Showing 1 - 1 results of 1 for search '"калибровочная (градуировочная) характеристика"', query time: 0.44s Refine Results
  1. 1
    Academic Journal

    Contributors: The work was supported by the State Assignment «Science» within the framework of the scientific project No. FSWW-2023–0005., Работа выполнена при финансовой поддержке Государственного задания «Наука» в рамках научного проекта № FSWW-2023–0005.

    Source: Measurement Standards. Reference Materials; Том 20, № 1 (2024); 85-92 ; Эталоны. Стандартные образцы; Том 20, № 1 (2024); 85-92

    File Description: application/pdf

    Relation: https://www.rmjournal.ru/jour/article/view/477/329; Puls M. P. The effect of hydrogen and hydrides on the integrity of zirconium alloy components: delayed hydride cracking. London: Springer, 2012. 452 p. https://doi.org/10.1007/978-1-4471-4195-2; Positron annihilation spectroscopy study of defects in hydrogen loaded Zr-1Nb alloy / J. Bordulev [et al.] // Journal of Alloys and Compounds. 2019. Vol. 798. P. 685–694. https://doi.org/10.1016/j.jallcom.2019.05.186; Microstructure and hydride embrittlement of zirconium model alloys containing niobium and tin / S. J. Oh [et al.] // Materials Science and Engineering. 2011. Vol. 528. Iss. 10. P. 3771–3776. https://doi.org/10.1016/j.msea.2011.01.093; On the role of hydrogen filled vacancies on the embrittlement of zirconium: An ab initio investigation / P. A. T. Olsson [et al.] // Journal of Nuclear Materials. 2015. Vol. 467. Part 1. P. 311–319. https://doi.org/10.1016/j.jnucmat.2015.09.056; Northwood D. O., Kosasih U. Hydrides and delayed hydrogen cracking in zirconium and its alloys // International Metals Reviews. 1983. Vol. 28. Iss. 1. P. 92–121. https://doi.org/10.1179/imtr.1983.28.1.92; Hydrogen interactions with defects in crystalline solids / S. M. Myers [et al.] // Reviews of Modern Physics. 1992. Vol. 64. Iss. 2. P. 559–617. https://doi.org/10.1103/RevModPhys.64.559; Hydrogen and vacancy clustering in zirconium / C. Varvenne [et al.] // Acta Materialia. 2015. Vol. 102. P. 56–69. https://doi.org/10.1016/j.actamat.2015.09.019; Investigation of hydrogen distribution from the surface to the depth in technically pure titanium alloy with the help of glow discharge optical emission spectroscopy / A. M. Lider [et al.] // Applied Mechanics and Materials. 2013. Vol. 302. P. 92–96. https://doi.org/10.4028/www.scientific.net/AMM.302.92; Quantitative depth profile analysis of metallic coatings by pulsed radiofrequency glow discharge optical emission spectrometry / P. Sánchez [et al.] // Analytica chimica acta. 2011. Vol. 684. Iss. 1. P. 47–53. https://doi.org/10.1016/j.aca.2010.10.039; Glow discharge optical emission spectroscopy: A practical guide / R. Payling [et al.]. Cambridge (UK): RSC Analytical Spectroscopy Monographs, 2003. https://doi.org/10.1039/9781847550989; Marcus R. K., Broekaert J. A. C. Glow discharge plasmas in analytical spectroscopy // TrAC Trends in Analytical Chemistry. 2003. Vol. 22, Iss. 3. P. 186 https://doi.org/10.1016/S0165-9936(03)00307-8; Kudiiarov V. N., Lider A. M., Harchenko S. Y. Hydrogen accumulation in technically pure titanium alloy at saturation from gas atmosphere // Advanced Materials Research. 2014. Vol. 880. P. 68–73. https://doi.org/10.4028/www.scientific.net/AMR.880.68; Andreasen A. Design and building of a new experimental setup for testing hydrogen storage materials // Risø-Report. 2005. P. 52. https://doi.org/10.13140/RG.2.2.32450.99527; Checchetto R., Trettel G., Miotello A. Sievert-type apparatus for the study of hydrogen storage in solids // Measurement Science and Technology. 2003. Vol. 15. Iss. 1. P. 127–130. DOI:10.1088/0957–0233/15/1/017; https://www.rmjournal.ru/jour/article/view/477