-
1Academic Journal
Authors: L. V. Topchieva, V. A. Korneva, I. E. Malysheva, Л. В. Топчиева, В. А. Корнева, И. Е. Малышева
Contributors: Исследования выполнялись в рамках выполнения НИР (№ 0218-2019-0077) ИБ КарНЦ РАН на научном оборудовании (НО) Центра коллективного пользования Федерального исследовательского центра «Карельский научный центр Российской академии наук»
Source: Medical Immunology (Russia); Том 24, № 2 (2022); 273-282 ; Медицинская иммунология; Том 24, № 2 (2022); 273-282 ; 2313-741X ; 1563-0625
Subject Terms: кардиоселективные блокаторы β-адренорецепторов, adaptive immunity, T regulatory lymphocytes, T effector lymphocytes, gene expression, β-adrenergic receptor blockers, cardioselective, адаптивный иммунитет, Т-регуляторные лимфоциты, Т-эффекторные лимфоциты, экспрессия генов
File Description: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2385/1522; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2385/8693; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2385/8694; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2385/8695; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2385/8696; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2385/8697; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2385/8698; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2385/8699; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2385/8700; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2385/8701; Трушина Э.Н., Мустафина О.К., Хорхе С.С., Богданов А.Р., Сенцова Т.Б., Залетова Е.С., Кузнецов В.Д. Клеточный иммунитет у больных с артериальной гипертонией и ожирением // Вопросы питания, 2012. № 6. С. 19-26.; Фрейдлин И.С. Регуляторные Т-клетки: происхождение и функции // Медицинская иммунология, 2005. Т. 7, № 4. С. 347-354. doi:10.15789/1563-0625-2005-4-347-354.; Agabiti-Rosei C., Trapletti V., Piantoni S., Airò P., Tincani A., de Ciuceis C., Rossini C., Mittempergher F., Titi A., Portolani N., Caletti S., Coschignano M.A., Porteri E., Tiberio G.A.M., Pileri P., Solaini L., Kumar R., Ministrini S., Agabiti Rosei E., Rizzoni D. Decreased circulating T regulatory lymphocytes in obese patients undergoing bariatric surgery. PLoS One, 2018, Vol. 13, no. 5, 0197178. doi:10.1371/journal.pone.0197178.; Ba D., Takeichi N., Kodama T., Kobayashi H. Restoration of T cell depression and suppression of blood pressure in spontaneously hypertensive rats (SHR) by thymus grafts or thymus extracts. J. Immunol., 1982, Vol. 128, no. 3, pp. 1211-1216.; Barhoumi T., Kasal D.A., Li M.W., Shbat L., Laurant P., Neves M.F., Paradis P., Schiffrin E.L. T regulatory lymphocytes prevent angiotensin II-induced hypertension and vascular injury. Hypertension, 2011, Vol. 57, no. 3, pp. 469-476.; Belanger K.M., Crislip G.R., Gillis E.E., Abdelbary M., Musall J.B., Mohamed R., Baban B., Elmarakby A., Brands M.W., Sullivan J.C. Greater T regulatory cells in females attenuate DOCA-salt induced increases in blood pressure versus males. Hypertension, 2020, Vol. 75, no. 6, pp. 1615-1623.; Caillon A., Paradis P., Schiffrin E.L. Role of immune cells in hypertension. Br. J. Pharmacol., 2019, Vol. 176, no. 12, pp. 1818-1828.; Chiasson V.L., Talreja D., Young K.J., Chatterjee P., Banes-Berceli A.K., Mitchell B.M. FK506 binding protein 12 deficiency in endothelial and hematopoietic cells decreases regulatory T cells and causes hypertension. Hypertension, 2011, Vol. 57, no. 6, pp. 1167-1175.; Crislip G.R., Sullivan J.C. T-cell involvement in sex differences in blood pressure control. Clin. Sci. (Lond.), 2016, Vol. 130, no. 10, pp. 773-783.; Crowley S.D., Song Y.S., Lin E.E., Griffiths R., Kim H.S., Ruiz P. Lymphocyte responses exacerbate angiotensin II-dependent hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, Vol. 298, no. 4, pp. R1089-R1097.; de Ciuceis C., Rossini C., Airò P., Scarsi M., Tincani A., Tiberio G.A.M., Piantoni S., Porteri E., Solaini L., Duse S., Semeraro F., Petroboni B., Mori L., Castellano M., Gavazzi A., Agabiti Rosei C., Agabiti Rosei E., Rizzoni D. Relationship between different subpopulations of circulating CD4+ T-lymphocytes and microvascular structural alterations in humans. Am. J. Hypertens., 2017, Vol. 30, no. 1, pp. 51-60.; Gackowska L., Michałkiewicz J., Helmin-Basa A., Kłosowski M., Niemirska A., Obrycki Ł., Kubiszewska I., Wierzbicka A., Litwin M. Regulatory T-cell subset distribution in children with primary hypertension is associated with hypertension severity and hypertensive target organ damage. J. Hypertens., 2020, Vol. 38, no. 4, pp. 692-700.; Gackowska L., Michałkiewicz J., Niemirska A., Helmin-Basa A., Kłosowski M., Kubiszewska I., Obrycki Ł., Szalecki M., Wierzbicka A., Kułaga Z., Wiese M., Litwin M. Loss of CD31 receptor in CD4+ and CD8+ T-cell subsets in children with primary hypertension is associated with hypertension severity and hypertensive target organ damage J. Hypertens., 2018, Vol. 36, no. 11, pp. 2148-2156.; Harrison D.G., Guzik T.J., Lob H.E., Madhur M.S., Marvar P.J., Thabet S.R., Vinh A., Weyand C.M. Inflammation, Immunity and Hypertension. Hypertension, 2011, Vol. 57, no. 2, pp. 132-140.; Huang H., Lu Z., Jiang C., Liu J., Wang Y., Xu Z. Imbalance between Th17 and regulatory T-cells in sarcoidosis. Int. J. Mol. Sci., 2013, Vol. 14, no. 11, pp. 21463-21473.; Itani H.A., McMaster W.G. Jr., Saleh M.A., Nazarewicz R.R., Mikolajczyk T.P., Kaszuba A.M., Konior A., Prejbisz A., Januszewicz A., Norlander A.E., Chen W., Bonami R.H., Marshall A.F., Poffenberger G., Weyand C.M., Madhur M.S., Moore D.J., Harrison D.G., Guzik T.J. Activation of human T cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension, 2016, Vol. 68, no. 1, pp. 123-132.; Ji Q., Cheng G., Ma N., Huang Y., Lin Y., Zhou Q., Que B., Dong J., Zhou Y., Nie S. Circulating Th1, Th2, and Th17 levels in hypertensive patients. Dis. Markers, 2017, Vol. 2017, 7146290. doi:10.1155/2017/7146290.; Katsuki M., Hirooka Y., Kishi T., Sunagawa K. Decreased proportion of Foxp3+ CD4+ regulatory T cells contributes to the development of hypertension in genetically hypertensive rats. J. Hypertens., 2015, Vol. 33, no. 4, pp. 773-783.; Khan M.M., Sansoni P., Silverman E.D., Engleman E.G., Melmon K.L. Beta-adrenergic receptors on human suppressor, helper, and cytolytic lymphocytes. Biochem. Pharmacol., 1986, Vol. 35, no. 7, pp. 1137-1142.; Kim C.H. FOXP3 and its role in the immune system. Adv. Exp. Med. Biol., 2009, Vol. 665, pp. 17-29.; Kim J.Y., Eunjo L., Koo S., Kim C.-W., Kim I. Transfer of Th17 from adult spontaneous hypertensive rats accelerates development of hypertension in juvenile spontaneous hypertensive rats. Biomed Res. Int., 2021, 6633825. doi:10.1155/2021/6633825.; Kohm A.P., Sanders V.M. Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4+ T and B lymphocyte function in vitro and in vivo. Pharmacol. Rev., 2001, Vol. 53, no. 4, pp. 487-525.; Koushki K., Shahbaz S. K., Mashayekhi K., MahvashSadeghi M., Zayeri Z.D., Taba M.Y., Banach M., AlRasadi K., Johnston T.P., Amirhossein Sahebkar A. Anti-inflammatory action of statins in cardiovascular disease: the role of inflammasome and toll-like receptor pathways. Clin. Rev. Allergy Immun., 2020, Vol. 60, no. 2, pp. 175-199.; Lee E., Kim N., Kang J., Yoon S., Lee H.A., Jung H., Kim S.H., Kim I. Activated pathogenic Th17 lymphocytes induce hypertension following high-fructose intake in Dahl salt-sensitive but not Dahl salt-resistant rats. Dis. Model. Mech., 2020, Vol. 13, no. 5, dmm044107. doi:10.1242/dmm.044107.; Li Q., Wang Y., Chen K., Zhou Q., Wei W., Wang Y. The role of oxidized low-density lipoprotein in breaking peripheral Th17/Treg balance in patients with acute coronare syndrome. Biochem. Bioph. Res. Comm., 2010, Vol. 394, no. 3, pp. 836-842.; Liu Z., Zhao Y., Wei F., Ye L., Lu F., Zhang H., Diao Y., Song H., Qi Z. Treatment with telmisartan/ rosuvastatin combination has a beneficial synergistic effect on ameliorating Th17/Treg functional imbalance in hypertensive patients with carotid atherosclerosis. Atherosclerosis, 2014, Vol. 233, no. 291, e299. doi:10.1016/j.atherosclerosis.2013.12.004.; Marino F., Cosentino M. Adrenergic modulation of immune cells: an update. Amino Acids, 2013, Vol. 45, no. 1, pp. 55-71.; Mikolajczyk T.P., Guzik T.J. Adaptive immunity in hypertension. Curr. Hypertens. Rep., 2019, Vol. 21, no. 9, 68. doi:10.1007/s11906-019-0971-6.; Ni X., Wang A., Zhang L., Shan L.-Y., Zhang H.-C., Li L., Si J.-Q., Luo J., Li X.-Z., Ma K.-T. Up-regulation of gap junction in peripheral blood T lymphocytes contributes to the inflammatory response in essential hypertension. PLoS One, 2017, Vol. 12, no. 9, e0184773. doi:10.1371/journal.pone.0184773.; Pinto J.P., Dias V., Zoller H., Porto G., Carmo H., Carvalho F., de Sousa M. Hepcidin messenger RNA expression in human lymphocytes. Immunology, 2010, Vol. 130, no. 2, pp. 217-230.; Rai A., Narisawa M., Li P., Pia L., li Y., Yang G., Cheng X.W. Adaptive immune disorders in hypertension and heart failure: focusing on T-cell subset activation and clinical implications. J. Hypertens., 2020, Vol. 38, no. 10, pp. 1878-1889.; Renaudin C., Bataillard A., Sassard J. Partial transfer of genetic hypertension by lymphoid cells in Lyon rats. J. Hypertens., 1995, Vol. 13, no. 12, Pt 2, pp. 1589-1592.; Saxena A., Dobaczewski M., Rai V., Haque Z., Chen W., Li N., Frangogiannis N.G. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. Am. J. Physiol. Heart Circ. Physiol., 2014, Vol. 307, no. 8, pp. H1233-H1242.; Sereti E., Stamatelopoulos K.S., Zakopoulos N.A., Evangelopoulou A., Mavragani C.P., Evangelopoulos M.E. Hypertension: an immune related disorder? Clin. Immunol., 2019, Vol. 212, 108247. doi:10.1016/j.clim.2019.108247.; Tesmer L.A., Lundy S.K., Sarkar S., Fox D.A. Th17 cells in human disease. Immunol. Rev., 2008, Vol. 223, pp. 87-113.; Tipton A.J., Baban B., Sullivan J.C. Female spontaneously hypertensive rats have greater renal antiinflammatory T lymphocyte infiltration than males. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2012, Vol. 303, no. 4, pp. 359-367.; Trott D.W., Thabet S.R., Kirabo A., Saleh M.A., Itani H., Norlander A.E., Wu J., Goldstein A., Arendshorst W.J., Madhur M.S., Chen W., Li C.I., Shyr Y., Harrison D.G. Oligoclonal CD8+ T cells play a critical role in the development of hypertension. Hypertension, 2014, Vol. 64, no. 5, pp. 1108-1115.; Wenzel U., Turner J.E., Krebs C., Kurts C., Harrison D.G., Ehmke H. Immune mechanisms in arterial hypertension. J. Am. Nephrol., 2016, Vol. 27, no. 3, pp. 677-686.; Williams B., Mancia G., Spiering W., Agabiti Rosei T., Azizi M., Burnier M., Clement D.L., Coca A., de Simone G., Dominiczak A., Kahan T., Mahfoud F., Redon J., Ruilope L., Zanchetti A., Kerins M., Kjeldsen S.E., Kreutz R., Laurent S., Lip G.Y.H., McManus R., Narkiewicz K., Ruschitzka F., Schmieder R.E., Shlyakhto E., Tsioufis C.,Aboyans V., Desormais I. Practice Guidelines for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. Blood Press., 2018, Vol. 27, no. 6, pp. 314-340.; Xu L., Chen G., Liang Y., Zhou C., Zhang F., Fan T., Chen X., Zhou H., Yuan W. T helper 17 cell responses induce cardiac hypertrophy and remodeling in essential hypertension. Pol. Arch. Intern. Med., 2021, Vol. 131, no. 3, pp. 257-265.; Youn J.-C., Yu H.T., Lim B.J., Koh M.J., Lee J., Chang D.-Y., Choi Y.S., Lee S.-H., Kang S.-M., Jang Y., Yoo O.J., Shin E.-C., Park S. Immunosenescent CD8+ T Cells and C-X-C chemokine receptor Type 3 chemokines are increased in human hypertension. Hypertension, 2013, Vol. 62, no. 1, pp. 126-133.; Zhu R., Chen L., Xiong Y., Wang N., Xie X., Hong Y., Meng Z. An upregulation of CD8+CD25+Foxp3+ cells with suppressive function through interleukin 2 pathway in pulmonary arterial hypertension. Exp. Cell Res., 2017, Vol. 358, no. 2, pp. 182-187.; https://www.mimmun.ru/mimmun/article/view/2385