; Khokhlov A.N., Klebanov A.A., Karmushakov A.F., Shilovsky G.A., Nasonov M.M., Morgunova G.V. Testing of geroprotectors in experiments on cell cultures: choosing the correct model system // Moscow Univ. Biol. Sci. Bull. 2014. Vol. 69. N 1. P. 10—14.; Khokhlov A.N. From Carrel to Hayflick and back, or what we got from the 100-year cytogerontological studies // Biophysics. 2010. Vol. 55. N 5. P. 859—864.; Alinkina E.S., Vorobyova A.K., Misharina T.A., Fatkullina L.D., Burlakova E.B., Khokhlov A.N. Cytogerontological studies of biological activity of oregano essential oil // Moscow Univ. Biol. Sci. Bull. 2012. Vol. 67. N 2. P. 52—57.; Yablonskaya O.I., Ryndina T.S., Voeikov V.L., Khokhlov A.N. A paradoxical effect of hydrated C60-fullerene at an ultralow concentration on the viability and aging of cultured Chinese hamster cells // Moscow Univ. Biol. Sci. Bull. 2013. Vol. 68. N 2. P. 63—68.; Khokhlov A.N. Can cancer cells age? Stationary cell culture approach to the problem solution // Visualizing of senescent cells in vitro and in vivo. Programme and abstracts (Warsaw, Poland, 15—16 December 2012). Warsaw, 2012. P. 48—49.; Lewis M.R. Sea water as a medium for tissue cultures // Anat. Rec. 1916. Vol. 10. N 4. P. 287—299.; Berges J.A, Franklin D.J., Harrison P.J. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades // J. Phycol. 2001. Vol. 37. N 6. P. 1138—1145.; Khokhlov A.N., Wei L., Li Y., He J. Teaching cytogerontology in Russia and China // Adv. Gerontol. 2012. Vol. 25. N 3. P. 513—516.; Wei L., Li Y., He J., Khokhlov A.N. Teaching the cell biology of aging at the Harbin Institute of Technology and Moscow State University // Moscow Univ. Biol. Sci. Bull. 2012. Vol. 67. N 1. P. 13—16.; Khokhlov A.N. The cell kinetics model for determination of organism biological age and for geroprotectors or geropromoters studies // Biomarkers of aging: expression and regulation. Proceeding / Eds. F. Licastro, C.M. Caldarera. Bologna: CLUEB, 1992. P. 209—216.; Moldaver M.V., Yegorov Y.E. Sparse plating increases the heterogeneity of proliferative potential of fibroblasts // Mech. Ageing Dev. 2009. Vol. 130. N 5. P. 337—342.; Бурнаевский Н.С., Вишнякова Х.С., Сафенина А.В., Рыбалко Д.В., Попов К.В., Егоров Е.Е. Влияние парциального давления кислорода на эффективность колониеобразования и дифференцировки мезенхимальных стромальных клеток человека, полученных из различных источников // Клеточная трансплантология и тканевая инженерия. 2010. Т. 5. № 4. С. 24—30.
-
13Academic Journal
Συγγραφείς: ПИКИРЕНЯ И.И., ЗЕМЛЯНИК А.Н., ХОМЧЕНКО В.В.
Περιγραφή αρχείου: text/html
-
14Academic Journal
Συγγραφείς: Царькова, В. В., Довнар, Д. А.
Θεματικοί όροι: клеточная пролиферация, эпидермис ногтевых пластин
Relation: Царькова, В. В. Интенсивность клеточной пролиферации росткового слоя эпидермиса ногтевых пластин на правой и левой руках у праворуких и леворуких людей [Электронный ресурс] / В. В. Царькова, Д. А. Довнар // Проблемы и перспективы развития современной медицины : сб. науч. ст. XIII Респ. науч.-практ. конф. с междунар. участием студентов и молодых ученых, Гомель, 6-7 мая 2021 г. : в 9 т. / Гомел. гос. мед. ун-т; редкол. : И. О. Стома [и др.]. – Гомель : ГомГМУ, 2021. – Т. 9. – С. 110–112. – 1 электрон. опт. диск (CD-ROM). Научный руководитель: к.б.н., доцент Е. М. Бутенкова; http://elib.gsmu.by/handle/GomSMU/8925
Διαθεσιμότητα: http://elib.gsmu.by/handle/GomSMU/8925
-
15Academic Journal
Συγγραφείς: НУРГАЛЕЕВА Э.З., КУЛУЕВ Б.Р.
Θεματικοί όροι: ТРАНСГЕННЫЕ РАСТЕНИЯ, АПИКАЛЬНАЯ МЕРИСТЕМА ПОБЕГА, КЛЕТОЧНАЯ ПРОЛИФЕРАЦИЯ, КОНСТИТУТИВНАЯ ЭКСПРЕССИЯ
Περιγραφή αρχείου: text/html
-
16Academic Journal
Συγγραφείς: Аксененко, Мария, Рукша, Татьяна
Θεματικοί όροι: МЕЛАНОМА, КЛЕТОЧНАЯ ПРОЛИФЕРАЦИЯ, ОПУХОЛЕВАЯ ИНВАЗИЯ, N-КАДГЕРИН
Περιγραφή αρχείου: text/html
-
17Academic Journal
Συγγραφείς: Палкина, Надежда, Рукша, Татьяна
Θεματικοί όροι: МАТРИКСНЫЕ МЕТАЛЛОПРОТЕИНАЗЫ, МЕЛАНОМА, КЛЕТОЧНАЯ ПРОЛИФЕРАЦИЯ
Περιγραφή αρχείου: text/html
-
18Academic Journal
Συγγραφείς: Туманський, В., Баударбекова, М., Чепець, О.
Θεματικοί όροι: КАРЦИНОМА ЕНДОМЕТРіЮ, іНВАЗИВНіСТЬ НОВОУТВОРЕННЯ, КЛіТИННА ПРОЛіФЕРАЦіЯ, АПОПТОЗ, КАРЦИНОМА ЭНДОМЕТРИЯ, ИНВАЗИВНОСТЬ НОВООБРАЗОВАНИЯ, КЛЕТОЧНАЯ ПРОЛИФЕРАЦИЯ, СARCINOMA OF ENDOMETRIUM
Περιγραφή αρχείου: text/html
-
19Academic Journal
Συγγραφείς: Ivanenko, T., Abramova, T., Kuzo, N., Tyshchenko, S.
Θεματικοί όροι: КЛіТИННА ПРОЛіФЕРАЦіЯ, іМУНОГіСТОХіМіЯ, БРОМДЕЗОКСіУРИДИН, КЛЕТОЧНАЯ ПРОЛИФЕРАЦИЯ, ИММУНОГИСТОХИМИЯ, БРОМДЕЗОКСИУРИДИН
Περιγραφή αρχείου: text/html
-
20Academic Journal
Πηγή: Символ науки.
Θεματικοί όροι: ЭКОЛОГИЯ РЫБ,МОРФОЛОГИЯ РЫБ,КЛЕТОЧНАЯ ПРОЛИФЕРАЦИЯ,ТЕПЛОВОЕ ЗАГРЯЗНЕНИЕ ВОДОЕМОВ,БЕНТОФАГИ
Περιγραφή αρχείου: text/html