Εμφανίζονται 1 - 20 Αποτελέσματα από 487 για την αναζήτηση '"канцерогенез"', χρόνος αναζήτησης: 1,14δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Πηγή: Ukrainian Journal of Radiology and Oncology; Vol. 32 No. 4 (2024): Ukrainian Journal of Radiology and Oncology; 459-477
    Український радіологічний та онкологічний журнал; Том 32 № 4 (2024): Український радіологічний та онкологічний журнал; 459-477

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: https://ukroj.com/index.php/journal/article/view/269

  3. 3
  4. 4
    Academic Journal

    Συνεισφορές: The work was carried out with the financial support of the Russian Science Foundation (project No. 23-25-00541)., Работа выполнена при финансовой поддержке Российского научного фонда (проект № 23-25-00541)

    Πηγή: Advances in Molecular Oncology; Vol 12, No 3 (2025); 116-131 ; Успехи молекулярной онкологии; Vol 12, No 3 (2025); 116-131 ; 2413-3787 ; 2313-805X

    Περιγραφή αρχείου: application/pdf

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
    Academic Journal
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Συγγραφείς: R. N. Mustafin, Р. Н. Мустафин

    Πηγή: Siberian journal of oncology; Том 23, № 5 (2024); 146-156 ; Сибирский онкологический журнал; Том 23, № 5 (2024); 146-156 ; 2312-3168 ; 1814-4861

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/3282/1280; Zhang C.Z., Spector A., Cornils H., Francis J.M., Jackson E.K., Liu S., Meyerson M. Chromothripsis from DNA damage in micronuclei. Nature. 2015; 522(7555): 179–84. doi:10.1038/nature14493.; Stephens P.J., Greenman C.D., Fu B., Yang F., Bignell G.R., Mudie L.J., Pleasance E.D., Lau K.W., Beare D., Stebbings L.A., McLaren S., Lin M.L., McBride D.J., Varela I., Nik-Zainal S., Leroy C., Jia M., Menzies A., Butler A.P., Teague J.W., Quail M.A., Burton J., Swerdlow H., Carter N.P., Morsberger L.A., Iacobuzio-Donahue C., Follows G.A., Green A.R., Flanagan A.M., Stratton M.R., Futreal P.A., Campbell P.J. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011; 144(1): 27–40. doi:10.1016/j.cell.2010.11.055.; Marcozzi A., Pellestor F., Kloosterman W.P. The Genomic Characteristics and Origin of Chromothripsis. Methods Mol Biol. 2018; 1769: 3–19. doi:10.1007/978-1-4939-7780-2_1.; Nazaryan-Petersen L., Bjerregaard V.A., Nielsen F.C., Tommerup N., Tümer Z. Chromothripsis and DNA Repair Disorders. J Clin Med. 2020; 9(3). doi:10.3390/jcm9030613.; Holland A.J., Cleveland D.W. Chromanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat Med. 2012; 18(11): 1630–8. doi:10.1038/nm.2988.; Hastings P.J., Ira G., Lupski J.R. A microhomology-mediated breakinduced replication model for the origin of human copy number variation. PLoS Genet. 2009; 5(1). doi:10.1371/journal.pgen.1000327.; Ly P., Cleveland D.W. Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis. Trends Cell Biol. 2017; 27(12): 917–30. doi:10.1016/j.tcb.2017.08.005.; Slamova Z., Nazaryan-Petersen L., Mehrjouy M.M., Drabova J., Hancarova M., Marikova T., Novotna D., Vlckova M., Vlckova Z., Bak M., Zemanova Z., Tommerup N., Sedlacek Z. Very short DNA segment can be detected and handled by the repair machinery during germline chromothriptic chromosome reassembly. Hum Mutat. 2018; 39(5): 709–16. doi:10.1002/humu.23408.; Nazaryan L., Stefanou E.G., Hansen C., Kosyakova N., Bak M., Sharkey F.H., Mantziou T., Papanastasiou A.D., Velissariou V., Liehr T., Syrrou M., Tommerup N. The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2. Eur J Hum Genet. 2014; 22(3): 338–43. doi:10.1038/ejhg.2013.147.; Nazaryan-Petersen L., Bertelsen B., Bak M., Jønson L., Tommerup N., Hancks D.C., Tümer Z. Germline Chromothripsis Driven by L1-Mediated Retrotransposition and Alu/Alu Homologous Recombination. Hum Mutat. 2016; 37(4): 385–95. doi:10.1002/humu.22953.; Kloosterman W.P., Hoogstraat M., Paling O., Tavakoli-Yaraki M., Renkens I., Vermaat J.S., van Roosmalen M.J., van Lieshout S., Nijman I.J., Roessingh W., van ‘t Slot R., van de Belt J., Guryev V., Koudijs M., Voest E., Cuppen E. Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer. Genome Biol. 2011; 12(10). doi:10.1186/gb-2011-12-10-r103.; Cortés-Ciriano I., Lee J.J., Xi R., Jain D., Jung Y.L., Yang L., Gordenin D., Klimczak L.J., Zhang C.Z., Pellman D.S.; PCAWG Structural Variation Working Group; Park PJ; PCAWG Consortium. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat Genet. 2020; 52(3): 331–41. doi:10.1038/s41588-019-0576-7. Erratum in: Nat Genet. 2023; 55(5): 893. doi:10.1038/s41588- 020-0634-1. Erratum in: Nat Genet. 2023; 55(6): 1076. doi:10.1038/s41588-023-01315-z.; Shen M.M. Chromoplexy: a new category of complex rearrangements in the cancer genome. Cancer Cell. 2013; 23(5): 567–9. doi:10.1016/j.ccr.2013.04.025.; Baca S.C., Prandi D., Lawrence M.S., Mosquera J.M., Romanel A., Drier Y., Park K., Kitabayashi N., MacDonald T.Y., Ghandi M., van Allen E., Kryukov G.V., Sboner A., Theurillat J.P., Soong T.D., Nickerson E., Auclair D., Tewari A., Beltran H., Onofrio R.C., Boysen G., Guiducci C., Barbieri C.E., Cibulskis K., Sivachenko A., Carter S.L., Saksena G., Voet D., Ramos A.H., Winckler W., Cipicchio M., Ardlie K., Kantoff P.W., Ber ger M.F., Gabriel S.B., Golub T.R., Meyerson M., Lander E.S., Elemento O., Getz G., Demichelis F., Rubin M.A., Garraway L.A. Punctuated evolution of prostate cancer genomes. Cell. 2013; 153(3): 666–77. doi:10.1016/j. cell.2013.03.021.; Rausch T., Jones D.T., Zapatka M., Stütz A.M., Zichner T., Weischenfeldt J., Jäger N., Remke M., Shih D., Northcott P.A., Pfaff E., Tica J., Wang Q., Massimi L., Witt H., Bender S., Pleier S., Cin H., Hawkins C., Beck C., von Deimling A., Hans V., Brors B., Eils R., Scheurlen W., Blake J., Benes V., Kulozik A.E., Witt O., Martin D., Zhang C., Porat R., Merino D.M., Wasserman J., Jabado N., Fontebasso A., Bullinger L., Rücker F.G., Döhner K., Döhner H., Koster J., Molenaar J.J., Versteeg R., Kool M., Tabori U., Malkin D., Korshunov A., Taylor M.D., Lichter P., Pfster S.M., Korbel J.O. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell. 2012; 148(1–2): 59–71. doi:10.1016/j.cell.2011.12.013.; Wang K., Wang Y., Collins C.C. Chromoplexy: a new paradigm in genome remodeling and evolution. Asian J Androl. 2013; 15(6): 711–2. doi:10.1038/aja.2013.109.; Poot M. Genes, Proteins, and Biological Pathways Preventing Chromothripsis. Methods Mol Biol. 2018; 1769: 231–51. doi:10.1007/978-1-4939-7780-2_15.; Pagter M.S., Roostmalen M.J., Baas A.F., Renkens I., Duran K.J., van Binsbergen E., Yaraki M.T., Hochstenbach R., Veken L.T., Cuppen E., Kloosterman W.P. Chromothripsis in healthy individuals afects multiple protein-coding genes and can result in severe congential abnormalities in ofspring. Am J Hum Genet. 2015; 96(4): 651–6. doi:10.1016/j.ajhg.2015.02.005.; Bertelsen B., Nazaryan-Petersen L., Sun W., Mehrjouy M.M., Xie G., Chen W., Hjermind L.E., Taschner P.E.M., Tumer Z. A germline chromothripsis event stably segregating in 11 individuals through three generations. Genet Med. 2016; 18(5): 454–500. doi:10.1038/gim.2015.112.; Mustafn R.N., Khusnutdionova E.K. The role of transposable elements in the ecological morphogenesis under the infuence of stress. Vavilov Journal of Genetics and Breeding. 2019; 23(4): 380–89. doi:10.18699/VJ19.506.; Erwin J.A., Paquola A.C., Singer T., Gallina I., Novotny M., Quayle C., Bedrosian T.A., Alves F.I., Butcher C.R., Herdy J.R., Sarkar A., Lasken R.S., Muotri A.R., Gage F.H. L1-associated genomic regions are deleted in somatic cells of the healthy human brain. Nat Neurosci. 2016; 19(12): 1583–91. doi:10.1038/nn.4388. Erratum in: Nat Neurosci. 2017; 20(10): 1427. doi:10.1038/nn1017-1427a. Erratum in: Nat Neurosci. 2018; 21(7): 1016. doi:10.1038/s41593-018-0131-3.; Rodriguez-Martin B., Alvarez E.G., Baez-Ortega A., Zamora J., Supek F., Demeulemeester J., Santamarina M., Ju Y.S., Temes J., GarciaSouto D., Detering H., Li Y., Rodriguez-Castro J., Dueso-Barroso A., Bruzos A.L., Dentro S.C., Blanco M.G., Contino G., Ardeljan D., Tojo M., Roberts N.D., Zumalave S., Edwards P.A., Weischenfeldt J., Puiggròs M., Chong Z., Chen K., Lee E.A., Wala J.A., Raine K.M., Butler A., Waszak S.M., Navarro F.C.P., Schumacher S.E., Monlong J., Maura F., Bolli N., Bourque G., Gerstein M., Park P.J., Wedge D.C., Beroukhim R., Torrents D., Korbel J.O., Martincorena I., Fitzgerald R.C., Van Loo P., Kazazian H.H., Burns K.H.; PCAWG Structural Variation Working Group; Campbell P.J., Tubio J.M.C.; PCAWG Consortium. Pan-cancer analysis of whole genomes identifes driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet. 2020; 52(3): 306–19. doi:10.1038/s41588-019-0562-0. Erratum in: Nat Genet. 2023; 55(6): 1080. doi:10.1038/s41588-023-01319-9.; Jang H.S., Shah N.M., Du A.Y., Dailey Z.Z., Pehrsson E.C., Godoy P.M., Zhang D., Li D., Xing X., Kim S., O’Donnell D., Gordon J.I., Wang T. Transposable elements drive widespread expression of oncogenes in human cancers. Nat Genet. 2019; 51(4): 611–7. doi:10.1038/s41588- 019-0373-3. Erratum in: Nat Genet. 2019; 51(5): 920. doi:10.1038/s41588-019-0416-9.; Chen T., Meng Z., Gan Y., Wang X., Xu F., Gu Y., Xu X., Tang J., Zhou H., Zhang X., Gan X., Van Ness C., Xu G., Huang L., Zhang X., Fang Y., Wu J., Zheng S., Jin J., Huang W., Xu R. The viral oncogene Np9 acts as a critical molecular switch for co-activating β-catenin, ERK, Akt and Notch1 and promoting the growth of human leukemia stem/progenitor cells. Leukemia. 2013; 27(7): 1469–78. doi:10.1038/leu.2013.8.; Babaian A., Romanish M.T., Gagnier L., Kuo L.Y., Karimi M.M., Steidl C., Mager D.L. Onco-exaptation of an endogenous retroviral LTR drives IRF5 expression in Hodgkin lymphoma. Oncogene. 2016; 35(19): 2542–46. doi:10.1038/onc.2015.308.; Hur K., Cejas P., Feliu J., Moreno-Rubio J., Burgos E., Boland C.R., Goel A. Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut. 2014; 63(4): 635–46. doi:10.1136/gutjnl-2012-304219.; Lamprecht B., Walter K., Kreher S., Kumar R., Hummel M., Lenze D., Köchert K., Bouhlel M.A., Richter J., Soler E., Stadhouders R., Jöhrens K., Wurster K.D., Callen D.F., Harte M.F., Giefng M., Barlow R., Stein H., Anagnostopoulos I., Janz M., Cockerill P.N., Siebert R., Dörken B., Bonifer C., Mathas S. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat Med. 2010; 16(5): 571–9. doi:10.1038/nm.2129.; Cervantes-Ayalc A., Esparza-Garrido R.R., Velazquez-Floes M.A. Long Interspersed Nuclear Elements 1 (LINE1): The chimeric transcript L1-MET and its involvement in cancer. Cancer Genet. 2020; 241: 1–11. doi:10.1016/j.cancergen.2019.11.004.; Lock F.E., Rebollo R., Miceli-Royer K., Gagnier L., Kuah S., Babaian A., Sistiaga-Poveda M., Lai C.B., Nemirovsky O., Serrano I., Steidl C., Karimi M.M., Mager D.L. Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in difuse large B-cell lymphoma. Proc Natl Acad Sci USA. 2014; 111(34): 3534–43. doi:10.1073/pnas.1405507111. Erratum in: Proc Natl Acad Sci USA. 2015; 112(33): 4630. doi:10.1073/pnas.1512789112.; Scarfò I., Pellegrino E., Mereu E., Kwee I., Agnelli L., Bergaggio E., Garaffo G., Vitale N., Caputo M., Machiorlatti R., Circosta P., Abate F., Barreca A., Novero D., Mathew S., Rinaldi A., Tiacci E., Serra S., Deaglio S., Neri A., Falini B., Rabadan R., Bertoni F., Inghirami G., Piva R.; European T-Cell Lymphoma Study Group. Identifcation of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts. Blood. 2016; 127(2): 221–32. doi:10.1182/blood-2014-12-614503.; Wiesner T., Lee W., Obenauf A.C., Ran L., Murali R., Zhang Q.F., Wong E.W., Hu W., Scott S.N., Shah R.H., Landa I., Button J., Lailler N., Sboner A., Gao D., Murphy D.A., Cao Z., Shukla S., Hollmann T.J., Wang L., Borsu L., Merghoub T., Schwartz G.K., Postow M.A., Ariyan C.E., Fagin J.A., Zheng D., Ladanyi M., Busam K.J., Berger M.F., Chen Y., Chi P. Alternative transcription initiation leads to expression of a novel ALK isoform in cancer. Nature. 2015; 526(7573): 453–7. doi:10.1038/nature15258.; Fairbanks D.J., Fairbanks A.D., Ogden T.H., Parker G.J., Maughan P.J. NANOGP8: evolution of a human-specifc retro-oncogene. G3 (Bethesda). 2012; 2(11): 1447–57. doi:10.1534/g3.112.004366.; Haffner M.C., Aryee M.J., Toubaji A., Esopi D.M., Albadine R., Gurel B., Isaacs W.B., Bova G.S., Liu W., Xu J., Meeker A.K., Netto G., De Marzo A.M., Nelson W.G., Yegnasubramanian S. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat Genet. 2010; 42(8): 668–75. doi:10.1038/ng.613.; Symer D.E., Connelly C., Szak S.T., Caputo E.M., Cost G.J., Parmigiani G., Boeke J.D. Human l1 retrotransposition is associated with genetic instability in vivo. Cell. 2002; 110(3): 327–38. doi:10.1016/s0092-8674(02)00839-5.; Vogt J., Bengesser K., Claes K.B., Wimmer K., Mautner V.F., van Minkelen R., Legius E., Brems H., Upadhyaya M., Högel J., Lazaro C., Rosenbaum T., Bammert S., Messiaen L., Cooper D.N., Kehrer-Sawatzki H. SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints. Genome Biol. 2014; 15(6). doi:10.1186/gb-2014-15-6-r80.; Choi B.O., Kim N.K., Park S.W., Hyun Y.S., Jeon H.J., Hwang J.H., Chung K.W. Inheritance of Charcot-Marie-Tooth disease 1A with rare nonrecurrent genomic rearrangement. Neurogenetics. 2011; 12(1): 51–8. doi:10.1007/s10048-010-0272-3.; Ji X., Zhao S. DA and Xiao-two giant and composite LTRretrotransposon-like elements identifed in the human genome. Genomics. 2008; 91(3): 249–58. doi:10.1016/j.ygeno.2007.10.014.; Jin H., Selfe J., Whitehouse C., Morris J.R., Solomon E., Roberts R.G. Structural evolution of the BRCA1 genomic region in primates. Genomics. 2004; 84(6): 1071–82. doi:10.1016/j.ygeno.2004.08.019.; Ribeiro I.P., Carreira I.M., Esteves L., Caramelo F., Liehr T., Melo J.B. Chromosomal breakpoints in a cohort of head and neck squamous cell carcinoma patients. Genomics. 2020; 112(1): 297–303. doi:10.1016/j.ygeno.2019.02.009.; Wang H., Li Y., Truong L.N., Shi L.Z., Hwang P.Y., He J., Do J., Cho M.J., Li H., Negrete A., Shiloach J., Berns M.W., Shen B., Chen L., Wu X. CtIP maintains stability at common fragile sites and inverted repeats by end resection-independent endonuclease activity. Mol Cell. 2014; 54(6): 1012–21. doi:10.1016/j.molcel.2014.04.012.; Suzuki J., Yamaguchi K., Kajikawa M., Ichiyanagi K., Adachi N., Koyama H., Takeda S., Okada N. Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition. PLoS Genet. 2009; 5(4). doi:10.1371/journal.pgen.1000461.; Lee G., Sherer N.A., Kim N.H., Rajic E., Kaur D., Urriola N., Martini K.M., Xue C., Goldenfeld N., Kuhlman T.E. Testing the retroelement invasion hypothesis for the emergence of the ancestral eukaryotic cell. Proc Natl Acad Sci U S A. 2018; 115(49): 12465–70. doi:10.1073/pnas.1807709115.; Мустафин Р.Н., Хуснутдинова Э.К. Роль ретроэлементов в развитии наследственных опухолевых синдромов. Успехи молекулярной онкологии. 2021; 8(4): 42–52. doi:10.17650/2313-805X-2021-8-4-42-52.; Hancks D.C. A Role for Retrotransposons in Chromothripsis. Methods Mol Biol. 2018; 1769: 169–81. doi:10.1007/978-1-4939-7780-2_11.; Mustafn R.N. The role of transposable elements in the diferentiation of stem cells. Mol. Genet. Microbiol. Virol. 2019; 34: 67–74. doi:10.17116/molgen20193702151.; Baba Y., Huttenhower C., Nosho K., Tanaka N., Shima K., Hazra A., Schernhammer E.S., Hunter D.J., Giovannucci E.L., Fuchs C.S., Ogino S. Epigenomic diversity of colorectal cancer indicated by LINE-1 methylation in a database of 869 tumors. Mol Cancer. 2010; 9: 125. doi:10.1186/1476-4598-9-125.; Barchitta M., Quattrocchi A., Maugeri A., Vinciguerra M., Agodi A. LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: a systematic review and meta-analysis. PLoS One. 2014; 9(10). doi:10.1371/journal.pone.0109478.; Lieber M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010; 79: 181–211. doi:10.1146/annurev.biochem.052308.093131.; Gu S., Yuan B., Campbell I.M., Beck C.R., Carvalho C.M., Nagamani S.C.S., Erez A., Patel A., Bacino C.A., Shaw C.A., Stankiewicz P., Cheung S.W., Bi W., Lupski J.R. Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3. Hum Mol Genet. 2015; 24(14): 4061–77. doi:10.1093/hmg/ddv146.; Borun P., de Rosa M., Nedoszytko B., Walkowiak J., Plawski A. Specifc Alu elements involved in a signifcant percentage of copy number variations of the STK11 gene in patients with Peutz-Jeghers syndrome. Fam Cancer. 2015; 14(3): 455–61. doi:10.1007/s10689-015-9800-5.; Crivelli L., Bubien V., Jones N., Chiron J., Bonnet F., BaroukSimonet E., Couzigou P., Sevenet N., Caux F., Longy M. Insertion of Alu elements at a PTEN hotspot in Cowden syndrome. Eur J Hum Genet. 2017; 25(9): 1087–91. doi:10.1038/ejhg.2017.81.; Dabora S.L., Nieto A.A., Franz D., Jozwiak S., Ouweland A.V.D., Kwiatkowski D.J. Characterisation of six large deletions in TSC2 identifed using long range PCR suggests diverse mechanisms including Alu mediated recombination. J Med Genet. 2000; 37(11): 877–83. doi:10.1136/jmg.37.11.877.; Franke G., Bausch B., Hoffmann M.M., Cybulla M., Wilhelm C., Kohlhase J., Scherer G., Neumann H.P.H. Alu-Alu recombination underlies the vast majority of large VHL germline deletions: Molecular characterization and genotype-phenotype correlation in VHL patients. Hum Mutat. 2009; 30(5): 776–86. doi:10.1002/humu.20948.; Hitchins M.P., Burn J. Alu in Lynch syndrome: a danger SINE. Cancer Prev Res (Phila). 2011; 4(10): 1527–30. doi:10.1158/1940-6207. CAPR-11-0417.; Coufal N.G., Garcia-Perez J.L., Peng G.E., Marchetto M.C.N., Muotri A.R., Mu Y., Carson C.T., Macia A., Moran J.V., Gage F.H. Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc Natl Acad Sci USA. 2011; 108(51): 20382–87. doi:10.1073/pnas.1100273108.; Mita P., Sun X., Fenyo D., Kahler D.J., Li D., Agmon N., Wudzinska A., Keegan S., Bader J.S., Yun C., Boeke J.D. BRCA1 and S phase DNA repair pathways restrict LINE-1 retrotransposition in human cells. Nat Struct Mol Biol. 2020; 27(2): 179–91. doi:10.1038/s41594-020-0374-z.; Montoya-Durango D.E., Ramos K.A., Bojang P., Ruiz L., Ramos I.N., Ramos K.S. LINE-1 silencing by retinoblastoma proteins is efected through the nucleosomal and remodeling deacetylase multiprotein complex. BMC Cancer. 2016; 16: 38. doi:10.1186/s12885-016-2068-9.; Tiwari B., Jones A.E., Caillet C.J., Das S., Royer S.K., Abrams J.M. P53 directly repress human LINE1 transposons. Genes Dev. 2020; 34(21–22): 1439–51. doi:10.1101/gad.343186.120.; Ramos K.S., Montoya-Durango D.E., Teneng I., Nanez A., Stribinskis V. Epigenetic control of embryonic renal cell diferentiation by L1 retrotransposon. Birth Defects Res A Clin Mol Teratol. 2011; 91(8): 693–702. doi:10.1002/bdra.20786.; Мустафин Р.Н. Влияние ретроэлементов на онкогены и онкосупрессоры в канцерогенезе. Современная онкология. 2021; 23(4): 666–73. [Mustafn R.N. Infuence of retroelements on oncogenes and tumor suppressors in carcinogenesis: A review. Journal of Modern Oncology. 2021; 23(4): 666–73. (in Russian)]. doi:10.26442/18151434.2021.4.201199.; Gorbunova V., Seluanov A., Mita P., McKerrow W., Fenyö D., Boeke J.D., Linker S.B., Gage F.H., Kreiling J.A., Petrashen A.P., Woodham T.A., Taylor J.R., Helfand S.L., Sedivy J.M. The role of retrotransposable elements in ageing and age-associated diseases. Nature. 2021; 596(7870): 43–53. doi:10.1038/s41586-021-03542-y.; https://www.siboncoj.ru/jour/article/view/3282

  15. 15
    Academic Journal

    Συνεισφορές: this work was not funded., финансирование данной работы не проводилось.

    Πηγή: Research and Practical Medicine Journal; Том 11, № 3 (2024); 103-110 ; Research'n Practical Medicine Journal; Том 11, № 3 (2024); 103-110 ; 2410-1893 ; 10.17709/2410-1893-2024-11-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.rpmj.ru/rpmj/article/view/1031/639; https://www.rpmj.ru/rpmj/article/view/1031/649; Hale R, Sandakly S, Shipley J, Walters Z. Epigenetic Targets in Synovial Sarcoma: A Mini-Review. Front Oncol. 2019 Oct 18;9:1078. doi:10.3389/fonc.2019.01078; Blay JY, von Mehren M, Jones RL, Martin-Broto J, Stacchiotti S, Bauer S, et al. Synovial sarcoma: characteristics, challenges, and evolving therapeutic strategies. ESMO Open. 2023 Oct;8(5):101618. doi:10.1016/j.esmoop.2023.101618; Nagy A, Somers GR. Round Cell Sarcomas: Newcomers and Diagnostic Approaches. Surg Pathol Clin. 2020 Dec;13(4):763–782. doi:10.1016/j.path.2020.08.004; Gerarduzzi C, Hartmann U, Leask A, Drobetsky E. The Matrix Revolution: Matricellular Proteins and Restructuring of the Cancer Microenvironment. Cancer Res. 2020 Jul 1;80(13):2705–2717. doi:10.1158/0008-5472.can-18-2098; Kling MJ, Chaturvedi NK, Kesherwani V, Coulter DW, McGuire TR, Sharp JG, Joshi SS. Exosomes secreted under hypoxia enhance stemness in Ewing's sarcoma through miR-210 delivery. Oncotarget. 2020 Oct 6;11(40):3633–3645. doi:10.18632/oncotarget.27702; Ruscetti M, Morris JP 4 th , Mezzadra R, Russell J, Leibold J, Romesser PB, et al. Senescence-Induced Vascular Remodeling Creates Therapeutic Vulnerabilities in Pancreas Cancer. Cell. 2020 Apr 16;181(2):424–441.e21. doi:10.1016/j.cell.2020.03.008. Erratum in: Cell. 2021 Sep 2;184(18):4838–4839. doi:10.1016/j.cell.2021.07.028; Black JO, Al-Ibraheemi A, Arnold MA, Coffin CM, Davis JL, Parham DM, et al. The Pathologic Diagnosis of Pediatric Soft Tissue Tumors in the Era of Molecular Medicine: The Sarcoma Pediatric Pathology Research Interest Group Perspective. Arch Pathol Lab Med. 2024 Jan 1;148(1):107–116. doi:10.5858/arpa.2022-0364-ra; Scholl A, Chen J, Cardona D. Synovial Sarcoma Isn’t Supposed to To This! American Journal of Clinical Pathology. 2022;158:35–36. doi:10.1093/ajcp/aqac126.065; Baranov E, McBride MJ, Bellizzi AM, Ligon AH, Fletcher CDM, Kadoch C, Hornick JL. A Novel SS18-SSX Fusion-specific Antibody for the Diagnosis of Synovial Sarcoma. Am J Surg Pathol. 2020 Jul;44(7):922–933.; Zaborowski M, Vargas AC, Pulvers J, Clarkson A, de Guzman D, Sioson L, et al. When used together SS18-SSX fusion-specific and SSX C-terminus immunohistochemistry are highly specific and sensitive for the diagnosis of synovial sarcoma and can replace FISH or molecular testing in most cases. Histopathology. 2020 Oct;77(4):588–600. doi:10.1111/his.14190; Ferrari A, De Salvo GL, Brennan B, van Noesel MM, De Paoli A, Casanova M, et al. Synovial sarcoma in children and adolescents: the European Pediatric Soft Tissue Sarcoma Study Group prospective trial (EpSSG NRSTS 2005). Ann Oncol. 2015 Mar;26(3):567–572. doi:10.1093/annonc/mdu562; Gutiérrez-Jimeno M, Alba-Pavón P, Astigarraga I, Imízcoz T, Panizo-Morgado E, García-Obregón S, et al. Clinical Value of NGS Genomic Studies for Clinical Management of Pediatric and Young Adult Bone Sarcomas. Cancers (Basel). 2021 Oct 29;13(21):5436. doi:10.3390/cancers13215436; Vyse S, Thway K, Huang PH, Jones RL. Next-generation sequencing for the management of sarcomas with no known driver mutations. Curr Opin Oncol. 2021 Jul 1;33(4):315–322. doi:10.1097/cco.0000000000000741; Zhuyan J, Chen M, Zhu T, Bao X, Zhen T, Xing K, et al. Critical steps to tumor metastasis: alterations of tumor microenvironment and extracellular matrix in the formation of pre-metastatic and metastatic niche. Cell Biosci. 2020 Jul 28;10:89. doi:10.1186/s13578-020-00453-9; Seligson ND, Maradiaga RD, Stets CM, Katzenstein HM, Millis SZ, Rogers A, et al. Multiscale-omic assessment of EWSR1-NFATc2 fusion positive sarcomas identifies the mTOR pathway as a potential therapeutic target. NPJ Precis Oncol. 2021 May 21;5(1):43. doi:10.1038/s41698-021-00177-0; Huang Y, Li Q, Feng Z, Zheng L. STIM1 controls calcineurin/Akt/mTOR/NFATC2-mediated osteoclastogenesis induced by RANKL/M-CSF. Exp Ther Med. 2020 Aug;20(2):736–747. doi:10.3892/etm.2020.8774; Sigafoos AN, Paradise BD, Fernandez-Zapico ME. Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease. Cancers (Basel). 2021 Jul 7;13(14):3410. doi:10.3390/cancers13143410; Nikolopoulou PA, Koufaki MA, Kostourou V. The Adhesome Network: Key Components Shaping the Tumour Stroma. Cancers (Basel). 2021 Jan 30;13(3):525. doi:10.3390/cancers13030525; Zhang DX, Vu LT, Ismail NN, Le MTN, Grimson A. Landscape of extracellular vesicles in the tumour microenvironment: Interactions with stromal cells and with non-cell components, and impacts on metabolic reprogramming, horizontal transfer of neoplastic traits, and the emergence of therapeutic resistance. Semin Cancer Biol. 2021 Sep;74:24–44. doi:10.1016/j.semcancer.2021.01.007; Henke E, Nandigama R, Ergün S. Extracellular Matrix in the Tumor Microenvironment and Its Impact on Cancer Therapy. Front Mol Biosci. 2020 Jan 31;6:160. doi:10.3389/fmolb.2019.00160; Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis. 2019 Jun;36(3):171-198. doi:10.1007/s10585-019-09966-1; Mazumdar A, Urdinez J, Boro A, Migliavacca J, Arlt MJE, Muff R, et al. Osteosarcoma-Derived Extracellular Vesicles Induce Lung Fibroblast Reprogramming. Int J Mol Sci. 2020 Jul 30;21(15):5451. doi:10.3390/ijms21155451; Samuel G, Crow J, Klein JB, Merchant ML, Nissen E, Koestler DC, et al. Ewing sarcoma family of tumors-derived small extracellular vesicle proteomics identify potential clinical biomarkers. Oncotarget. 2020 Aug 4;11(31):2995–3012. doi:10.18632/oncotarget.27678; Hsu YL, Huang MS, Hung JY, Chang WA, Tsai YM, Pan YC, et al. Bone-marrow-derived cell-released extracellular vesicle miR-92a regulates hepatic pre-metastatic niche in lung cancer. Oncogene. 2020 Jan;39(4):739–753. doi:10.1038/s41388-019-1024-y; Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 2021 Dec;18(12):792–804. doi:10.1038/s41571-021-00546-5; Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020 Mar;20(3):174–186. doi:10.1038/s41568-019-0238-1; Ahn YH, Kim JS. Long Non-Coding RNAs as Regulators of Interactions between Cancer-Associated Fibroblasts and Cancer Cells in the Tumor Microenvironment. Int J Mol Sci. 2020 Oct 11;21(20):7484. doi:10.3390/ijms21207484; https://www.rpmj.ru/rpmj/article/view/1031

  16. 16
    Academic Journal

    Συνεισφορές: this research has been carried out with the financial support of the Russian Science Foundation (grant No. 23-65-00003)., работа выполнена при финансовой поддержке Российского научного фонда (грант № 23-65-00003).

    Πηγή: Research and Practical Medicine Journal; Том 11, № 3 (2024); 85-102 ; Research'n Practical Medicine Journal; Том 11, № 3 (2024); 85-102 ; 2410-1893 ; 10.17709/2410-1893-2024-11-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.rpmj.ru/rpmj/article/view/1025/648; O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006 Jul;7(7):688–693. doi:10.1038/sj.embor.7400731; Rajpoot M, Sharma AK, Sharma A, Gupta GK. Understanding the microbiome: Emerging biomarkers for exploiting the microbiota for personalized medicine against cancer. Semin Cancer Biol. 2018 Oct;52(Pt 1):1–8. doi:10.1016/j.semcancer.2018.02.003; de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020 Feb;8(2):e180–e190. doi:10.1016/s2214-109x(19)30488-7; Radaic A, Kapila YL. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput Struct Biotechnol J. 2021 Feb 27;19:1335–1360. doi:10.1016/j.csbj.2021.02.010; Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford). 2010 Jul 6;2010:baq013. doi:10.1093/database/baq013; Ganly I, Yang L, Giese RA, Hao Y, Nossa CW, Morris LGT, et al. Periodontal pathogens are a risk factor of oral cavity squamous cell carcinoma, independent of tobacco and alcohol and human papillomavirus. Int J Cancer. 2019 Aug 1;145(3):775–784. doi:10.1002/ijc.32152; Li R, Xiao L, Gong T, Liu J, Li Y, Zhou X, Li Y, Zheng X. Role of oral microbiome in oral oncogenesis, tumor progression, and metastasis. Mol Oral Microbiol. 2023 Feb;38(1):9–22. doi:10.1111/omi.12403; Tuominen H, Rautava J. Oral Microbiota and Cancer Development. Pathobiology. 2021;88(2):116–126. doi:10.1159/000510979; Arzmi MH, Dashper S, McCullough M. Polymicrobial interactions of Candida albicans and its role in oral carcinogenesis. J Oral Pathol Med. 2019 Aug;48(7):546–551. doi:10.1111/jop.12905; Nieminen MT, Listyarifah D, Hagström J, Haglund C, Grenier D, Nordström D, et al. Treponema denticola chymotrypsin-like proteinase may contribute to orodigestive carcinogenesis through immunomodulation. Br J Cancer. 2018 Feb 6;118(3):428–434. doi:10.1038/bjc.2017.409; Rai AK, Panda M, Das AK, Rahman T, Das R, Das K, et al. Dysbiosis of salivary microbiome and cytokines influence oral squamous cell carcinoma through inflammation. Arch Microbiol. 2021 Jan;203(1):137–152. doi:10.1007/s00203-020-02011-w; Smędra A, Berent J. The Influence of the Oral Microbiome on Oral Cancer : A Literature Review and a New Approach. Biomolecules. 2023 May 11;13(5):815. doi:10.3390/biom13050815; Wu L, Yang J, She P, Kong F, Mao Z, Wang S. Single-cell RNA sequencing and traditional RNA sequencing reveals the role of cancer-associated fibroblasts in oral squamous cell carcinoma cohort. Front Oncol. 2023 May 10;13:1195520. doi:10.3389/fonc.2023.1195520; Fitzsimonds ZR, Rodriguez-Hernandez CJ, Bagaitkar J, Lamont RJ. From Beyond the Pale to the Pale Riders: The Emerging Association of Bacteria with Oral Cancer. J Dent Res. 2020 Jun;99(6):604–612. doi:10.1177/0022034520907341; Maisonneuve P, Amar S, Lowenfels AB. Periodontal disease, edentulism, and pancreatic cancer: a meta-analysis. Ann Oncol. 2017 May 1;28(5):985–995. doi:10.1093/annonc/mdx019; Michaud DS, Lu J, Peacock-Villada AY, Barber JR, Joshu CE, Prizment AE, et al. Periodontal Disease Assessed Using Clinical Dental Measurements and Cancer Risk in the ARIC Study. J Natl Cancer Inst. 2018 Aug 1;110(8):843–854. doi:10.1093/jnci/djx278; Sakanaka A, Kuboniwa M, Shimma S, Alghamdi SA, Mayumi S, Lamont RJ, et al. Fusobacterium nucleatum Metabolically Integrates Commensals and Pathogens in Oral Biofilms. mSystems. 2022 Aug 30;7(4):e0017022. doi:10.1128/msystems.00170-22; Zhang J, Bellocco R, Sandborgh-Englund G, Yu J, Sällberg Chen M, Ye W. Poor Oral Health and Esophageal Cancer Risk: A Nation-wide Cohort Study. Cancer Epidemiol Biomarkers Prev. 2022 Jul 1;31(7):1418–1425. doi:10.1158/1055-9965.epi-22-0151; Yano Y, Abnet CC, Poustchi H, Roshandel G, Pourshams A, Islami F, et al. Oral Health and Risk of Upper Gastrointestinal Cancers in a Large Prospective Study from a High-risk Region: Golestan Cohort Study. Cancer Prev Res (Phila). 2021 Jul;14(7):709–718. doi:10.1158/1940-6207.capr-20-0577; Zhao R, Li X, Yang X, et al. Association of Esophageal Squamous Cell Carcinoma with the Interaction Between Poor Oral Health and Single Nucleotide Polymorphisms in Regulating Cell Cycles and Angiogenesis: A Case-Control Study in High-Incidence Chinese. Cancer Control. 2022, 29, 10732748221075811. doi:10.1177/10732748221075811; Moreira C, Figueiredo C, Ferreira RM. The Role of the Microbiota in Esophageal Cancer. Cancers (Basel). 2023 Apr 30;15(9):2576. doi:10.3390/cancers15092576; Peters BA, Wu J, Pei Z, Yang L, Purdue MP, Freedman ND, et al. Oral Microbiome Composition Reflects Prospective Risk for Esophageal Cancers. Cancer Res. 2017 Dec 1;77(23):6777–6787. doi:10.1158/0008-5472.can-17-1296; Lv J, Guo L, Liu JJ, Zhao HP, Zhang J, Wang JH. Alteration of the esophageal microbiota in Barrett's esophagus and esophageal adenocarcinoma. World J Gastroenterol. 2019 May 14;25(18):2149–2161. doi:10.3748/wjg.v25.i18.2149; Lei J, Xu F, Deng C, Nie X, Zhong L, Wu Z, et al. Fusobacterium nucleatum promotes the early occurrence of esophageal cancer through upregulation of IL-32/PRTN3 expression. Cancer Sci. 2023 Jun;114(6):2414–2428. doi:10.1111/cas.15787; Yang L, Francois F, Pei Z. Molecular pathways: pathogenesis and clinical implications of microbiome alteration in esophagitis and Barrett esophagus. Clin Cancer Res. 2012 Apr 15;18(8):2138–2144. doi:10.1158/1078-0432.ccr-11-0934; Костин Р.К., Малюгин Д.А., Соленова Л.Г., Кулаева Е.Д. Микробиота желудочно-кишечного тракта и канцерогенез в различных органах человека. Журнал микробиологии, эпидемиологии и иммунобиологии. 2023;100(1):110–125. doi:10.36233/0372-9311-310; Yamaoka Y. Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol. 2010 Nov;7(11):629–641. doi:10.1038/nrgastro.2010.154; Doorakkers E, Lagergren J, Engstrand L, Brusselaers N. Eradication of Helicobacter pylori and Gastric Cancer : A Systematic Review and Meta-analysis of Cohort Studies. J Natl Cancer Inst. 2016 Jul 14;108(9):djw132. doi:10.1093/jnci/djw132; Park JY, Seo H, Kang CS, Shin TS, Kim JW, Park JM, et al. Dysbiotic change in gastric microbiome and its functional implication in gastric carcinogenesis. Sci Rep. 2022 Mar 11;12(1):4285. doi:10.1038/s41598-022-08288-9; Chen XH, Wang A, Chu AN, Gong YH, Yuan Y. Mucosa-Associated Microbiota in Gastric Cancer Tissues Compared With Non-cancer Tissues. Front Microbiol. 2019 Jun 5;10:1261. doi:10.3389/fmicb.2019.01261; Liu X, Shao L, Liu X, Ji F, Mei Y, Cheng Y, Liu F, Yan C, Li L, Ling Z. Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer. EBioMedicine. 2019 Feb;40:336–348. doi:10.1016/j.ebiom.2018.12.034; Bakhti SZ, Latifi-Navid S. Interplay and cooperation of Helicobacter pylori and gut microbiota in gastric carcinogenesis. BMC Microbiol. 2021 Sep 23;21(1):258. doi:10.1186/s12866-021-02315-x; Dastmalchi N, Safaralizadeh R, Banan Khojasteh SM. The correlation between microRNAs and Helicobacter pylori in gastric cancer. Pathog Dis. 2019 Jun 1;77(4):ftz039. doi:10.1093/femspd/ftz039; Zheng R, Wang G, Pang Z, Ran N, Gu Y, Guan X, et al. Liver cirrhosis contributes to the disorder of gut microbiota in patients with hepatocellular carcinoma. Cancer Med. 2020 Jun;9(12):4232–4250. doi:10.1002/cam4.3045; Jiang JW, Chen XH, Ren Z, Zheng SS. Gut microbial dysbiosis associates hepatocellular carcinoma via the gut-liver axis. Hepatobiliary Pancreat Dis Int. 2019 Feb;18(1):19–27. doi:10.1016/j.hbpd.2018.11.002; Chai Y, Huang Z, Shen X, Lin T, Zhang Y, Feng X, et al. Microbiota Regulates Pancreatic Cancer Carcinogenesis through Altered Immune Response. Microorganisms. 2023 May 8;11(5):1240. doi:10.3390/microorganisms11051240; Pagliari D, Saviano A, Newton EE, Serricchio ML, Dal Lago AA, Gasbarrini A, Cianci R. Gut Microbiota-Immune System Crosstalk and Pancreatic Disorders. Mediators Inflamm. 2018 Feb 1;2018:7946431. doi:10.1155/2018/7946431; Morgan XC, Huttenhower C. Meta'omic analytic techniques for studying the intestinal microbiome. Gastroenterology. 2014 May;146(6):1437–1448.e1. doi:10.1053/j.gastro.2014.01.049; Martínez JE, Vargas A, Pérez-Sánchez T, Encío IJ, Cabello-Olmo M, Barajas M. Human Microbiota Network: Unveiling Potential Crosstalk between the Different Microbiota Ecosystems and Their Role in Health and Disease. Nutrients. 2021 Aug 24;13(9):2905. doi:10.3390/nu13092905; Schwabe RF, Greten TF. Gut microbiome in HCC - Mechanisms, diagnosis and therapy. J Hepatol. 2020 Feb;72(2):230–238. doi:10.1016/j.jhep.2019.08.016; Giallourou N, Urbaniak C, Puebla-Barragan S, Vorkas PA, Swann JR, Reid G. Characterizing the breast cancer lipidome and its interaction with the tissue microbiota. Commun Biol. 2021 Oct 27;4(1):1229. doi:10.1038/s42003-021-02710-0; Thomas RM, Gharaibeh RZ, Gauthier J, Beveridge M, Pope JL, Guijarro MV, et al. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinogenesis. 2018 Jul 30;39(8):1068–1078. doi:10.1093/carcin/bgy073; Eibl G, Rozengurt E. Obesity and Pancreatic Cancer: Insight into Mechanisms. Cancers (Basel). 2021 Oct 10;13(20):5067. doi:10.3390/cancers13205067; Usyk M, Pandey A, Hayes RB, Moran U, Pavlick A, Osman I, et al. Bacteroides vulgatus and Bacteroides dorei predict immune-related adverse events in immune checkpoint blockade treatment of metastatic melanoma. Genome Med. 2021 Oct 13;13(1):160. doi:10.1186/s13073-021-00974-z; Saus E, Iraola-Guzmán S, Willis JR, Brunet-Vega A, Gabaldón T. Microbiome and colorectal cancer: Roles in carcinogenesis and clinical potential. Mol Aspects Med. 2019 Oct;69:93–106. doi:10.1016/j.mam.2019.05.001; Mima K, Sukawa Y, Nishihara R, Qian ZR, Yamauchi M, Inamura K, et al. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. JAMA Oncol. 2015 Aug;1(5):653–661. doi:10.1001/jamaoncol.2015.1377; Ito M, Kanno S, Nosho K, Sukawa Y, Mitsuhashi K, Kurihara H, et al. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. Int J Cancer. 2015 Sep 15;137(6):1258–1268. doi:10.1002/ijc.29488; Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W, Garriga J, et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res. 2014 Mar 1;74(5):1311–1318. doi:10.1158/0008-5472.can-13-1865; Kim M, Vogtmann E, Ahlquist DA, Devens ME, Kisiel JB, Taylor WR, et al. Fecal Metabolomic Signatures in Colorectal Adenoma Patients Are Associated with Gut Microbiota and Early Events of Colorectal Cancer Pathogenesis. mBio. 2020 Feb 18;11(1):e03186– 19. doi:10.1128/mbio.03186-19; Perrone F, Belluomini L, Mazzotta M, Bianconi M, Di Noia V, Meacci F, et al. Exploring the role of respiratory microbiome in lung cancer : A systematic review. Crit Rev Oncol Hematol. 2021 Aug;164:103404. doi:10.1016/j.critrevonc.2021.103404; Su K, Gao Y, He J. A comparison of the microbiome composition in lower respiratory tract at different sites in early lung cancer patients. Transl Lung Cancer Res. 2023 Jun 30;12(6):1264–1275. doi:10.21037/tlcr-23-231; Najafi S, Abedini F, Azimzadeh Jamalkandi S, Shariati P, Ahmadi A, Gholami Fesharaki M. The composition of lung microbiome in lung cancer : a systematic review and meta-analysis. BMC Microbiol. 2021 Nov 11;21(1):315. doi:10.1186/s12866-021-02375-z; Kovaleva O, Podlesnaya P, Rashidova M, Samoilova D, Petrenko A, Zborovskaya I, et al. Lung Microbiome Differentially Impacts Survival of Patients with Non-Small Cell Lung Cancer Depending on Tumor Stroma Phenotype. Biomedicines. 2020 Sep 13;8(9):349. doi:10.3390/biomedicines8090349; Zhang J, Xia Y, Sun J. Breast and gut microbiome in health and cancer. Genes Dis. 2020 Aug 20;8(5):581–589. doi:10.1016/j.gendis.2020.08.002; Prentice PM, Schoemaker MH, Vervoort J, Hettinga K, Lambers TT, van Tol EAF, et al. Human Milk Short-Chain Fatty Acid Composition is Associated with Adiposity Outcomes in Infants. J Nutr. 2019 May 1;149(5):716–722. doi:10.1093/jn/nxy320; Mikó E, Kovács T, Sebő É, Tóth J, Csonka T, Ujlaki G, et al. Microbiome-Microbial Metabolome-Cancer Cell Interactions in Breast Cancer-Familiar, but Unexplored. Cells. 2019 Mar 29;8(4):293. doi:10.3390/cells8040293; Parida S, Sharma D. The Microbiome-Estrogen Connection and Breast Cancer Risk. Cells. 2019 Dec 15;8(12):1642. doi:10.3390/cells8121642; Kovács T, Mikó E, Ujlaki G, Yousef H, Csontos V, Uray K, Bai P. The involvement of oncobiosis and bacterial metabolite signaling in metastasis formation in breast cancer. Cancer Metastasis Rev. 2021 Dec;40(4):1223–1249. doi:10.1007/s10555-021-10013-3; Burger M, Catto JW, Dalbagni G, Grossman HB, Herr H, Karakiewicz P, Kassouf W, Kiemeney LA, La Vecchia C, Shariat S, Lotan Y. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol. 2013 Feb;63(2):234–241. doi:10.1016/j.eururo.2012.07.033; Sfanos KS, Yegnasubramanian S, Nelson WG, De Marzo AM. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol. 2018 Jan;15(1):11–24. do: 10.1038/nrurol.2017.167; Adebayo AS, Survayanshi M, Bhute S, Agunloye AM, Isokpehi RD, Anumudu CI, Shouche YS. Correction: The microbiome in urogenital schistosomiasis and induced bladder pathologies. PLoS Negl Trop Dis. 2017 Nov 15;11(11):e0006067. doi:10.1371/journal.pntd.0006067. Erratum for: PLoS Negl Trop Dis. 2017 Aug 9;11(8):e0005826. doi:10.1371/journal.pntd.0005826; Pearce MM, Zilliox MJ, Rosenfeld AB, Thomas-White KJ, Richter HE, Nager CW, et al.; Pelvic Floor Disorders Network. The female urinary microbiome in urgency urinary incontinence. Am J Obstet Gynecol. 2015 Sep;213(3):347.e1-11. doi:10.1016/j.ajog.2015.07.009; Shrestha E, White JR, Yu SH, Kulac I, Ertunc O, De Marzo AM, et al. Profiling the Urinary Microbiome in Men with Positive versus Negative Biopsies for Prostate Cancer. J Urol. 2018 Jan;199(1):161–171. doi:10.1016/j.juro.2017.08.001; Ahn HK, Kim K, Park J, Kim KH. Urinary microbiome profile in men with genitourinary malignancies. Investig Clin Urol. 2022 Sep;63(5):569–576. doi:10.4111/icu.20220124; Lipworth L, Tarone RE, McLaughlin JK. Renal cell cancer among African Americans : an epidemiologic review. BMC Cancer. 2011 Apr 12;11:133. doi:10.1186/1471-2407-11-133; Heidler S, Lusuardi L, Madersbacher S, Freibauer C. The Microbiome in Benign Renal Tissue and in Renal Cell Carcinoma. Urol Int. 2020;104(3-4):247–252. doi:10.1159/000504029; Yang JW, Wan S, Li KP, Chen SY, Yang L. Gut and urinary microbiota: the causes and potential treatment measures of renal cell carcinoma. Front Immunol. 2023 Jun 27;14:1188520. doi:10.3389/fimmu.2023.1188520; Chen Y, Ma J, Dong Y, Yang Z, Zhao N, Liu Q, et al. Characteristics of Gut Microbiota in Patients With Clear Cell Renal Cell Carcinoma. Front Microbiol. 2022 Jul 4;13:913718. doi:10.3389/fmicb.2022.913718; Mingdong W, Xiang G, Yongjun Q, Mingshuai W, Hao P. Causal associations between gut microbiota and urological tumors: a two-sample mendelian randomization study. BMC Cancer. 2023 Sep 11;23(1):854. doi:10.1186/s12885-023-11383-3; D'Antonio DL, Marchetti S, Pignatelli P, Piattelli A, Curia MC. The Oncobiome in Gastroenteric and Genitourinary Cancers. Int J Mol Sci. 2022 Aug 26;23(17):9664. doi:10.3390/ijms23179664; Porto JG, Arbelaez MCS, Pena B, Khandekar A, Malpani A, Nahar B, et al. The Influence of the Microbiome on Urological Malignancies : A Systematic Review. Cancers (Basel). 2023 Oct 14;15(20):4984. doi:10.3390/cancers15204984; da Silva APB, Alluri LSC, Bissada NF, Gupta S. Association between oral pathogens and prostate cancer: building the relationship. Am J Clin Exp Urol. 2019 Feb 18;7(1):1–10.; Fujita K, Matsushita M, De Velasco MA, Hatano K, Minami T, Nonomura N, Uemura H. The Gut-Prostate Axis: A New Perspective of Prostate Cancer Biology through the Gut Microbiome. Cancers (Basel). 2023 Feb 21;15(5):1375. doi:10.3390/cancers15051375; Tachedjian G, O'Hanlon DE, Ravel J. The implausible "in vivo" role of hydrogen peroxide as an antimicrobial factor produced by vaginal microbiota. Microbiome. 2018 Feb 6;6(1):29. doi:10.1186/s40168-018-0418-3; Han M, Wang N, Han W, Ban M, Sun T, Xu J. Vaginal and tumor microbiomes in gynecological cancer (Review). Oncol Lett. 2023 Mar 3;25(4):153. doi:10.3892/ol.2023.13739; Anahtar MN, Byrne EH, Doherty KE, Bowman BA, Yamamoto HS, Soumillon M, et al. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity. 2015 May 19;42(5):965–976. doi:10.1016/j.immuni.2015.04.019; Sobstyl M, Brecht P, Sobstyl A, Mertowska P, Grywalska E. The Role of Microbiota in the Immunopathogenesis of Endometrial Cancer. Int J Mol Sci. 2022 May 20;23(10):5756. doi:10.3390/ijms23105756; Martin DH, Marrazzo JM. The Vaginal Microbiome: Current Understanding and Future Directions. J Infect Dis. 2016 Aug 15;214 Suppl 1(Suppl 1):S36–41. doi:10.1093/infdis/jiw184; Chase D, Goulder A, Zenhausern F, Monk B, Herbst-Kralovetz M. The vaginal and gastrointestinal microbiomes in gynecologic cancers : a review of applications in etiology, symptoms and treatment. Gynecol Oncol. 2015 Jul;138(1):190–200. doi:10.1016/j.ygyno.2015.04.036; Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas 2017 Sep;103:45–53. doi:10.1016/j.maturitas.2017.06.025; Doerflinger SY, Throop AL, Herbst-Kralovetz MM. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis. 2014 Jun 15;209(12):1989–1999. doi:10.1093/infdis/jiu004; Barczyński B, Frąszczak K, Grywalska E, Kotarski J, Korona-Głowniak I. Vaginal and Cervical Microbiota Composition in Patients with Endometrial Cancer. Int J Mol Sci. 2023 May 5;24(9):8266. doi:10.3390/ijms24098266; Elkafas H, Walls M, Al-Hendy A, Ismail N. Gut and genital tract microbiomes: Dysbiosis and link to gynecological disorders. Front Cell Infect Microbiol. 2022 Dec 16;12:1059825. doi:10.3389/fcimb.2022.1059825 Erratum in: Front Cell Infect Microbiol. 2023 May 12;13:1211349. doi:10.3389/fcimb.2023.1211349; Li Y, Liu G, Gong R, Xi Y. Gut Microbiome Dysbiosis in Patients with Endometrial Cancer vs. Healthy Controls Based on 16S rRNA Gene Sequencing. Curr Microbiol. 2023 Jun 9;80(8):239. doi:10.1007/s00284-023-03361-6; Zhou B, Sun C, Huang J, Xia M, Guo E, Li N, et al. The biodiversity Composition of Microbiome in Ovarian Carcinoma Patients. Sci Rep. 2019 Feb 8;9(1):1691. doi:10.1038/s41598-018-38031-2; Shanmughapriya S, Senthilkumar G, Vinodhini K, Das BC, Vasanthi N, Natarajaseenivasan K. Viral and bacterial aetiologies of epithelial ovarian cancer. Eur J Clin Microbiol Infect Dis. 2012 Sep;31(9):2311–2317. doi:10.1007/s10096-012-1570-5; Wang Q, Zhao L, Han L, Fu G, Tuo X, Ma S, et al. The differential distribution of bacteria between cancerous and noncancerous ovarian tissues in situ. J Ovarian Res. 2020 Jan 18;13(1):8. doi:10.1186/s13048-019-0603-4; Sharifian K, Shoja Z, Jalilvand S. The interplay between human papillomavirus and vaginal microbiota in cervical cancer development. Virol J. 2023 Apr 19;20(1):73. doi:10.1186/s12985-023-02037-8; Trifanescu OG, Trifanescu RA, Mitrica RI, Bran DM, Serbanescu GL, Valcauan L, et al. The Female Reproductive Tract Microbiome and Cancerogenesis : A Review Story of Bacteria, Hormones, and Disease. Diagnostics (Basel). 2023 Feb 24;13(5):877. doi:10.3390/diagnostics13050877; Chen Y, Knight R, Gallo RL. Evolving approaches to profiling the microbiome in skin disease. Front Immunol. 2023 Apr 4;14:1151527. doi:10.3389/fimmu.2023.1151527; Kullander J, Forslund O, Dillner J. Staphylococcus aureus and squamous cell carcinoma of the skin. Cancer Epidemiol Biomarkers Prev. 2009 Feb;18(2):472–478. doi:10.1158/1055-9965.epi-08-0905; Madhusudhan N, Pausan MR, Halwachs B, Durdević M, Windisch M, Kehrmann J, et al. Molecular Profiling of Keratinocyte Skin Tumors Links Staphylococcus aureus Overabundance and Increased Human β-Defensin-2 Expression to Growth Promotion of Squamous Cell Carcinoma. Cancers (Basel). 2020 Feb 26;12(3):541. doi:10.3390/cancers12030541; Glatthardt T, Campos JCM, Chamon RC, de Sá Coimbra TF, Rocha GA, de Melo MAF, et al. Small Molecules Produced by Commensal Staphylococcus epidermidis Disrupt Formation of Biofilms by Staphylococcus aureus. Appl Environ Microbiol. 2020 Feb 18;86(5):e02539–19. doi:10.1128/aem.02539-19; Nakatsuji T, Chen TH, Butcher AM, Trzoss LL, Nam SJ, Shirakawa KT, et al. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci Adv. 2018 Feb 28;4(2):eaao4502. doi:10.1126/sciadv.aao4502; Li H, Goh BN, Teh WK, Jiang Z, Goh JPZ, Goh A, et al. Skin Commensal Malassezia globosa Secreted Protease Attenuates Staphylococcus aureus Biofilm Formation. J Invest Dermatol. 2018 May;138(5):1137–1145. doi:10.1016/j.jid.2017.11.034; Wang J, Aldabagh B, Yu J, Arron ST. Role of human papillomavirus in cutaneous squamous cell carcinoma: a meta-analysis. J Am Acad Dermatol. 2014 Apr;70(4):621–629. doi:10.1016/j.jaad.2014.01.857; Tutka K, Żychowska M, Reich A. Diversity and Composition of the Skin, Blood and Gut Microbiome in Rosacea-A Systematic Review of the Literature. Microorganisms. 2020 Nov 8;8(11):1756. doi:10.3390/microorganisms8111756; Yan D, Issa N, Afifi L, Jeon C, Chang HW, Liao W. The Role of the Skin and Gut Microbiome in Psoriatic Disease. Curr Dermatol Rep. 2017 Jun;6(2):94–103. doi:10.1007/s13671-017-0178-5; Опухоли костей и суставных хрящей (С40-С41). Эпидемиология злокачественных образований. Доступно по: https://oncology.ru/specialist/epidemiology/malignant/C40.; Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, et al. The Human Tumor Microbiome Is Composed of Tumor Type-Specific Intracellular Bacteria. Science. 2020 May 29;368(6494):973–980. doi:10.1126/science.aay9189; Perry LM, Cruz SM, Kleber KT, Judge SJ, Darrow MA, Jones LB, et al. Human soft tissue sarcomas harbor an intratumoral viral microbiome which is linked with natural killer cell infiltrate and prognosis. J Immunother Cancer. 2023 Jan;11(1):e004285. doi:10.1136/jitc-2021-004285; Gruffaz M, Zhang T, Marshall V, Gonçalves P, Ramaswami R, Labo N, et al. Signatures of oral microbiome in HIV-infected individuals with oral Kaposi's sarcoma and cell-associated KSHV DNA. PLoS Pathog. 2020 Jan 17;16(1):e1008114. doi:10.1371/journal.ppat.1008114; Chen C., Dorado Garcia H., Scheer M. et al. Current and Future Treatment Strategies for Rhabdomyosarcoma. Front Oncol. 2019 Dec 20;9:1458. doi:10.3389/fonc.2019.01458; Peng J, Tsang JY, Ho DH, Zhang R, Xiao H, Li D, et al. Modulatory effects of adiponectin on the polarization of tumor-associated macrophages. Int J Cancer. 2015 Aug 15;137(4):848–858. doi:10.1002/ijc.29485; Grases-Pintó B, Abril-Gil M, Castell M, Rodríguez-Lagunas MJ, Burleigh S, Fåk Hållenius F, et al. Influence of Leptin and Adiponectin Supplementation on Intraepithelial Lymphocyte and Microbiota Composition in Suckling Rats. Front Immunol. 2019 Oct 9;10:2369. doi:10.3389/fimmu.2019.02369; Peng J, Wang JY, Huang HF, Zheng TT, Li J, Wang LJ, Ma XC, Xiao HT. Adiponectin Deficiency Suppresses Rhabdomyosarcoma Associated with Gut Microbiota Regulation. Biomed Res Int. 2021 Jan 23;2021:8010694. doi:10.1155/2021/8010694; https://www.rpmj.ru/rpmj/article/view/1025

  17. 17
    Academic Journal

    Πηγή: PULMONOLOGIYA; Том 34, № 3 (2024); 401-408 ; Пульмонология; Том 34, № 3 (2024); 401-408 ; 2541-9617 ; 0869-0189

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4562/3663; Ignarro L.J. Biosynthesis and metabolism of endothelium-derived nitric oxide. Ann. Rev. Pharmacol. Toxicol. 1990; 30: 535–560. DOI:10.1146/annurev.pa.30.040190.002535.; Knowles R.G., Moncada S. Nitric oxide synthases in mammals. Biochem. J. 1994; 298 (2): 249–258. DOI:10.1042/bj2980249.; Alderton W.K., Cooper C.E., Knowles R.G. Nitric oxide synthases: structure, function and inhibition. Biochem. J. 2001; 357 (Pt 3): 593–615. DOI:10.1042/bj3570593.; Korde Choudhari S., Chaudhary M., Bagde S. et al. Nitric oxide and cancer: a review. World J. Surg. Oncol. 2013; 11: 118. DOI:10.1186/1477-7819-11-118.; Lundberg J.O., Weitzberg E. Nitric oxide signaling in health and disease. Cell. 2022; 185 (16): 2853–2878. DOI:10.1016/j.cell.2022.06.010.; Yu B., Ichinose F., Bloch D.B., Zapol W.M. Inhaled nitric oxide. Br. J. Pharmacol. 2019; 176 (2): 246–255. DOI:10.1111/bph.14512.; Calabrese E.J., Baldwin L.A. Defining hormesis. Hum. Exp. Toxicol. 2002; 21 (2): 91–97. DOI:10.1191/0960327102ht217oa.; Ridnour L.A., Isenberg J.S., Espey M.G. et al. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc. Natl. Acad. Sci. 2005; 102 (37): 13147–13152. DOI:10.1073/pnas.0502979102.; Kashfi K. The dichotomous role of H2S in cancer cell biology? Déjà vu all over again. Biochem. Pharmacol. 2018; 149: 205–223. DOI:10.1016/j.bcp.2018.01.042.; Sessa W.C. eNOS at a glance. J. Cell Sci. 2004; 117 (Pt 12): 2427–2429. DOI:10.1242/jcs.01165.; Kleinert H., Schwarz P.M., Förstermann U. Regulation of the expression of inducible nitric oxide synthase. Biol. Chem. 2003; 384 (10-11): 1343–1364. DOI:10.1515/BC.2003.152.; Goligorsky M.S., Brodsky S.V., Noiri E. NO bioavailability, endothelial dysfunction, and acute renal failure: new insights into pathophysiology. Semin. Nephrol. 2004; 24 (4): 316–323. DOI:10.1016/j.semnephrol.2004.04.003.; Vannini F., Kashfi K., Nath N. The dual role of iNOS in cancer. Redox Biol. 2015; 6: 334–343. DOI:10.1016/j.redox.2015.08.009.; McGinity C.L., Palmieri E.M., Somasundaram V. et al. Nitric oxide modulates metabolic processes in the tumor immune microenvironment. Int. J. Mol. Sci. 2021; 22 (13): 7068. DOI:10.3390/ijms22137068.; Fukumura D., Kashiwagi S., Jain R.K. The role of nitric oxide in tumour progression. Nat. Rev. Cancer. 2006; 6 (7): 521–534. DOI:10.1038/nrc1910.; Hirst D., Robson T. Targeting nitric oxide for cancer therapy. J. Pharm. Pharmacol. 2010; 59 (1): 3–13. DOI:10.1211/jpp.59.1.0002.; Nguyen T., Brunson D., Crespi C.L. et al. DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc. Natl. Acad. Sci. USA. 1992; 89 (7): 3030–3034. DOI:10.1073/pnas.89.7.3030.; Yang Y.C., Chou H.Y.E., Shen T.L. et al. Topoisomerase II-mediated DNA cleavage and mutagenesis activated by nitric oxide underlie the inflammation-associated tumorigenesis. Antioxid. Redox Signal. 2013; 18 (10): 1129–1140. DOI:10.1089/ars.2012.4620.; Morbidelli L., Donnini S., Ziche M. Role of nitric oxide in the modulation of angiogenesis. Curr. Pharm. Des. 2003; 9 (7): 521–530. DOI:10.2174/1381612033391405.; Zhou J., Schmid T., Brüne B. HIF-1alpha and p53 as targets of NO in affecting cell proliferation, death and adaptation. Curr. Mol. Med. 2004; 4 (7): 741–751. DOI:10.2174/1566524043359926.; Thomas D.D., Espey M.G., Ridnour L.A. et al. Hypoxic inducible factor 1alpha, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide Hypoxic inducible factor 1α, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide. Proc. Natl. Acad. Sci. USA. 2004; 101 (24): 8894–8899. DOI:10.1073/pnas.0400453101.; Ha K.S., Kim K.M., Kwon Y.G. et al. Nitric oxide prevents 6‐hydroxydopamine‐induced apoptosis in PC12 cells through cGMP‐dependent PI3 kinase/Akt activation. FASEB J. 2003; 17 (9): 1036–1047. DOI:10.1096/fj.02-0738com.; Blaise G., Gauvin D., Gangal M., Authier S. Nitric oxide, cell signaling and cell death. Toxicology. 2005; 208 (2): 177–192. DOI:10.1016/j.tox.2004.11.032.; Maiuthed A., Bhummaphan N., Luanpitpong S. et al. Nitric oxide promotes cancer cell dedifferentiation by disrupting an Oct4:caveolin-1 complex: a new regulatory mechanism for cancer stem cell formation. J. Biol. Chem. 2018; 293 (35): 13534–13552. DOI:10.1074/jbc.RA117.000287.; Bonavida B., Baritaki S. Inhibition of epithelial-to-mesenchymal transition (EMT) in cancer by nitric oxide: pivotal roles of nitrosylation of NF-κB, YY1 and snail. For. Immunopathol. Dis. Ther. 2012; 3 (2): 125–133. DOI:10.1615/ForumImmunDisTher.2012006065.; Hickok J.R., Sahni S., Mikhed Y. et al. Nitric oxide suppresses tumor cell migration through N-Myc downstream-regulated Gene-1 (NDRG1) expression. J. Biol. Chem. 2011; 286 (48): 41413–41424. DOI:10.1074/jbc.M111.287052.; Vyas-Read S., Shaul P.W., Yuhanna I.S., Willis B.C. Nitric oxide attenuates epithelial-mesenchymal transition in alveolar epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007; 293 (1): L212–221. DOI:10.1152/ajplung.00475.2006.; Wink D.A., Hines H.B., Cheng R.Y.S. et al. Nitric oxide and redox mechanisms in the immune response. J. Leukoc. Biol. 2011; 89 (6): 873–891. DOI:10.1189/jlb.1010550.; Huang Z., Fu J., Zhang Y. Nitric oxide donor-based cancer therapy: advances and prospects. J. Med. Chem. 2017; 60 (18): 7617–7635. DOI:10.1021/acs.jmedchem.6b01672.; Sorbo L.D., Michaelsen V.S., Ali A. et al. High doses of Inhaled nitric oxide as an innovative antimicrobial strategy for lung infections. Biomedicines. 2022; 10 (7): 1525. DOI:10.3390/biomedicines10071525.; Liu P.F., Zhao D.H., Qi Y. et al. The clinical value of exhaled nitric oxide in patients with lung cancer. Clin. Respir. J. 2018; 12 (1): 23–30. DOI:10.1111/crj.12471.; Li C.Y., Anuraga G., Chang C.P. et al. Repurposing nitric oxide donating drugs in cancer therapy through immune modulation. J. Exp. Clin. Cancer Res. 2023; 42 (1): 22. DOI:10.1186/s13046-022-02590-0.; Stevens E.V., Carpenter A.W., Shin J.H. et al. Nitric oxide-releasing silica nanoparticle inhibition of ovarian cancer cell growth. Mol. Pharm. 2010; 7 (3): 775–785. DOI:10.1021/mp9002865.; Munaweera I., Shi Y., Koneru B. et al. Nitric oxide- and cisplatin-releasing silica nanoparticles for use against non-small cell lung cancer. J. Inorg. Biochem. 2015; 153: 23–31. DOI:10.1016/j.jinorgbio.2015.09.002.; Thakkar S., Sharma D., Kalia K., Tekade R.K. Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: a review. Acta Biomater. 2020; 101: 43–68. DOI:10.1016/j.actbio.2019.09.009.; Dong X., Liu H.J., Feng H.Y. et al. Enhanced drug delivery by nanoscale integration of a nitric oxide donor to induce tumor collagen depletion. Nano Lett. 2019; 19 (2): 997–1008. DOI:10.1021/acs.nanolett.8b04236.; Sung Y.C., Jin P.R., Chu L.A. et al. Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Nat. Nanotechnol. 2019; 14 (12): 1160–1169. DOI:10.1038/s41565-019-0570-3.; Jiang W., Dong W., Li M. et al. Nitric oxide induces immunogenic cell death and potentiates cancer immunotherapy. ACS Nano. 2022; 16 (3): 3881–3894. DOI:10.1021/acsnano.1c09048.; Levy E.S., Morales D.P., Garcia J.V. et al. Near-IR mediated intracellular uncaging of NO from cell targeted hollow gold nanoparticles. Chem. Commun. (Camb). 2015; 51 (100): 17692–17695. DOI:10.1039/C5CC07989F.; Wang L., Chang Y., Feng Y. et al. Nitric oxide stimulated programmable drug release of nanosystem for multidrug resistance cancer therapy. Nano Lett. 2019; 19 (10): 6800–6811. DOI:10.1021/acs.nanolett.9b01869.; Ishima Y., Fang J., Kragh-Hansen U. et al. Tuning of poly-S-nitrosated human serum albumin as superior antitumor nanomedicine. J. Pharm. Sci. 2014; 103 (7): 2184–2188. DOI:10.1002/jps.24020.; Heinecke J.L., Ridnour L.A., Cheng R.Y.S. et al. Tumor microenvironment-based feed-forward regulation of NOS2 in breast cancer progression. Proc. Natl. Acad. Sci. USA. 2014; 111 (17): 6323–6328. DOI:10.1073/pnas.1401799111.; Girotti A.W., Bazak J., Korytowski W. Pro-tumor activity of endogenous nitric oxide in anti-tumor photodynamic therapy: recently recognized bystander effects. Int. J. Mol. Sci. 2023; 24 (14): 11559. DOI:10.3390/ijms241411559.; Cheng R.Y.S., Ridnour L.A., Wink A.L. et al. Interferon-gamma is quintessential for NOS2 and COX2 expression in ER- breast tumors that lead to poor outcome. Cell Death Dis. 2023; 14 (5): 319. DOI:10.1038/s41419-023-05834-9.; Basudhar D., Glynn S.A., Greer M. et al. Coexpression of NOS2 and COX2 accelerates tumor growth and reduces survival in estrogen receptor-negative breast cancer. Proc. Natl. Acad. Sci. USA. 2017; 114 (49): 13030–13035. DOI:10.1073/pnas.1709119114.; Dávila-González D., Choi D.S., Rosato R.R. et al. Pharmacological inhibition of NOS activates ASK1/JNK pathway augmenting docetaxel-mediated apoptosis in triple-negative breast cancer. Clin. Cancer Res. 2018; 24 (5): 1152–1162. DOI:10.1158/1078-0432.CCR-17-1437.; Pershing N.L.K., Yang C.F.J., Xu M., Counter C.M. Treatment with the nitric oxide synthase inhibitor L-NAME provides a survival advantage in a mouse model of Kras mutation-positive, non-small cell lung cancer. Oncotarget. 2106; 7 (27): 42385–42392. DOI:10.18632/oncotarget.9874.; https://journal.pulmonology.ru/pulm/article/view/4562

  18. 18
    Academic Journal

    Συνεισφορές: Работа выполнена при финансовой поддержке Российского научного фонда (грант № 22-75-10095).

    Πηγή: Medical Immunology (Russia); Том 26, № 4 (2024); 677-684 ; Медицинская иммунология; Том 26, № 4 (2024); 677-684 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/3033/1962; Галямина А.Г., Смагин Д.А., Коваленко И.Л., Редина О.Е., Бабенко В.Н., Кудрявцева Н.Н. Дисфункция генов, ассоциируемых с канцерогенезом и апоптозом, развивающаяся в гипоталамусе самцов мышей под влиянием хронического социального стресса // Биохимия, 2022. Т. 87, № 9. С. 1318-1333.; Alboni S., Cervia D., Sugama S., Conti B. Interleukin 18 in the CNS. J. Neuroinflammation, 2010, no. 7, 9. doi:10.1186/1742-2094-7-9.; Audet M.C., McQuaid R.J., Merali Z., Anisman H. Cytokine variations and mood disorders: influence of social stressors and social support. Front. Neurosci., 2014, no. 8, 416. doi:10.3389/fnins.2014.00416.; Babenko V.N., Smagin D.A., Galyamina A.G., Kovalenko I.L., Kudryavtseva N.N. Altered Slc25 family gene expression as markers of mitochondrial dysfunction in brain regions under experimental mixed anxiety/depressionlike disorder. BMC Neurosci., 2018, Vol. 19, Vol. 1, 79. doi:10.1186/s12868-018-0480-6.; Carnero A., Blanco-Aparicio C., Renner O., Link W., Leal J.F. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr. Cancer Drug Targets, 2008, Vol. 8, no 3, pp. 187-198.; Carow B., Rottenberg M.E. SOCS3, a major regulator of infection and inflammation. Front Immunol., 2014, Vol. 5, 58. doi:10.3389/fimmu.2014.00058.; Dey A., Hankey Giblin P.A. Insights into macrophage geterogeneity and cytokine-induced neuroinflammation in major depressive disorder. Pharmaceuticals (Basel), 2018, Vol. 11, no. 3, 64. doi:10.3390/ph11030064.; Dougan M., Dranoff G., Dougan S.K. GM-CSF, IL-3, and IL-5 family of cytokines: regulators of inflammation. Immunity, 2019, Vol. 50, no. 4, pp. 796-811.; Iwamaru A., Szymanski S., Iwado E., Aoki H., Yokoyama T., Fokt I., Hess K., Conrad C., Madden T., Sawaya R., Kondo S., Priebe W., Kondo Y. A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Oncogene, 2007, Vol. 26, no. 17, pp. 2435-2444.; Kudryavtseva N.N., Smagin D.A., Kovalenko I.L., Vishnivetskaya G.B. Repeated positive fighting experience in male inbred mice. Nat. Protoc., 2014, Vol. 9, no. 11, pp. 2705-2717.; Kudryavtseva N.N., Tenditnik M.V., Nikolin V.P., Popova N.A., Kaledin V.I. The influence of psychoemotional status on metastasis of Lewis lung carcinoma amd hepatocarcinoma-29 in mice of C57Bl/6J and CBA/LAC strains. Exp. Oncol., 2007, Vol.29, no. 1, pp. 35-38.; Liu T., Zong S., Jiang Y., Zhao R., Wang J., Hua Q. Neutrophils promote larynx squamous cell carcinoma progression via activating the IL-17/JAK/STAT3 pathway. J. Immunol. Res., 2021, Vol. 2021, 8078646. doi:10.1155/2021/8078646.; Munhoz C.D., García-Bueno B., Madrigal J.L., Lepsch L.B., Scavone C., Leza J.C. Stress-induced neuroinflammation: mechanisms and new pharmacological targets. Braz. J. Med. Biol. Res., 2008, Vol. 41, no. 12, pp. 1037-1046.; Steelman L.S., Abrams S.L., Whelan J., Bertrand FE., Ludwig, D.E., Bäsecke J., Libra M., Stivala F., Milella M., Tafuri A., Lunghi P., Bonati A., Martelli A.M., McCubrey J.A. Contributions of the Raf/MEK/ERK, PI3K/PTEN/ Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia, 2008, Vol. 22, no 4, pp. 686-707.; van der Vorst E.P.C., Theodorou K., Wu Y., Hoeksema M.A., Goossens P., Bursill C.A., Aliyev T., Huitema L.F.A., Tas S.W., Wolfs I.M.J., Kuijpers M.J.E., Gijbels M.J., Schalkwijk C.G., Koonen D.P.Y., AbdollahiRoodsaz S., McDaniels K., Wang C.-C., Leitges M., Lawrence T., Plat J., van Eck M., Rye K.-A., Touqui L., de Winther M.P.J., Biessen E.A.L., Donners M.M.P.C. High-density lipoproteins exert pro-inflammatory effects on macrophages via passive cholesterol depletion and PKC-NF-κB/STAT1-IRF1 signaling. Cell Metab., 2017, Vol. 25, no. 1, pp. 197-207.; https://www.mimmun.ru/mimmun/article/view/3033

  19. 19
    Academic Journal

    Συνεισφορές: The study reported in this publication was funded by the Russian Science Foundation, Project No. 19-74-30011., Работа выполнена при финансовой поддержке Российского научного фонда в рамках гранта № 19-74-30011.

    Πηγή: Biological Products. Prevention, Diagnosis, Treatment; Том 24, № 2 (2024); 140-156 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 24, № 2 (2024); 140-156 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2024-24-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/578/859; https://www.biopreparations.ru/jour/article/view/578/841; https://www.biopreparations.ru/jour/article/downloadSuppFile/578/864; https://www.biopreparations.ru/jour/article/downloadSuppFile/578/950; https://www.biopreparations.ru/jour/article/downloadSuppFile/578/951; https://www.biopreparations.ru/jour/article/downloadSuppFile/578/952; https://www.biopreparations.ru/jour/article/downloadSuppFile/578/953; https://www.biopreparations.ru/jour/article/downloadSuppFile/578/974; Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294(5543):853–8. https://doi.org/10.1126/SCIENCE.1064921; Kloosterman WP, Plasterk RHA. The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006;11(4):441–50. https://doi.org/10.1016/J.DEVCEL.2006.09.009; Ilieva M, Panella R, Uchida S. MicroRNAs in cancer and cardiovascular disease. Cells. 2022;11(22):3551. https://doi.org/10.3390/cells11223551; Tabasi H, Mollazadeh S, Fazeli E, Abnus K, Taghdisi SM, Ramezani M, et al. Transitional insight into the RNA-based oligonucleotides in cancer treatment. Appl Biochem Biotechnol. 2024;196(3):1685–711. https://doi.org/10.1007/s12010-023-04597-5; Raue R, Frank AC, Syed SN, Brüne B. Therapeutic targeting of microRNAs in the tumor microenvironment. Int J Mol Sci. 2021;22(4):2210. https://doi.org/10.3390/ijms22042210; Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N. MicroRNA therapeutics in cancer: current advances and challenges. Cancers (Basel). 2021;13(11):2680. https://doi.org/10.3390/cancers13112680; Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M, et al. An estimate of the total number of true human miRNAs. Nucleic Acids Res. 2019;47(7):3353–64. https://doi.org/10.1093/NAR/GKZ097; Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105. https://doi.org/10.1101/GR.082701.108; Dexheimer PJ, Cochella L. MicroRNAs: from mechanism to organism. Front Сell Dev Biol. 2020;8:409. https://doi.org/10.3389/FCELL.2020.00409; Bofill-De Ros X, Vang Ørom UA. Recent progress in miRNA biogenesis and decay. RNA Biol. 2024;21(1):1–8. https://doi.org/10.1080/15476286.2023.2288741; Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol. 2019; 20(1):5–20. https://doi.org/10.1038/S41580-018-0059-1; Bartel DP. Metazoan microRNAs. Cell. 2018;173(1):20–51. https://doi.org/10.1016/j.cell.2018.03.006; Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 2019;20(1):21–37. https://doi.org/10.1038/S41580-018-0045-7; Nakanishi K. Anatomy of four human Argonaute proteins. Nucleic Acids Res. 2022;50(12):6618–38. https://doi.org/10.1093/nar/gkac519; Chen CYA, Shyu A. Mechanisms of deadenylation-dependent decay. Wiley Interdiscip Rev RNA. 2011;2(2):167–83. https://doi.org/10.1002/WRNA.40; Diener C, Keller A, Meese E. The miRNA-target interactions: an underestimated intricacy. Nucleic Acids Res. 2024;52(4):1544–57. https://doi.org/10.1093/NAR/GKAD1142; Hu X, Yin G, Zhang Y, Zhu L, Huang H, Lv K. Recent advances in the functional explorations of nuclear microRNAs. Front Immunol. 2023;14:1097491. https://doi.org/10.3389/FIMMU.2023.1097491; Liu H, Lei C, He Q, Pan Z, Xiao D, Tao Y. Nuclear functions of mammalian microRNAs in gene regulation, immunity and cancer. Mol Cancer. 2018;17(1):64. https://doi.org/10.1186/S12943-018-0765-5; Failer T, Amponsah-Offeh M, Neuwirth A, Kourtzelis I, Subramanian P, Mirtschink P, et al. Developmental endothelial locus-1 protects from hypertension-induced cardiovascular remodeling via immunomodulation. J Clin Invest. 2022;132(6):126155. https://doi.org/10.1172/JCI126155; Angelucci F, Cechova K, Valis M, Kuca K, Zhang B, Hort J. MicroRNAs in Alzheimer’s disease: diagnostic markers or therapeutic agents? Front Pharmacol. 2019;10:665. https://doi.org/10.3389/FPHAR.2019.00665; Li S, Lei Z, Sun T. The role of microRNAs in neurodegenerative diseases: a review. Cell Biol Toxicol. 2023;39(1):53–83. https://doi.org/10.1007/s10565-022-09761-x; Siasos G, Bletsa E, Stampouloglou PK, Oikonomou E, Tsigkou V, Paschou SA, et al. MicroRNAs in cardiovascular disease. Hell J Cardiol. 2020;61(3):165–73. https://doi.org/10.1016/j.hjc.2020.03.003; Peng Y, Croce CM. The role of microRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004. https://doi.org/10.1038/SIGTRANS.2015.4; Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1–12. https://doi.org/10.1016/J.YDBIO.2006.08.028; Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 2016;76(13):3666–70. https://doi.org/10.1158/0008-5472.CAN-16-0359; Mollaei H, Safaralizadeh R, Rostami Z. MicroRNA replacement therapy in cancer. J Cell Physiol. 2019;234(8):12369–84. https://doi.org/10.1002/JCP.28058; Ragan C, Zuker M, Ragan MA. Quantitative prediction of miRNA-mRNA interaction based on equilibrium concentrations. PLoS Comput Biol. 2011;7(2):1001090. https://doi.org/10.1371/journal.pcbi.1001090; Kingston ER, Bartel DP. Global analyses of the dynamics of mammalian microRNA metabolism. Genome Res. 2019;29(11):1777–90. https://doi.org/10.1101/gr.251421.119; Zlotorynski E. Insights into the kinetics of microRNA biogenesis and turnover. Nat Rev Mol Cell Biol. 2019;20(9):511. https://doi.org/10.1038/S41580-019-0164-9; Sultan S, Rozzi A, Gasparello J, Manicardi A, Corradini R, Papi C, et al. A peptide nucleic acid (PNA) masking the miR-145-5p binding site of the 3’UTR of the cystic fibrosis transmembrane conductance regulator (CFTR) mRNA enhances CFTR expression in Calu-3 cells. Molecules. 2020;25(7):1677. https://doi.org/10.3390/molecules25071677; Colangelo T, Polcaro G, Ziccardi P, Muccillo L, Galgani M, Pucci B, et al. The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells. Cell Death Dis. 2016;7(2):2108. https://doi.org/10.1038/cddis.2016.29; Zhang T, Hu Y, Ju J, Hou L, Li Z, Xiao D, et al. Downregulation of miR-522 suppresses proliferation and metastasis of nonsmall cell lung cancer cells by directly targeting DENN/ MADD domain containing 2D. Sci Rep. 2016;6(1):19346. https://doi.org/10.1038/srep19346; Bridge G, Monteiro R, Henderson S, Emuss V, Lagos D, Georgopoulou D, et al. The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood. 2012;120(25):5063–72. https://doi.org/10.1182/blood-2012-04-423004; Munoz JL, Rodriguez-Cruz V, Ramkissoon SH, Ligon KL, Greco SJ, Rameshwar P. Temozolomide resistance in glioblastoma occurs by miRNA-9-targeted PTCH1, independent of sonic hedgehog level. Oncotarget. 2015;6(2):1190–201. https://doi.org/10.18632/oncotarget.2778; Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096. https://doi.org/10.1126/science.1258096; Hussen BM, Rasul MF, Abdullah SR, Hidayat HJ, Faraj GSH, Ali FA, et al. Targeting miRNA by CRISPR/Cas in cancer: advantages and challenges. Mil Med Res. 2023;10(1):32. https://doi.org/10.1186/S40779-023-00468-6; Chang H, Yi B, Ma R, Zhang X, Zhao H, Xi Y. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep. 2016;6(1):22312. https://doi.org/10.1038/srep22312; Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 2015;21(3):256–62. https://doi.org/10.1038/NM.3802; Jiang Q, Meng X, Meng L, Chang N, Xiong J, Cao H, et al. Small indels induced by CRISPR/Cas9 in the 5’ region of microRNA lead to its depletion and Drosha processing retardance. RNA Biol. 2014;11(10):1243–9. https://doi.org/10.1080/15476286.2014.996067; Kurata JS, Lin RJ. MicroRNA-focused CRISPRCas9 library screen reveals fitness-associated miRNAs. RNA. 2018;24(7):966–81. https://doi.org/10.1261/rna.066282.118; Wu Q, Michaels YS, Fulga TA. Interrogation of functional miRNA-target interactions by CRISPR/Cas9 genome engineering. Methods Mol Biol. 2023;2630:243–64. https://doi.org/10.1007/978-1-0716-2982-6_16; Aquino-Jarquin G. Emerging role of CRISPR/Cas9 technology for microRNAs editing in cancer research. Cancer Res. 2017;77(24):6812–7. https://doi.org/10.1158/0008-5472.CAN-17-2142; Nieland L, van Solinge TS, Cheah PS, Morsett LM, El Khoury J, Rissman JI, et al. CRISPR-Cas knockout of miR21 reduces glioma growth. Mol Ther Oncolytics. 2022;25:121–36. https://doi.org/10.1016/j.omto.2022.04.001; Ahi Y, Bangari D, Mittal S. Adenoviral vector immunity: its implications and circumvention strategies. Curr Gene Ther. 2011;11(4):307–20. https://doi.org/10.2174/156652311796150372; Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4(9):721–6. https://doi.org/10.1038/nmeth1079; Jie J, Liu D, Wang Y, Wu Q, Wu T, Fang R. Generation of MiRNA sponge constructs targeting multiple MiRNAs. J Clin Lab Anal. 2022;36(7):24527. https://doi.org/10.1002/jcla.24527; Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305(5689):1437–41. https://doi.org/10.1126/science.1102513; Kluiver J, Slezak-Prochazka I, Smigielska-Czepiel K, Halsema N, Kroesen BJ, van den Berg A. Generation of miRNA sponge constructs. Methods. 2012;58(2):113–7. https://doi.org/10.1016/j.ymeth.2012.07.019; Rama AR, Quiñonero F, Mesas C, Melguizo C, Prados J. Synthetic circular miR-21 sponge as tool for lung cancer treatment. Int J Mol Sci. 2022;23(6):2963. https://doi.org/10.3390/ijms23062963; Gao S, Tian H, Guo Y, Li Y, Guo Z, Zhu X, et al. miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy. Acta Biomater. 2015;25:184–193. https://doi.org/10.1016/j.actbio.2015.07.020; Liang AL, Zhang TT, Zhou N, Wu CY, Lin MH, Liu YJ. miRNA-10b sponge: an anti-breast cancer study in vitro. Oncol Rep. 2016;35(4):1950–8. https://doi.org/10.3892/or.2016.4596; Mignacca L, Saint-Germain E, Benoit A, Bourdeau V, Moro A, Ferbeyre G. Sponges against miR-19 and miR-155 reactivate the p53-Socs1 axis in hematopoietic cancers. Cytokine. 2016;82:80–6. https://doi.org/10.1016/j.cyto.2016.01.015; Liu S, Sun X, Wang M, Hou Y, Zhan Y, Jiang Y, et al. A microRNA 221– and 222–mediated feedback loop maintains constitutive activation of NFκB and STAT3 in colorectal cancer cells. Gastroenterology. 2014;147(4):847–59. https://doi.org/10.1053/j.gastro.2014.06.006; Lu Y, Xiao J, Lin H, Bai Y, Luo X, Wang Z, et al. A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res. 2009;37(3):24. https://doi.org/10.1093/nar/gkn1053; Mukherji S, Ebert MS, Zheng GXY, Tsang JS, Sharp PA, van Oudenaarden A. MicroRNAs can generate thresholds in target gene expression. Nat Genet. 2011;43(9):854–9. https://doi.org/10.1038/ng.905; Alkan AH, Akgül B. Endogenous miRNA sponges. Methods Mol Biol. 2022;2257:91–104. https://doi.org/10.1007/978-1-0716-1170-8_5; Olesen MT, Kristensen L. Circular RNAs as microRNA sponges: evidence and controversies. Essays Biochem. 2021;65(4):685–96. https://doi.org/10.1042/EBC20200060; Meng L, Liu C, Lü J, Zhao Q, Deng S, Wang G, et al. Small RNA zippers lock miRNA molecules and block miRNA function in mammalian cells. Nat Commun. 2017;8:13964. https://doi.org/10.1038/ncomms13964; Zhang C, Kang C, You Y, Pu P, Yang W, Zhao P, et al. Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27Kip1 in vitro and in vivo. Int J Oncol. 2009;34(6):1653–60. https://doi.org/10.3892/ijo_00000296; Quan J, Jin L, Pan X, He T, Lai Y, Chen P, et al. Oncogenic miR-23a-5p is associated with cellular function in RCC. Mol Med Rep. 2017;16(2):2309–17. https://doi.org/10.3892/mmr.2017.6829; Zhang R, Li F, Wang W, Wang X, Li S, Liu J. The effect of antisense inhibitor of miRNA 106b~25 on the proliferation, invasion, migration, and apoptosis of gastric cancer cell. Tumor Biol. 2016;37(8):10507–15. https://doi.org/10.1007/s13277-016-4937-x; Teplyuk NM, Uhlmann EJ, Gabriely G, Volfovsky N, Wang Y, Teng J, et al. Therapeutic potential of targeting microRNA-10b in established intracranial glioblastoma: first steps toward the clinic. EMBO Mol Med. 2016;8(3):268–87. https://doi.org/10.15252/emmm.201505495; Huynh C, Segura MF, Gaziel-Sovran A, Menendez S, Darvishian F, Chiriboga L, et al. Efficient in vivo microRNA targeting of liver metastasis. Oncogene. 2011;30(12):1481–8. https://doi.org/10.1038/onc.2010.523; Patutina OA, Gaponova (Miroshnichenko) SK, Sen’kova AV, Savin IA, Gladkikh DV, Burakova EA, et al. Mesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR-21 with enhanced in vivo therapeutic potency. Proc Natl Acad Sci. 2020;117(51):32370–9. https://doi.org/10.1073/pnas.2016158117; Miroshnichenko SK, Patutina OA, Burakova EA, Chelobanov BP, Fokina AA, Vlassov VV, et al. Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates with improved biochemical and biological properties. Proc Natl Acad Sci USA. 2019;116(4):1229–34. https://doi.org/10.1073/pnas.1813376116; Gaponova S, Patutina O, Sen’kova A, Burakova E, Savin I, Markov A, et al. Single shot vs. cocktail: a comparison of mono- and combinative application of miRNA-targeted mesyl oligonucleotides for efficient antitumor therapy. Cancers (Basel). 2022;14(18):4396. https://doi.org/10.3390/cancers14184396; Costa PM, Cardoso AL, Custódia C, Cunha P, Pereira de Almeida L, Pedroso de Lima MC. MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: a new multimodal gene therapy approach for glioblastoma. J Control Release. 2015;207:31–9. https://doi.org/10.1016/j.jconrel.2015.04.002; Li Y, Chen Y, Li J, Zhang Z, Huang C, Lian G, et al. Co-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapy. Cancer Sci. 2017;108(7):1493–503. https://doi.org/10.1111/cas.13267; Tassone P, Di Martino MT, Arbitrio M, Fiorillo L, Staropoli N, Ciliberto D, et al. Safety and activity of the first-in-class locked nucleic acid (LNA) miR-221 selective inhibitor in refractory advanced cancer patients: a first-in-human, phase 1, open-label, dose-escalation study. J Hematol Oncol. 2023;16(1):68. https://doi.org/10.1186/s13045-023-01468-8; Gaglione M, Milano G, Chambery A, Moggio L, Romanelli A, Messere A. PNA-based artificial nucleases as antisense and anti-miRNA oligonucleotide agents. Mol Biosyst. 2011;7(8):2490–9. https://doi.org/10.1039/c1mb05131h; Dogandzhiyski P, Ghidini A, Danneberg F, Strömberg R, Göbel MW. Studies on tris(2-aminobenzimidazole)-PNA based artificial nucleases: a comparison of two analytical techniques. Bioconjug Chem. 2015;26(12):2514–9. https://doi.org/10.1021/acs.bioconjchem.5b00534; Patutina OA, Bichenkova EV, Miroshnichenko SK, Mironova NL, Trivoluzzi LT, Burusco KK, et al. miRNases: novel peptide-oligonucleotide bioconjugates that silence miR-21 in lymphosarcoma cells. Biomaterials. 2017;122:163–78. https://doi.org/10.1016/j.biomaterials.2017.01.018; Patutina O, Chiglintseva D, Bichenkova E, Gaponova S, Mironova N, Vlassov V, et al. Dual miRNases for triple incision of miRNA target: design concept and catalytic performance. Molecules. 2020;25(10):2459. https://doi.org/10.3390/MOLECULES25102459; Patutina O, Chiglintseva D, Amirloo B, Clarke D, Gaponova S, Vlassov V, et al. Bulge-forming miRNases cleave oncogenic miRNAs at the central loop region in a sequence-specific manner. Int J Mol Sci. 2022;23(12):6562. https://doi.org/10.3390/ijms23126562; Patutina OA, Miroshnichenko SK, Mironova NL, Sen’kova AV, Bichenkova EV, Clarke DJ, et al. Catalytic knockdown of MIR-21 by artificial ribonuclease: biological performance in tumor model. Front Pharmacol. 2019;10:879. https://doi.org/10.3389/fphar.2019.00879; https://www.biopreparations.ru/jour/article/view/578

  20. 20