Showing 1 - 20 results of 460 for search '"квантово-химические расчеты"', query time: 0.77s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Contributors: This work was supported by the Russian Science Foundation (project no. 23-43-10024) and the Belarusian Republican Foundation for Fundamental Research (project no. Х23РНФ-051). Biological studies were conducted within the framework of the State Assignment of the Federal Budgetary Institution of Science State Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor (no. ГЗ-40/21) and the State Assignment of the Research Institute of Organic Chemistry SB RAS (no. 075-00365-25-00), Работа выполнена при финансовой поддержке Российского научного фонда (проект № 2343-10024) и Белорусского республиканского фонда фундаментальных исследований (проект № Х23РНФ-051). Биологические исследования проведены в рамках Государственного задания ФБУН ГНЦ ВБ «Вектор» Роспотребнадзора (№ ГЗ-40/21) и Государственного задания НИОХ СО РАН (№ 075-00365-25-00)

    Source: Doklady of the National Academy of Sciences of Belarus; Том 69, № 5 (2025); 384-391 ; Доклады Национальной академии наук Беларуси; Том 69, № 5 (2025); 384-391 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2025-69-5

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1272/1274; Синтез формилфенил 1-оксо-1,2,3,6,7,7а-гекасагидро-3а,6-эпоксиизоиндол-7-карбоксилатов и их (E)-1,5-диметил-3-оксо-2-фенил-2,3-дигидро-1H-пиразол-4-илиминометильных производных / Е. А. Дикусар [и др.] // Журнал общей химии. – 2024. – Т. 94, № 7. – С. 786–804. https://doi.org/10.31857/S0044460X24070016; Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ / под общ. ред. Р. У. Хабриева. – 2-е изд., перераб. и доп. – М., 2005. – 832 с.; General atomic and molecular electronic-structure system / M. W. Shmidt, K. K. Baldridge, J. A. Boatz [et al.] // Journal of Computational Chemistry. − 1993. − Vol. 14, N 11. − P. 1347–1363. https://doi.org/10.1002/jcc.540141112; Gaussian Basis Sets for Molecular Calculations / ed. by S. Huzinaga. − Amsterdam, 1984. − Vol. 16. − 426 p.; Putz, M. V. DFT chemical reactivity driven by biological activity: applications for the toxicological fate of chlorinated PAHs / M. V. Putz, A. M. Putz // Applications of density functional theory to biological and bioinorganic chemistry. – Berlin, 2013. – P. 181-231. https://doi.org/10.1007/978-3-642-32750-6_6; Синтез и противовирусная активность 1-арил-3-{3,5-диоксо-4-азатетрацикло-[5.3.2.02,6.08,10]додец-11-ен-4-ил} мочевин / Б. А. Селиванов, А. Я. Тихонов, Е. Ф. Беланов [и др.] // Химико-фармацевтический журнал. – 2017. – Т. 51, № 6. – С. 13–17. https://doi.org/10.30906/0023-1134-2017-51-6-13-17; Smallpox (Variola Virus) Infection: Developing Drugs for Treatment or Prevention: Guidance for Industry / U. S. Department of Health and Human Services. – 2019. – November. – P. 13. URL: https://www.fda.gov/media/132623/download (date of access: 29 January 2025).; Дьюар, M. Теория возмущений молекулярных орбиталей / М. Дьюар. – М., 1977. – 696 с.; Изучение противовоспалительной активности серии азотистых гетероциклических соединений и сравнение полученных данных с результатами квантово-химических расчетов / Е. А. Дикусар, Е. А. Акишина, С. Г. Стёпин [и др.] // Доклады Национальной академии наук Беларуси. – 2024. – Т. 68, № 6. – С. 454–459. https://doi.org/10.29235/15618323-2024-68-6-454-459; Анализ зависимости биологической активности от некоторых расчетных физических параметров молекул бензоциклопентахинолинов и бензакридинов / В. С. Волобуев, Е. А. Дикусар, Е. А. Акишина, С. С. Шиканов // Веснік Магілёўскага дзяржаўнага ўніверсітэта імя А. А. Куляшова. Серыя В. Прыродазнаўчыя навукі: матэматыка, фізіка, біялогія. – 2024. – № 2 (64). – С. 74–83.; Анальгетическая активность серии азотистых гетероциклических соединений: эксперимент и сравнение полученных данных с результатами квантово-химических расчетов ab initio методом DFT / Е. А. Дикусар, Е. А. Акишина, И. А. Колесник [и др.] // Вестник фармации. – 2024. – № 2 (104). – С. 67–74.; Яровая, О. И. Монои сесквитерпены в качестве стартовой платформы для создания противовирусных средств / О. И. Яровая, Н. Ф. Салахутдинов // Успехи химии. – 2021. – Т. 90, № 4. – С. 488–510.; Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings / C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney // Advanced Drug Delivery Reviews. – 1997. – Vol. 23, N 1–3. – P. 3–25. https://doi.org/10.1016/s0169-409x(96)00423-1; New data on vanillin-based isothiazolic insecticide synergists / A. V. Kletskov, V. I. Potkin, E. A. Dikusar, R. M. Zolotar // Natural Product Communications. – 2017. – Vol. 12, N 1. – P. 105–106. https://doi.org/10.1177/1934578x1701200130; https://doklady.belnauka.by/jour/article/view/1272

  4. 4
  5. 5
  6. 6
    Academic Journal

    Contributors: The work was carried out with the financial support of the Science Committee of the Ministry of Science and Higher Education of the Republic of Ka zakhstan (project No. ИРН AP19674667)., Работа выполнена при финансовой поддержке Комитета науки Министерства науки и высшего образования Республики Казахстан (проект № ИРН АР19674667).

    Source: Doklady of the National Academy of Sciences of Belarus; Том 68, № 6 (2024); 454-459 ; Доклады Национальной академии наук Беларуси; Том 68, № 6 (2024); 454-459 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2024-68-6

    File Description: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/1221/1222; Исследование противовоспалительной активности производных хиназолинона-4 и их ациклических форм / Э. Т. Оганесян [и др.] // Биомедицина. – 2010. – № 5. – С. 105–107.; Судакова, О. А. Исследование противовоспалительной активности новых производных гидрохинонсульфокислоты [Электронный ресурс] / О. А. Судакова, М. А. Демидова // Современные проблемы науки и образования. – 2012. – № 2. – Режим доступа: https://science-education.ru/ru/article/view?id=5786. – Дата доступа: 03.06.2024.; Исследование противовоспалительной активности новых производных 1,3-диазинона-4 и их ациклических предшественников, полученных на основе дофамина / И. С. Луговой [и др.] // Здоровье и образование в XXI веке. – 2017. – Т. 19, № 3. – С. 140–143.; Ермоленко, Т. И. Экспериментальное изучение противовоспалительной активности комбинированного препарата уролитолитического действия / Т. И. Ермоленко // Медiчнi перспективи. – 2015. – Т. 20, № 2. – С. 25–29.; Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ / под общ. ред. Р. У. Хабриева. – 2-е изд., перераб. и доп. – М., 2005. – 832 с.; General atomic and molecular electronic structure system / M. W. Shmidt [et al.] // J. Comput. Chem. – 1993. – Vol. 14, N 11. – Р. 1347–1363. https://doi.org/10.1002/jcc.540141112; Gaussian basis sets for molecular calculations / S. Huzinag [et al.]. – Amsterdam, 1984. – Vol. 16. – 426 p. – (Physical Sciences Data. Vol. 16). https://doi.org/10.1016/c2009-0-07152-9; Fukui, K. A Molecular orbital theory of reactivity in aromatic hydrocarbons / K. Fukui, T. Yonezawa, H. Shingu // J. Chem. Phys. – 1952. – Vol. 20, N 4. – P. 722−725. https://doi.org/10.1063/1.1700523; Дьюар, M. Теория возмущений молекулярных орбиталей / М. Дьюар, Р. Догерти. – М., 1977. – 695 с.; Putz, M. V. DFT chemical reactivity driven by biological activity: applications for the toxicological fate of chlorinated PAHs / M. V. Putz, A. M. Putz // Applications of density functional theory to biological and bioinorganic chemistry. – Berlin, 2013. – P. 181-231. https://doi.org/10.1007/978-3-642-32750-6_6; https://doklady.belnauka.by/jour/article/view/1221

  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal

    Contributors: The work was supported by the Russian Science Foundation (project No. 23-73-00123) and performed using the equipment of the Shared Science and Training Center for Collective Use of RTU MIREA (agreement No. 075-15-2021-689 dated 01.09.2021 (unique identification number 2296.61321Х0010). Quantum-chemical calculations were carried out using the computing resources of the Joint Supercomputer Center of the Russian Academy of Sciences., Работа выполнена при финансовой поддержке гранта Российского научного фонда (проект № 23-73-00123), с использованием оборудования Центра коллективного пользования РТУ МИРЭА (соглашение № 075-15-2021-689 от 01.09.2021 г, уникальный идентификационный номер 2296.61321X0010). Квантово-химические расчеты проведены с использованием вычислительных ресурсов Межведомственного суперкомпьютерного центра Российской Академии Наук.

    Source: Fine Chemical Technologies; Vol 18, No 4 (2023); 355-380 ; Тонкие химические технологии; Vol 18, No 4 (2023); 355-380 ; 2686-7575 ; 2410-6593

    File Description: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/1991/1949; https://www.finechem-mirea.ru/jour/article/view/1991/1960; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1991/1071; Butt N.A., Zhang W. Transition metal-catalyzed allylic substitution reactions with unactivated allylic substrates. Chem. Soc. Rev. 2015;44(22):7929–7967. https://doi.org/10.1039/C5CS00144G; Dutta S., Bhattacharya T., Werz D.B., Maiti D. Transition-metal-catalyzed C–H allylation reactions. Chem. 2021;7(3):555–605. https://doi.org/10.1016/j.chempr.2020.10.020; Pàmies O., Margalef J., Cañellas S., James J., Judge E., Guiry P.J., et al. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chem. Rev. 2021;121(8):4373–4505. https://doi.org/10.1021/acs.chemrev.0c00736; Geurts K., Fletcher S.P., van Zijl A.W., Minnaard A.J., Feringa B.L. Copper-catalyzed asymmetric allylic substitution reactions with organozinc and Grignard reagents. Pure Appl. Chem. 2008;80(5):1025–1037. https://doi.org/10.1351/pac200880051025; Cheng Q., Tu H.-F., Zheng C., Qu J.-P., Helmchen G., You S.-L. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. Chem. Rev. 2019;119(3):1855–1969. https://doi.org/10.1021/acs.chemrev.8b00506; Kazmaier U. (Ed.). Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis. 2012th edition. Berlin Heidelberg: Springer; 2011. 628 p.; Ghorai D., Cristòfol À., Kleij A.W. Nickel‐Catalyzed Allylic Substitution Reactions: An Evolving Alternative. Eur. J. Inorg. Chem. 2022;2022(2):e202100820. https://doi.org/10.1002/ejic.202100820; Mizutani K., Yorimitsu H., Oshima K. Cobalt-Catalyzed Allylic Substitution Reaction of Allylic Ethers with Phenyl and Trimethylsilylmethyl Grignard Reagents. Chem. Lett. 2004;33(7):832–833. https://doi.org/10.1246/cl.2004.832; Mohammadkhani L., Heravi M.M. Applications of Transition‐Metal‐Catalyzed Asymmetric Allylic Substitution in Total Synthesis of Natural Products: An Update. Chem. Rec. 2021;21(1):29–68. https://doi.org/10.1002/tcr.202000086; Li C., Liu L., Fu X., Huang J. Norbornene in Organic Synthesis. Synthesis. 2018;50(15):2799–2823. https://doi.org/10.1055/s-0037-1610143; Flid V.R., Gringolts M.L., Shamsiev R.S., Finkelshtein E.S. Norbornene, norbornadiene and their derivatives: promising semi-products for organic synthesis and production of polymeric materials. Russ. Chem. Rev. 2018;87(12):1169–1205. https://doi.org/10.1070/RCR4834; Durakov S.A., Kolobov A.A., Flid V.R. Features of heterogeneous catalytic transformations of strained carbocyclic compounds of the norbornene series. Fine Chem. Technol. 2022;17(4):275–297. https://doi.org/10.32362/2410-6593-2022-17-4-275-297; Catellani M., Chiusoli G.P., Dradi E., Salerno G. Nickel-catalyzed allylation of norbornene. J. Organometallic Chem. 1979;177(2):C29–C31. https://doi.org/10.1016/S0022-328X(00)94094-4; Dzhemilev U.M., Khusnutdinov R.I., Galeev D.K., Nefedov O.M., Tolstikov G.A. Nickel complex-catalyzed codimerization of allyl esters with compounds in the norbornene series. Russ. Chem. Bull. 1987;36(1):122–131. https://doi.org/10.1007/BF00953861; Leont’eva S.V., Manulik O.S., Evstigneeva E.M., Bobkova E.N., Flid V.R. Unconventional catalytic allylation of 5-norbornene-2,3-dicarboxylic anhydrides: 7-oxa and 7-aza analogues. Kinet. Catal. 2006;47(3):384–388. https://doi.org/10.1134/S0023158406030098; Dzhemilev U.M., Khusnutdinov R.I., Galeev D.K., Tolstikov G.A. Cooligomerization of allyl acetate with norbornadiene and its derivatives catalyzed by nickel complexes. Russ. Chem. Bull. 1987;36(1):137–142. https://doi.org/10.1007/BF00953863; Флид В.Р. Аллилирование ноборнадиена-2,5 гомолигандными η3 -аллильными комплексами переходных металлов. Металлорганическая химия. 1991;4(4):864–871. [Flid V.R. Allylation of nobornadiene-2,5 with homoligand η3 -allyl complexes of transition metals. Metallorganicheskaya Khimiya. 1991;4(4):864–871 (in Russ.).]; Tsukada N., Sato T., Inoue Y. Palladium-catalyzed [2+2] cycloaddition of allylic acetates and norbornene. Tetrahedron Lett. 2000;41(21):4181–4184. https://doi.org/10.1016/S0040-4039(00)00600-6; Evstigneeva E.M., Manulik O.S., Flid V.R. Unconventional Allylation of Norbornadiene Catalyzed by Palladium Complexes. Kinet. Catal. 2004;45(2):172–175. https://doi.org/10.1023/B:KICA.0000023787.79493.e7; Evstigneeva E.M., Manulik O.S., Flid V.R., Stolyarov I.P., Kozitsyna N.Yu., Vargaftik M.N., et al. Unusual selective allylation of norbornadiene in the presence of palladium nanoclusters. Russ. Chem. Bull. 2004;53(6):1345–1348. https://doi.org/10.1023/B:RUCB.0000042298.81687.dd; Stolyarov I.P., Gekhman A.E., Moiseev I.I., Kolesnikov A.Yu., Evstigneeva E.M., Flid V.R. Catalytic hydroallylation of norbornadiene with allyl formate. Russ. Chem. Bull. 2007;56(2):320–324. https://doi.org/10.1007/s11172-007-0052-x; Evstigneeva E.M., Flid V.R. Nonconventional allylation of norbornene and norbornadiene derivatives: stoichiometry and catalysis. Russ. Chem. Bull. 2008;57(4):837–844. https://doi.org/10.1007/s11172-008-0121-9; Kostyukovich A.Yu., Burykina J.V., Eremin D.B., Ananikov V.P. Detection and Structural Investigation of Elusive Palladium Hydride Intermediates Formed from Simple Metal Salts. Inorg. Chem. 2021;60(10):7128–7142. https://doi.org/10.1021/acs.inorgchem.1c00173; Ragoussis V., Giannikopoulos A. Palladium catalyzed reductive decarboxylation of allyl α-alkenyl-βketoesters. A new synthesis of (E)-3-alkenones. Tetrahedron Lett. 2006;47(5):683–687. https://doi.org/10.1016/j.tetlet.2005.11.122; Flid V.R., Durakov S.A., Morozova T.A. A possible way to control the course of hydride transfer in allylation of norbornadiene in the presence of palladium phosphine catalysts. Russ. Chem. Bull. 2016;65(11):2639–2643. https://doi.org/10.1007/s11172-016-1629-z; Amatore C., Jutand A. Anionic Pd(0) and Pd(II) Intermediates in Palladium-Catalyzed Heck and Cross-Coupling Reactions. Acc. Chem. Res. 2000;33(5):314–321. https://doi.org/10.1021/ar980063a; Amatore C., Jutand A., Amine M’Barki M. Evidence of the formation of zerovalent palladium from Pd(OAc)2 and triphenylphosphine. Organometallics. 1992;11(9):3009–3013.; Amatore C., Carre E., Jutand A., M’Barki M.A. Rates and Mechanism of the Formation of Zerovalent Palladium Complexes from Mixtures of Pd(OAc)2 and Tertiary Phosphines and Their Reactivity in Oxidative Additions. Organometallics. 1995;14(4):1818–1826. https://doi.org/10.1021/om00004a039; Negishi E., Takahashi T., Akiyoshi K. ‘Bis(triphenylphosphine)palladium:’ its generation, characterization, and reactions. J. Chem. Soc., Chem. Commun. 1986;0(17):1338–1339. https://doi.org/10.1039/C39860001338; Durakov S.A., Melnikov P.V., Martsinkevich E.M., Smirnova A.A., Shamsiev R.S., Flid V.R. Solvent effect in palladium-catalyzed allylation of norbornadiene. Russ. Chem. Bull. 2021;70(1):113–121. https://doi.org/10.1007/s11172-021-3064-z; Agenet N., Amatore C., Gamez S., Gerardin H., Jutand A., Meyer G., et al. Effect of the leaving group and the allylic structure on the kinetics and thermodynamics of the reaction of allylic carboxylates with palladium(0) complexes. Arkivoc. 2005;2002(5):92–101. https://doi.org/10.3998/ark.5550190.0003.511; Yamamoto T., Saito O., Yamamoto A. Oxidative addition of allyl acetate to palladium(0) complexes. J. Am. Chem. Soc. 1981;103(18):5600–5602. https://doi.org/10.1021/ja00408a068; Cristol S.J., Morrill T.C., Sanchez R.A. Bridged Polycyclic Compounds. XLI. The Uncatalyzed Addition of Acetic Acid to Norbornadiene. J. Org. Chem. 1966;31(9):2733–2737. https://doi.org/10.1021/jo01347a003; Durakov S.A., Shamsiev R.S., Flid V.R. The influence of the phosphine ligand nature on palladium catalysts in the norbornadiene allylation with allyl formate. Russ. Chem. Bull. 2021;70(7):1290–1296. https://doi.org/10.1007/s11172-021-3213-4; Durakov S.A., Shamsiev R.S., Flid V.R., Gekhman A.E. Hydride transfer mechanism in the catalytic allylation of norbornadiene with allyl formate. Russ. Chem. Bull. 2018;67(12):2234–2240. https://doi.org/10.1007/s11172-018-2361-7; Durakov S.A., Shamsiev R.S., Flid V.R., Gekhman A.E. Isotope Effect in Catalytic Hydroallylation of Norbornadiene by Allyl Formate. Kinet. Catal. 2019;60(3):245–249. https://doi.org/10.1134/S0023158419030042; Shamsiev R.S., Flid V.R. Interaction of norbornadiene with allyl acetate in the presence of Ni0 complexes: a DFT modeling. Russ. Chem. Bull. 2020;69(4):653–659. https://doi.org/10.1007/s11172-020-2813-8; Flid V.R., Durakov S.A. New heterogenized catalytic systems in norbornadiene allylation. Russ. Chem. Bull. 2018;67(3):469–472. https://doi.org/10.1007/s11172-018-2094-7; Laikov D.N. Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets. Chem. Phys. Lett. 1997;281(1):151–156. https://doi.org/10.1016/S0009-2614(97)01206-2; Laikov D.N., Ustynyuk Yu.A. PRIRODA-04: a quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing. Russ. Chem. Bull. 2005;54(3):820–826. https://doi.org/10.1007/s11172-005-0329-x; Riley K.E., Hobza P. Noncovalent interactions in biochemistry. WIREs Computational Molecular Science. 2011;1(1):3–17. https://doi.org/10.1002/wcms.8; Neese F. Software update: the ORCA program system, version 4.0. WIREs Computational Molecular Science. 2018;8(1):e1327. https://doi.org/10.1002/wcms.1327; Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77(18):3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865; Laikov D.N. A new class of atomic basis functions for accurate electronic structure calculations of molecules. Chem. Phys. Lett. 2005;416(1):116–120. https://doi.org/10.1016/j.cplett.2005.09.046; Najibi A., Goerigk L. The Nonlocal Kernel in van der Waals Density Functionals as an Additive Correction: An Extensive Analysis with Special Emphasis on the B97M-V and ωB97M-V Approaches. J. Chem. Theory Comput. 2018;14(11):5725–5738. https://doi.org/10.1021/acs.jctc.8b00842; Pantazis D.A., Chen X.-Y., Landis C.R., Neese F. All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. J. Chem. Theory Comput. 2008;4(6):908–919. https://doi.org/10.1021/ct800047t; Rolfes J.D., Neese F., Pantazis D.A. All-electron scalar relativistic basis sets for the elements Rb–Xe. J. Computational Chem. 2020;41(20):1842–1849. https://doi.org/10.1002/jcc.26355; Marenich A.V., Cramer C.J., Truhlar D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B. 2009;113(18):6378–6396. https://doi.org/10.1021/jp810292n; Egiazaryan K.Т., Shamsiev R.S., Flid V.R. Quantum chemical investigation of the oxidative addition reaction of allyl carboxylates to Ni(0) and Pd(0) complexes. Fine Chem. Tech. 2019;14(6):56–65. https://doi.org/10.32362/2410-6593-2019-14-6-56-65; Shamsiev R.S., Egiazaryan K.T., Flid V.R. Modeling of the mechanism of reductive allylation of norbornadiene in the presence of Pd0 complexes. Russ. Chem. Bull. 2021;70(2):316–322. https://doi.org/10.1007/s11172-021-3087-5; Simmons E.M., Hartwig J.F. On the interpretation of deuterium kinetic isotope effects in C–H bond functionalizations by transition-metal complexes. Angew. Chem. Int. Ed. 2012;51(13):3066–3072. https://doi.org/10.1002/anie.201107334; Shamsiev R.S., Egiazaryan K.T., Flid V.R. Allylation of norbornadiene in the presence of Pd0 phosphine complexes: a DFT modeling. Russ. Chem. Bull. 2022;71(5):905–914. https://doi.org/10.1007/s11172-022-3489-z; Egiazaryan K.T., Shamsiev R.S., Flid V.R. Enantioselectivity of norbornadiene allylation in the presence of Pd phosphine complexes: a quantum chemical prediction. Russ. Chem. Bull. 2023;72(4):838–846. https://doi.org/10.1007/s11172-023-3847-2

  11. 11
    Academic Journal

    Contributors: The study was carried out using the resources of the Center for Shared Use of Scientific Equipment of the Ivanovo State University of Chemistry and Technology with the support of the Ministry of Science and Higher Education of the Russian Federation, grant No. 075-15-2021-671., Исследование проведено с использованием ресурсов Центра коллективного пользования научным оборудованием Ивановского государственного химикотехнологического университета при поддержке Министерства науки и высшего образования Российской Федерации, соглашение № 075-15-2021-671.

    Source: Fine Chemical Technologies; Vol 18, No 4 (2023); 315-327 ; Тонкие химические технологии; Vol 18, No 4 (2023); 315-327 ; 2686-7575 ; 2410-6593

    File Description: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/1988/1943; https://www.finechem-mirea.ru/jour/article/view/1988/1957; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1988/1068; Gérardy R., Monbaliu J.C. Preparation, Reactivity, and Synthetic Utility of Simple Benzotriazole Derivatives. In: Monbaliu J.C. (Ed.). The Chemistry of Benzotriazole Derivatives. Topics in Heterocyclic Chemistry. Cham.: Springer; 2016. V. 43. P. 1–66. https://doi.org/10.1007/7081_2015_179; Preschel M., Roeder M., Schlifke-Poschalko A., Zhang K. Novel process: Pat. US2012/0302760A1 USA. Publ. 29.11.2012.; Wood M.G., Pastor S.D., Lau J., DiFazio M., Suhadolnik J. Benzotriazoles containing phenyl groups substituted by heteroatoms and compositions stabilized therewith: Pat. US6800676 B2 USA. Publ. 04.04.2013.; Bossert J., Daniel C. Trans–cis photoisomerization of the styrylpyridine ligand in [Re(CO)3 (2,2′-bipyridine) (t-4-styrylpyridine)]+: role of the metal-to-ligand chargetransfer excited states. Chem. Eur. J. 2006.12(18):4835–4843. https://doi.org/10.1002/chem.200501082; Rachwal S., Wang P., Rachwal B., Zhang H., Yamamoto M. Highly-fluorescent and photo-stable chromophores for enhanced solar harvesting efficiency: Pat. WO2013/049062 A2 int. Publ. 04.04.2013.; Yokoyama N., Hayashi S., Kabasawa N., Taniguchi Y., Ichikawa M., Mochiduki S. Compound Having Benzotriazole Ring Structure and Organic Electrolumenescent Element: Pat. EP2409974 A1 Europe. Publ. 25.01.2012.; Ciorba S., Bartocci G., Galazzo G., Mazzacato U., Spaletti A. Photoisomerization mechanism of the cis-isomers of 1,2-distyrylbenzene and two hetero-analogues. J. Photochem. Photobiol. A: Chemistry. 2008;195(3):301–306. https://doi.org/10.1016/j.jphotochem.2007.10.016; Bajaj K., Sakhuja R. Benzotriazole: much more than just synthetic heterocyclic chemistry. In: Monbaliu J.C. (Ed.). The Chemistry of Benzotriazole Derivatives. Topics in Heterocyclic Chemistry. Cham.: Springer; 2016. V. 43. P. 235–284. https://doi.org/10.1007/7081_2015_198; Liu G.-B., Zhao H.-Y., Yang H.-J., Gao X., Li M.-K., Thiemann T. Preparation of 2-aryl-2H-benzotriazoles by zincmediated reductive cyclization o-nitrophenylazophenols in aqueous media without the use of organic solvents. Adv. Synt. Catalysis. 2007;349(10):1637–1640. https://doi.org/10.1002/adsc.200700018; Baik W., Yoo C.H., Koo S., Kim H., Hwang Y.H., Kim B.H., Lee S.W. Photostimulated reductive cyclization of o-nitrophenylazo dyes using sodium hydroxide in isopropyl alcohol, a new synthesis of 2-aryl-2H-benzotriazoles. Heterocycles.1999;51(8):1779–1783. https://doi.org/10.3987/COM-99-8597; Zollinger H. Diazo Chemistry. I. Aromatic and Heteroaromatic Compounds. Weinheim; New York; Basel; Cambridge; Tokyo: VCH; 1994. 453 p.; Koutsimpelis A.G., Screttas C.G., IgglessiMarkopoulou O. Synthesis of new ultraviolet light absorbers based on 2-aryl-2H-benzotriazoles. Heterocycles. 2005;65(6):1393–1401. https://doi.org/10.3987/COM-04-10304; Frisch M.J., Trucks G.W., Schlegelv H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A. Jr., Vreven T., Kudin T.K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N.G., Petersson A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Naka iH., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M., Gill P. M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A. Gaussian 03. Pittsburgh PA: Gaussian Inc.; 2003.; Akiyama T. Hydrogen-bond catalysis or brønstedacid catalysis? General considerations. In: Pihko P.M. (Ed.). Hydrogen Bonding in Organic Synthesis. Weinheim: VCH; 2009. P. 5–14. https://doi.org/10.1002/9783527627844.ch2; Zollinger H. Color Chemistry: Synthesis, Properties and Application of Organic Dyes and Pigments. 2nd rev. ed. Weinheim; New York: VCH.; 1991. 496 p.; Kim H.-D., Ishida H. A study on hydrogen-bonded network structure of polybenzoxazines. J. Phys. Chem. A. 2002;106(14):3271–3280. https://doi.org/10.1021/jp010606p; Özen A. S., Doruker P., Viyente V. Effect of cooperative hydrogen bonding in azo−hydrazone tautomerism of azo dyes. J. Phys. Chem. A. 2007;111(51):13506–13514. https://doi.org/10.1021/jp0755645; Lauwiner M., Roth R., Rys P. Reduction of aromatic nitro compounds with hydrazine hydrate in the presence of an iron oxide/hydroxide catalyst. III. Selective reduction of nitro groups in aromatic azo compounds. Appl. Catal. A: Gen. 1999;177(1):9–14. https://doi.org/10.1016/S0926-860X(98)00247-6; Hoang A., Nemtseva M.P., Lefedova O.V. Effect of individual solvents on the rates of hydrogenization for substituted nitro-, azo-, and nitroazobenzenes on skeletal nickel. Rus. J. Phys. Chem. A. 2017;91(11):2279–2282. https://doi.org/10.1134/S0036024417110085; Klopman G. Chemical Activity and Reaction Paths. New York: John Wiley & Sons Inc.; 1974. 369 p.; Zuenko M.A., Nemtseva M.P., Lefedova O.V., Nikolaev V.N. Liquid-phase hydrogenation of 2-nitro2′-hydroxy-5′-methylazobenzene on raney nickel at low temperatures. Rus. J. Phys. Chem. A. 2004;78(6):877–881.; Lefedova O. V., Hoang A., Filippov D.V. Hydrogen role in selectivity of substituted nitro-azobenenes hydrogenization on skeletal nickel in 2-propanol aqueous solutions. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. = Russ. J. Chem. & Chem. Tech. 2020;63(6):65–71. https://doi.org/10.6060/ivkkt.20206306.6057

  12. 12
    Conference

    Contributors: Самборская, Марина Анатольевна

    File Description: application/pdf

    Relation: Химия и химическая технология в XXI веке : материалы XXIII Международной научно-практической конференции студентов и молодых ученых имени выдающихся химиков Л. П. Кулёва и Н. М. Кижнера, Томск, 16-19 мая 2022 г. Т. 2; http://earchive.tpu.ru/handle/11683/72511

  13. 13
  14. 14
  15. 15
  16. 16
    Report

    Contributors: Самборская, Марина Анатольевна

    File Description: application/pdf

    Relation: Айдаров С. Б. Разработка технологии обессеривания дизельных фракций акватермолизом : магистерская диссертация / С. Б. Айдаров; Национальный исследовательский Томский политехнический университет (ТПУ), Инженерная школа природных ресурсов (ИШПР), Отделение химической инженерии (ОХИ); науч. рук. М. А. Самборская. — Томск, 2023.; http://earchive.tpu.ru/handle/11683/75104

  17. 17
  18. 18
    Academic Journal

    Contributors: Russian Science Foundation № 22-13-00170, Работа выполнена при поддержке гранта РНФ № 22-13-00170.

    Source: Computational Mathematics and Software Engineering; Том 11, № 3 (2022); 59-68 ; Вычислительная математика и информатика; Том 11, № 3 (2022); 59-68 ; 2410-7034 ; 2305-9052 ; 10.14529/cmse2203

    File Description: application/pdf

  19. 19
  20. 20