-
1
Συγγραφείς: Smirnov, Leonid
Θεματικοί όροι: Теория относительности, Квантовая физика, Чёрные дыры, Квантстар, Квант, Глюоны, Кварк, Астрономия, Квантовая запутанность, Кварк-глюонная плазма, Астрофизика
-
2Academic Journal
Θεματικοί όροι: андронный газ, кварк-глюонная плазма, адроны, флуктуации множественности адронов, локальные флуктуации
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/64737
-
3Academic Journal
Πηγή: Журнал экспериментальной и теоретической физики. 2020. Т. 157, № 2. С. 327-341
Θεματικοί όροι: кварк-глюонная плазма, высокотемпературная плазма, плазмоны, кинетические уравнения, гамильтониан взаимодействия, гамильтонов формализм
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000794070
-
4
Συγγραφείς: Larionova, Daria, Berdnikov, Yaroslav, Kotov, Dmitry
Θεματικοί όροι: кварк-глюонная плазма, quark-gluon plasma, NICA, ядерная материя, nuclear matter, фазовая диаграмма, заряженные адроны, MPD, charged hadrons, phase diagram
-
5
Анализ физической программы электрон-ионного коллайдера: выпускная квалификационная работа бакалавра
Θεματικοί όροι: ядерные эффекты, спин нуклона, the spin of the nucleon, кварк-глюонная плазма, parton distribution functions, quark-gluon plasma, deep inelastic scattering, функции партонных распределений, electron-ion collider, глубоко неупругое рассеяние, электрон-ионный коллайдер, nuclear environment effects
-
6
-
7
Θεματικοί όροι: кварк-глюонная плазма, параметры аппроксимации, quark-gluon plasma, релятивистские столкновения ионов, relativistic ion collisions, инвариантные спектры, STAR experiment, эксперимент STAR, freeze-out temperature, kinetic freeze-out, Blast-Wave model, invariant spectra, температура вымораживания, центральность столкновений, эксперимент PHENIX, радиальный поток, модель Blast-Wave, PHENIX experiment, radial flow, fit parameters, гидродинамические модели, collision centrality, hydrodynamic models, кинетическое вымораживание
-
8Academic Journal
Συγγραφείς: Tumasyan, A., Adam, W., Ambrogi, F., Borshch, V., Ivanchenko, V., Tcherniaev, E.
Πηγή: Physics Letters B. 2022. Vol. 829. P. 137062 (1-25)
Θεματικοί όροι: адронизация, B-мезоны, кварк-глюонная плазма
Σύνδεσμος πρόσβασης: https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001001003
-
9Academic Journal
Θεματικοί όροι: нуклоны, кварк-глюонная плазма, тяжелые ионы, адроны, кварки, глюоны, ионы высоких энергий
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/40596
-
10Academic Journal
Θεματικοί όροι: кварк-глюонная плазма, тяжелые ионы, адроны, физика, кварки, гидродинамическое расширение, глюоны, ионы высоких энергий
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://elib.belstu.by/handle/123456789/39595
-
11Academic Journal
Πηγή: Известия высших учебных заведений. Физика. 2021. Т. 64, № 12. С. 68-78
Θεματικοί όροι: плазмино, кварк-глюонная плазма, приближение жестких температурных петель, кинетическое уравнение для волн, гамильтонов формализм
Περιγραφή αρχείου: application/pdf
Σύνδεσμος πρόσβασης: https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:000725494
-
12
Συγγραφείς: Mitrankova, Mariia, Bannikov, Egor, Berdnikov, Alexander, Berdnikov, Yaroslav, Dubov, Alexander, Kotov, Dmitry, Mitrankov, Iurii
Πηγή: St. Petersburg Polytechnical University Journal: Physics and Mathematics, Vol 14, Iss 3 (2021)
Θεματικοί όροι: кварк-глюонная плазма, quark-gluon plasma, Physics, QC1-999, nuclear modification factor, 02 engineering and technology, эффект холодной ядерной материи, 01 natural sciences, 7. Clean energy, 0104 chemical sciences, cold nuclear matter effect, QA1-939, 0204 chemical engineering, фактор ядерной модификации, Mathematics
-
13Academic Journal
Συγγραφείς: Yu. A. Rusak, L. F. Babichev, Ю. А. Русак, Л. Ф. Бабичев
Πηγή: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 56, № 1 (2020); 84-91 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 56, № 1 (2020); 84-91 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2020-56-1
Θεματικοί όροι: фазовые переходы, Monte-Carlo simulation, heavy ion collisions, fluctuations, quark-gluon plasma, HIJING, phase transitions, Монте-Карло моделирование, тяжелые ионы, столкновения, флуктуации, кварк-глюонная плазма
Περιγραφή αρχείου: application/pdf
Relation: https://vestifm.belnauka.by/jour/article/view/507/421; Adams J. Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nuclear Physics A, 2005, vol. 757, pp. 102–183.; Blume C. Open questions in the understanding of strangeness production in HIC – Experiment perspective. Proceedings for the Strange Quark Matter 2017 conference. Utrecht, Netherlands, 2017. https://doi.org/10.1051/epjconf/201817103001; Biswarup P. Charmonium production in p-Pb collisions with ALICE at the LHC. European Physical Society Conference on High Energy Physics, Italy, 5–12 July 2017. Venice, 2017. https://doi.org/10.22323/1.314.0182; Shuryak E. Strongly coupled quark-gluon plasma in heavy ion collisions. Reviews of Modern Physics, 2017, vol. 89, no. 3, pp. 61. https://doi.org/10.1103/RevModPhys.89.035001; Koch, P., Muller. B., Rafelski J. From strangeness enchancement to quark gluon plasma discovery. International Journal of Modern Physics A, 2017, vol. 32, no. 31, pp. 1730024. https://doi.org/10.1142/S0217751X17300241; Xian Nian Wang, Gyulassy M. HIJING 1.0: A Monte-Carlo Program for Parton Parton and Particle Production in High Energy Hadronic and Nuclear Collisions. Computer Physics Communications, 1994, vol. 83, no. 2–3, pp. 307–331. https://doi.org/10.1016/0010-4655(94)90057-4; Baier R., Dokshitzer Yu. L., Mueller A. H., Piegne S., Schiff D. Radiative energy loss of high energy quarks and gluons in a finite volume quark-gluon plasma. Nuclear Physics B, 1997, vol. 483, no. 1–2, pp. 291–320, https://doi.org/10.1016/S0550-3213(96)00553-6; Shuryak E. V. Theory of Hadronic Plasma. Journal of Experimental and Theoretical Physics, 1978, vol. 74, pp. 408–420.; Bass S. A., Gyulassy M., Stoecker H., Greiner W. Signatures of Quark-Gluon-Plasma formation in high energy heavyion collisions: A critical review. Journal of Physics G: Nuclear and Particle Physics, 1999, vol. 25, no. 3, pp. R1–R57. https://doi.org/10.1088/0954-3899/25/3/013.; Fukushima K., Hatsuda T. The Phase Diagram of dense QCD. Reports on Progress in Physics, 2010, vol. 74, no. 1, pp. 014001. https://doi.org/10.1088/0034-4885/74/1/014001; Lancu E. QCD in heavy ion collisions. 2012. Available at: https://arxiv.org/abs/1205.0579v1; Cleymans J., Oeschler H., Redlich K., Wheaton S. Comprasion of Chemical Freeze-out Criteria in Heavy Ion Collisions. Physical Review C, 2006, vol. 73 no. 3, 15 p. https://doi.org/10.1103/PhysRevC.73.034905; Mohanty A. K., Shukla P., Gleiser M. Pre-transitional effects in rapidly expanding quark gluon plasmas. Physical Review C, 2002, vol. 65, no. 3, 7 p. https://doi.org/10.1103/PhysRevC.65.034908; Luo X., Xu N. Search for the QCD Critical Point with Fluctuations of Conserved Quantities in Relativistic Heavy-Ion Collisions at RHIC: An Overview. Nuclear Science and Techniques, 2017, vol. 28, no. 8, 42 p. https://doi.org/10.1007/s41365-017-0257-0; Baier R., Schiff D., Zakharov B. G. Energy loss in perturbative QCD. Annual Review of Nuclear and Particle Science, 2000, vol. 50, no. 1, pp. 37–69. https://doi.org/10.1146/annurev.nucl.50.1.37; Zi-Wei Lin, Che Ming Ko, Bao-An Li, Bin Zhang, Subrata Pal. A Multi-Phase Transport Model for Relativistic Heavy Ion Collisions. Physical Review C, 2005, vol. 72, no. 6, 33 p. https://doi.org/10.1103/PhysRevC.72.064901; Heiselberg H. Event-by-event physics in relativistic heavy ion collisions. Physics Reports, 2001, vol. 351, no. 3, pp. 161–194. https://doi.org/10.1016/S0370-1573(00)00140-X; https://vestifm.belnauka.by/jour/article/view/507
-
14Academic Journal
Συγγραφείς: Э.Э. Дустмуродов, Б.Р. Турдиев, Т.Б. Файзиев, Х.Э. Дустмуродова, Н.К. Валиханов
Πηγή: Science and Education, Vol 1, Iss 9, Pp 59-65 (2020)
Θεματικοί όροι: тяжелые кварки, релятивистские столкновения тяжелых ионов, pp-столкновения, кварк-глюонная плазма, nlo pqcd, корреляции, d-мезоны, Science (General), Q1-390, Education (General), L7-991
Relation: http://openscience.uz/index.php/sciedu/article/view/863; https://doaj.org/toc/2181-0842; https://doaj.org/article/27c27b549c24436291bf124ea078ea68
Διαθεσιμότητα: https://doaj.org/article/27c27b549c24436291bf124ea078ea68
-
15Academic Journal
Συγγραφείς: V. I. Kuvshinov, E. G. Bagashov, V. A. Shaparau, A. V. Kuzmin, В. И. Кувшинов, Е. Г. Багашов, В. А. Шапоров, А. В. Кузьмин
Πηγή: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; № 4 (2017); 51-66 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; № 4 (2017); 51-66 ; 2524-2415 ; 1561-2430 ; undefined
Θεματικοί όροι: модель Хэдждорна, color confinement, instability of movement, squeezed and entangled states of quarks and gluons, strong instantons, chaos-assisted instanton tunneling, quark – gluon plasma, Hagedorn model, конфайнмент цвета, неустойчивость движения, сжатые и перепутанные состояния кварков и глюонов, сильные инстантоны, хаос-ассистированное туннелирование инстантонов, кварк-глюонная плазма
Περιγραφή αρχείου: application/pdf
Relation: https://vestifm.belnauka.by/jour/article/view/281/272; References I; I.1. Simonov Y. A. The Confinement. Physics-Uspekhi, 1996, vol. 31, no. 4, pp. 313–336. Doi:10.1070/PU1996v039 n04ABEH000140; I.2. Giacomo A. D., Dosch H., Shevchenko V. I., Simonov Y. A. Field correlators in QCD. Theory and applications. Physics Reports, 2002, vol. 372, no. 4, pp. 319–368. Doi:10.1016/S0370-1573(02)00140-0; I.3. Ambjørn J., Olesen P. On the Formation of a Color Magnetic Quantum Liquid in QCD. Nuclear Physics B, 1980, vol. 170, no. 1, pp. 60–78. Doi:10.1016/0550-3213(80)90476-9; I.4. Kuz’menko D. S., Simonov Y. A., Shevchenko V. I. Vacuum, Confinement and QCD Strings in the Vacuum Correlator Method. Physics-Uspekhi, 2004, vol. 47, no. 1, pp. 1–15. Doi:10.1070/PU2004v047n01ABEH001696; I.5. Kuvshinov V. I., Kuzmin A. V. Gauge Fields and Theory of Deterministic Chaos. Minsk, Belorusskaya nauka Publ., 2006. 268 p. (in Russian).; I.6. Kuvshinov V. I., Buividovich P. V. White Mixed States in QCD Stochastic Vacuum. Nonlinear Phenomena in Complex Systems, 2005, vol. 8 , no. 3, pp. 313–316.; I.7. Kuvshinov V. I., Buividovich P. V. Decoherence of Quark Colour States in QCD Vacuum. Acta Physica Polonica B (Proceedings Supplement), 2008, vol. 1, no. 3, pp. 579–582.; I.8. Haake F. Quantum Signatures of Chaos. Berlin, Springer-Verlag, 1991. 576 p.; I.9. Kuvshinov V. I., Kuzmin A. V. Stability of holonomic quantum computations. Physics Letters A, 2003, vol. 316, no. 6, pp. 391–394. Doi:10.1016/j.physleta.2003.08.011; I.10. Reineker P. Exciton Dynamics in Molecular Crystals and Aggregates. Berlin, Springer-Verlag, 1991. 228 p.; I.11. Kuvshinov V. I., Buividovich P. V. Fidelity and Wilson Loop for Quarks in Confinement Region. Acta Physica Polonica, 2005, vol. 36, no. 2, pp. 195–200.; I.12. Savvidy G. K. Infrared Instability of the Vacuum State of Gauge Theories and Asymptotic Freedom. Physics Letters B, 1977, vol. 71, no. 1, pp. 133–134. Doi:10.1016/0370-2693(77)90759-6; I.13. Kawabe T., Ohta S. Onset of chaos in time-dependent spherically symmetric SU(2) Yang-Mills theory. Physical Review D, 1990, vol. 41, no. 6, pp. 1983–1988. Doi:10.1103/physrevd.41.1983; I.14. Kuvshinov V. I., Kuzmin A. V. Chaos-order transitions in SU(2) Yang-Mills-Higgs systems. Nonlinear Phenomena in Complex Systems, 1999, vol. 2, no. 3, pp. 100–104.; I.15. Kuvshinov V. I., Kuzmin A. V. The Influence of Quantum Field Fluctuations on Chaotic Dynamics of YangMills System. Journal of Nonlinear Mathematical Physics, 2002, vol. 9, no. 4, pp. 382–388. Doi:10.2991/jnmp.2002.9.4.1; References II; II.1. Dokshitzer Yu. L., Khoze V. A., Troyan S. I., Mueller A.H. QCD coherence in high-energy physics. Reviews of Modern Physics, 1988, vol. 60, no. 2, pp. 373–388. Doi:10.1103/revmodphys.60.373; II.2. Dokshitzer Yu. L., Khoze V. A., Mueller A. H., Troyan S. I. Basics of Perturbative QCD. Frontières, France, 1991. 276 p.; II.3. Kuvshinov V. I. Jet and background multiplicity distribution associated with high p⊥ particle in pp-collisions. Acta Physica Polonica B, 1979, vol. 10, no. 1, pp. 19–21.; II.4. Kokoulina E. S., Kuvshinov V. I. Correlations of charged hadrons in quark and gluon jets. Acta Physica Polonica B, 1982, vol. 13, no. 7, pp. 553–558.; II.5. Malaza E. D., Webber B. R. Multiplicity distributions in quark and gluon jets. Nuclear Physics B, 1986, vol. 267, no. 3-4, pp. 702–713. Doi:10.1016/0550-3213(86)90138-0; II.6. Dremin I. M., Hwa R. C. Quark and gluon jets QCD: Factorial and cumulant moments. Physical Review D, 1994, vol. 49, no. 11, pp. 5805–5811. Doi:10.1103/physrevd.49.5805; II.7. Lupia S., Ochs W., Wosiek J. Poissonian limit of soft gluon multiplicity. Nuclear Physics B, 1999, vol. 540, no. 1-2, pp. 405–433. Doi:10.1016/s0550-3213(98)00753-6; II.8. Kilin S. Ya., Kuvshinov V. I., Firago S. A. Squeezed colour states in gluon jet. NASA. Goddard Space Flight Center, The Second International Workshop on Squeezed States and Uncertainty Relations: Conference Paper. USA, 1993, pp. 301–303.; II.9. Kuvshinov V. I., Shaporov V. A. Gluon squeezed states in QCD jet. Acta Physica Polonica B, 1999, vol. 30, no. 1, pp. 59–68.; II.10. Kuvshinov V. I., Shaparau V. A. Squeezed States of Colour Gluons in QCD Isolated Jet. Nonlinear Phenomena in Complex Systems, 2000, vol. 3, no. 1, pp. 28–36.; II.11. Kuvshinov V. I., Shaparau V. A. Fluctuations and Correlations of Soft Gluons at the Nonperturbative Stage of Evolution of QCD Jets. Physics of Atomic Nuclei, 2002, vol. 65, no. 2, pp. 309–314. Doi:10.1134/1.1451947; II.12. Hirota O. Squeezed light. Japan, Tokyo, 1992. 267 p.; II.13. Walls D. F., Milburn G. J. Quantum Optics. N.Y., USA, Springer-Verlag, 1994. Doi:10.1007/978-3-642-79504-6; II.14. Scully M. O., Zubairy M. S. Quantum Optics. Cambridge University Press, 1997. Doi:10.1017/cbo9780511813993; II.15. Kilin S. Ya. Quantum Optics. Minsk, Nauka i Technika Publ., 1990. 176 p. (in Russian).; II.16. Dodonov V. V., Dremin I. M., Polynkin P. G., Man’ko V. I. Strong oscillations of cumulants of photon distribution function in slightly squeezed ststes. Physics Letters A, 1994, vol. 193, no. 3, pp. 209–217. Doi:10.1016/0375-9601(94)90585-1; II.17. Alner G.J., Alpga˚rd K., Anderer P., Ansorge R. E., A˚sman B., Berglund S., Berkelman K., Bertrand D., Booth C.N., Buffam C., Burow L., Carlson P., Chevalley J.-L., Declercq C., DeWolf R. S., Eckart B., Ekspong G., Evangelou I., (et al.). UA5 Collaboration. UA5: A general study of proton-antiproton physics at s = 546 GeV. Physics Reports, 1987, vol. 154, no. 5-6, pp. 247–383. Doi:10.1016/0370-1573(87)90130-x; II.18. Abreu P. (et al.). DELPHI Collaboration. Charged particle multiplicity distributions in Z hadronic decays. Zeitschrift für Physik C, 1991, vol. 50, pp. 185–194.; II.19. Acton P. D. (et al.). OPAL Collaboration. A study of charged particle multiplicities in hadronic decays of the Z0 . Zeitschrift für Physik C, 1992, vol. 53, pp. 539–554.; II.20. Kilin S. Ya. Chapter 1. Quanta and Information. Wolf E. (ed.). Progress in Optics, 2001, vol. 42, pp. 1–91. Doi:10.1016/s0079-6638(01)80015-9; II.21. Bell J. S. On the Einstein Podolsky Rosen paradox. Physics, 1964, vol. 1, no. 3, pp. 195–200.; II.22. Einstein A., Podolsky B., Rosen N. Can Quantum-Mechanical description of physical reality be considered complete? Physical Review, 1935, vol. 47, no. 10, pp. 777–780. Doi:10.1103/physrev.47.777; II.23. Kuvshinov V. I., Shaparau V. A. Non-perturbative Squeezed Gluon States. Proceedings of the 11th Annual Seminar “Nonlinear Phenomena in Complex Systems” (Minsk, May 13–16, 2002), Nonlinear Phenomena in Complex Systems, 2003, vol. 11, pp. 242–254.; II.24. De Wolf E. A., Dremin I. M., Kittel W. Scaling laws for density correlations and fluctuations in multiparticle dynamics. Physics Reports, 1996, vol. 270, no. 1-2, pp. 1–141. Doi:10.1016/0370-1573(95)00069-0; II.25. Kuvshinov V. I., Shaparau V. A. Entangled Collinear Gluon States. Nonlinear Phenomena in Complex Systems, 2003, vol. 6, no. 4, pp. 898–902.; II.26. Dodonov V. V., de Castro A. S. M., Mizrahi S. S. Covariance entanglement measure for two-mode continuous variable systems. Physics Letters A, 2002, vol. 296, no. 2-3, pp. 73–81. Doi:10.1016/s0375-9601(02)00254-2; References III; III.1. Moch S., Ringwald A., Schrempp F. Instantons in deep inelastic scattering: The Simplest process. Nuclear Physics B, 1997, vol. 507, no. 1-2, pp. 134–156. Doi:10.1016/s0550-3213(97)00592-0; III.2. Ringwald A., Schrempp F. Istanton-Induced Cross-Sections in Deep-Inelastic Scattering. Physics Letters B, 1998, vol. 438, no. 1-2, pp. 217–288. Doi:10.1016/s0370-2693(98)00953-8; III.3. Ringwald A., Schrempp F. QCD-Instantons at HERA – An Introduction. Journal of Physics G: Nuclear and Particle Physics, 1999, vol. 25, no. 7, pp. 1297–1306. Doi:10.1088/0954-3899/25/7/305; III.4. Carli T., Gerigk J., Ringwald A., Schrempp F. QCD Instanton-induced Processes in Deep-inelastic Scattering - Search Strategies and Model Dependencies. Doyle A. T., Grindhammer G., Ingelman G., Jung H. (eds.). Monte Carlo Generators for HERA Physics. Proceedings of the Workshop 1998/99. Available at: https://arxiv.org/pdf/hep-ph/9906441.pdf; III.5. Kuvshinov V., Shulyakovsky R. Correlation signs of installions in multigluon production processes. Acta Physica Polonica B, 1997, vol. 28, no. 7, pp. 1629–1634.; III.6. Kuvshinov V., Shulyakovsky R. Gluon correlation moments ratio in the instanton field. Acta Physica Polonica B, 1999, vol. 30, no. 1, pp. 69–71.; III.7. Kuvshinov V. I., Kashkan V. I., Shulyakovsky R. G. Effect of hadronization Proceedin the instanton production. Nonlinear phenomena in complex systems: Fractals, chaos, phase transitions, self-organization: Proceedings of the Ninth Annual Seminar NPCS’2000. Minsk, Inst. of Physics, 2000, pp. 292.; III.8. Kashkan, V. I., Kuvshinov V. I., Shulyakovsky, R. G. QCD-instantons: experimental signatures and Monte-Carlo simulation. Proceedings of CERN-CMS-week (December 6–18, 1999, Geneva, Switzerland). Geneva, 1999.; III.9. Schaefer T., Shuryak E. Instantons in QCD. Reviews of Modern Physics, 1998, vol. 70, no. 2, pp. 323–425. Doi:10.1103/revmodphys.70.323; III.10. Kashkan, V. I., Kuvshinov, V. I., Shulyakovsky R. G. Effect of hadronization on the form of correlation moments for instanton processes and possibility of discovering them experimentally. Physics of Atomic Nuclei, 2002, vol. 65, no. 5, pp. 925–928. Doi:10.1134/1.1481487; III.11. Chekanov S. et al. Search for QCD-instanton induced events in deep inelastic e p scattering at HERA. The European Physical Journal C – Particles and Fields, 2004, vol. 34, no. 3, pp. 255–265. Doi:10.1140/epjc/s2004-01735-3; References IV; IV.1. Lin W. A., Ballentine L. E. Quantum Tunneling Chaos in Driven Anharmonic Oscillator. Physical Review Letters, 1990, vol. 65, no. 24, pp. 2927–2930. Doi:10.1103/physrevlett.65.2927; IV.2. Grossmann F., Dittrich T., Jung P., Hanggi P. Coherent destruction of tunneling. Physical Review Letters, 1991, vol. 67, no. 4, pp. 516–519. Doi:10.1103/physrevlett.67.516; IV.3. Kuvshinov V. I., Kuzmin A. V., Shulyakovsky R. G. Chaos assisted instanton tunneling in one dimensional perturbed periodic potential. Physical Review E, 2003, vol. 67, no. 1, p. 015201. Doi:10.1103/PhysRevE.67.015201; IV.4. Kuvshinov V., Kuzmin A. Gauge Fields and Theory of Determenistic Chaos. Minsk, Belaruskaya Navuka Publ., 2006. 268 p. (in Russian).; IV.5. Kittel C. Introduction to solid state physics, New-York, 1956. 617 p. IV.6. Rajaraman R. Solitons and Instantons. Amsterdam, Elsevier, 1982. 415 p.; IV.7. Berman G. P., Zaslavsky G. M. Quantum mappings and the problem of stochasticity in quantumsystems. Physica A: Statistical Mechanics and its Applications, 1982, vol. 111, no. 1-2, pp. 17–44. Doi:10.1016/0378-4371(82)90081-4; References V; V.1. Hagedorn R. Statistical thermodynamics of strong interactions at high energies. Nuovo Cimento, Suppl., 1965, vol. 3, pp. 147–186.; V.2. Bialas A., Peschanski R. Moments of rapidity distributions as a measure of short-range fluctuations in high-energy collisions. Nuclear Physics B, 1986, vol. 273, no. 3-4, pp. 703–718. Doi:10.1016/0550-3213(86)90386-x; V.3. Burgers G. H. J., Hagedorn R., Kuvshinov V. Multiplicity distributions in high-energy collisions derived from the statistical bootstrap model. Physics Letters B, 1987, vol. 195, no. 3, pp. 507–510. Doi:10.1016/0370-2693(87)90059-1; V.4. Burgers G. H. J., Fuglesang C., Hagedorn R., Kuvshinov V. Multiplicity distributions in hadron interactions derived from the statistical bootstrap model. Zeitschrift für Physik C, 1990, vol. 46, no. 3, pp. 465–480.; V.5. Van Hove L. Hadrons and Quarks in High Energy Collisions. Soviet Physics Uspekhi, 1978, vol. 21, no. 3, рр. 252– 264. Doi:10.1070/PU1978v021n03ABEH005533; V.6. Babichev L.F., Klenitsky D. V., Kuvshinov V. I. Fractal Structure in the First Order QCD Phase Transition. Nonlinear Phenomena in Complex Systems, 1999, vol. 2, no. 3, pp. 82–85.; V.7. Babichev L. F., Bukach A. A., Kuvshinov V. I., Shaporov V. A. Intermittency in Ginzburg-Landau model for patronhadron phase transitions. Physics of Atomic Nuclei, 2004, vol. 67, no. 3, pp. 574–581. Doi:10.1134/1.1690067; https://vestifm.belnauka.by/jour/article/view/281; undefined
Διαθεσιμότητα: https://vestifm.belnauka.by/jour/article/view/281
-
16Academic Journal
Πηγή: Известия высших учебных заведений. Физика. 2023. Т. 66, № 12. С. 151-165
Θεματικοί όροι: кварк-глюонная плазма, приближение жестких температурных петель, гамильтонов формализм, плазмоны, кинетическое уравнение для волн
Περιγραφή αρχείου: application/pdf
Relation: koha:001133792; https://vital.lib.tsu.ru/vital/access/manager/Repository/koha:001133792
-
17
-
18
-
19Academic Journal
Συγγραφείς: G. S. POKATASHKIN, E. S. KOKOULINA, R. G. SHULYAKOVSKY, Г. С. ПОКАТАШКИН, E. C. КОКОУЛИНА, Р. Г. ШУЛЯКОВСКИЙ
Πηγή: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; № 3 (2016); 77-81 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; № 3 (2016); 77-81 ; 2524-2415 ; 1561-2430 ; undefined
Θεματικοί όροι: Монте-Карло, Bose – Einstein condensate, hadronization, quark-gluon plasma, Nuclotron, electromagnetic calorimeter, Monte-Carlo, конденсат Бозе – Эйнштейна, адронизация, кварк-глюонная плазма, Нуклотрон, электромагнитный калориметр
Περιγραφή αρχείου: application/pdf
Relation: https://vestifm.belnauka.by/jour/article/view/197/197; Observation of direct soft photon production in K+p interactions at 70 GeV/c / P. V. Chliapnikov [et al.] // Phys. Lett. B. - 1984.- Vol. 141. - P. 56–59.; Further analysis of a direct soft photon excess in π - p interactions at 280 GeV/c / A. Belogianni [et al.]; WA91 Collaboration // Phys. Lett. B. – 2002. – Vol. 548. – P. 122–128.; Perepelitsa, V. F. Anomalous Soft Photons in Hadronic Decays of Z0 / V. F. Perepelitsa // Nonl. Phenom. Compl. Syst. - 2009. - Vol. 12, N 4. - P. 334-337.4. Evidence for an excess of soft photons in hadronic decays of Z0 / J. Abdallah [et al.]; DELPHI Collaboration // Eur. Phys. J. C. – 2006. – Vol. 47. – P. 273–294.; Shuryak, E. V. The “soft photon puzzles” and pion modification in hadronic matter / E. V. Shuryak // Phys. Lett. B. 231. – 1989. – P. 175–177.; Wong Cheuk-Yin. Anomalous soft photons in hadron production / Wong Cheuk-Yin // Phys. Rev. Lett. C. – 2010. – Vol. 81. – P. 064903.; Lichard, P. The cold quark-gluon plasma as a source of very soft photons in high energy collisions / P. Lichard, L. Van Hove // Phys. Lett. B. – 1990. – Vol. 245. – P. 605–608.; Рядовиков, В. Н. Топологические сечения в рр-взаимодействиях при 50 ГэВ / В. Н. Рядовиков // Ядерная физика. – 2012. – Вып. 75, № 3. – C. 343–348.; Kokoulina, E. Soft photon registration at Nuclotron / E. Kokoulina // Proc. Sci. – 2015. – Vol: SISSA. – P. 1–5.; https://vestifm.belnauka.by/jour/article/view/197; undefined
Διαθεσιμότητα: https://vestifm.belnauka.by/jour/article/view/197
-
20Academic Journal
Συγγραφείς: Абачиев, Сергей
Περιγραφή αρχείου: text/html