Εμφανίζονται 1 - 20 Αποτελέσματα από 29 για την αναζήτηση '"ишемически- реперфузионное повреждение"', χρόνος αναζήτησης: 0,92δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal

    Συνεισφορές: Работа выполнена при поддержке гранта Российского научного фонда (проект 24-25-00352).

    Πηγή: Russian Journal of Transplantology and Artificial Organs; Том 26, № 2 (2024); 51-57 ; Вестник трансплантологии и искусственных органов; Том 26, № 2 (2024); 51-57 ; 1995-1191

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1770/1610; https://journal.transpl.ru/vtio/article/view/1770/1649; Фомичев АВ, Попцов ВН, Сирота ДА, Жульков МО, Едемский АГ, Протопопов АВ и др. Среднесрочные и отдаленные результаты трансплантации серд ца с длительной холодовой ишемией. Вестник трансплантологии и искусственных органов. 2023; 25 (1): 99–105. https://doi.org/10.15825/1995-1191-2023-1-99-105.; Erasmus M, Neyrink A, Sabatino M, Potena L. Heart allograft preservation: an arduous journey from the donor to the recipient. Curr Opin Cardiol. 2017; 32 (3): 292– 300. https://doi.org/10.1097/hco.0000000000000395.; Segovia J, Cosío MD, Barceló JM, Bueno MG, Pavía PG, Burgos R et al. RADIAL: a novel primary graft failure risk score in heart transplantation. J Heart Lung Transplant. 2011; 30 (6): 644–651. https://doi.org/10.1016/j.healun.2011.01.721.; Lund LH, Khush KK, Cherikh WS, Goldfarb S, Kucheryavaya AY, Levvey BJ et al. The Registry of the International Society for Heart and Lung Transplantation: Thirty-fourth Adult Heart Transplantation Report – 2017; Focus Theme: Allograft ischemic time. J Heart Lung Transplant. 2017; 36 (10): 1037–1046. https://doi.org/10.1016/j.healun.2017.07.019.; Redd MA, Scheuer SE, Saez NJ, Yoshikawa Y, Chiu HS, Gao L et al. Therapeutic Inhibition of Acid-Sensing Ion Channel 1a Recovers Heart Function After Ischemia-Reperfusion Injury. Circulation. 2021; 144 (12): 947–960. https://doi.org/10.1161/cir.0000000000001020.; Minasian SM, Galagudza MM, Dmitriev YV, Karpov AA, Vlasov TD. Preservation of the donor heart: from basic science to clinical studies. Interact Cardiovasc Thorac Surg. 2015; 20 (4): 510–519. https://doi.org/10.1093/icvts/ivu432.; Rauen U, Klempt S, De Groot H. Histidine-induced injury to cultured liver cells, effects of histidine derivatives and of iron chelators. Cell Mol Life Sci. 2007; 64 (2): 192–205. https://doi.org/10.1007/s00018-006-6456-1.; Kim ST, Helmers MR, Iyengar A, Han JJ, Patrick WL, Weingarten N D et al. Interaction between donor obesity and prolonged donor ischemic time in heart transplantation. J Cardiol. 2022; 80 (4): 351–357. https://doi.org/10.1016/j.jjcc.2022.06.013.; Ribeiro RVP, Friedrich JO, Ouzounian M, Yau T, Lee J, Yanagawa B. Supplemental Cardioplegia During Donor Heart Implantation: A Systematic Review and MetaAnalysis. Ann Thorac Surg. 2020; 110 (2): 545–552. https://doi.org/10.1016/j.athoracsur.2019.10.094.; Luciani GB, Faggian G, Montalbano G, Casali G, Forni A, Chiominto B, Mazzucco A. Blood versus crystalloid cardioplegia for myocardial protection of donor hearts during transplantation: A prospective, randomized clinical trial. J Thorac Cardiovasc Surg. 1999; 118 (5): 787– 795. https://doi.org/10.1016/s0022-5223(99)70047-4.; Luciani GB, Faggian G, Forni A, Montalbano G, Chiominto B, Mazzucco A. Myocardial protection during heart transplantation using blood cardioplegia. Transplant Proc. 1997; 29 (8): 3386–3388. https://doi.org/10.1016/s0041-1345(97)00950-0.; Luciani GB, Forni A, Rigatelli G, Chiominto B, Cardaioli P, Mazzucco A, Faggian G. Myocardial protection in heart transplantation using blood cardioplegia: 12year outcome of a prospective randomized trial. J Heart Lung Transplant. 2011; 30 (1): 29–36. https://doi.org/10.1016/j.healun.2010.08.014.; Soots G, Crepin F, Prat A, Gosselin B, Pol A, Moreau D, Devulder JP. Cold blood cardioplegia and warm cardioplegic reperfusion in heart transplantation. Eur J Cardiothorac Surg. 1991; 5 (8): 400–404. https://doi.org/10.1016/1010-7940(91)90183-k.; Carrier M, Leung TK, Solymoss BC, Cartier R, Leclerc Y, Pelletier LC. Clinical trial of retrograde warm blood reperfusion versus standard cold topical irrigation of transplanted hearts. Ann Thorac Surg. 1996; 61 (5): 1310– 1315. https://doi.org/10.1016/0003-4975(96)00075-6.; Fiocchi R, Vernocchi A, Mammana C, Iamele L, Gamba A. Continuous retrograde warm blood reperfusion reduces cardiac troponin I release after heart transplantation: a prospective randomized study. Transpl Int. 2000; 13 Suppl 1: S240–S244. https://doi.org/10.1111/j.1432-2277.2000.tb02027.x.; Pradas G, Cuenca J, Juffe A. Continuous warm reperfusion during heart transplantation. J Thorac Cardiovasc Surg. 1996; 111 (4): 784–790. https://doi.org/10.1016/s0022-5223(96)70338-0.; Tevaearai Stahel HT, Unger D, Schmidli J, Gahl B, Englberger L, Kadner A et al. Supplemental Cardioplegia Immediately before Graft Implantation may Improve Early Post-Transplantation Outcome. Front Surg. 2014; 1: 46. https://doi.org/10.3389/fsurg.2014.00046.; Mozaffari MS, Liu JY, Abebe W, Baban B. Mechanisms of load dependency of myocardial ischemia reperfusion injury. Am J Cardiovasc Dis. 2013; 3 (4): 180–196.; Landymore RW, Bayes AJ, Murphy JT, Fris JH. Preconditioning prevents myocardial stunning after cardiac transplantation. Ann Thorac Surg. 1998; 66 (6): 1953– 1957. https://doi.org/10.1016/s0003-4975(98)00902-3.; Wang G, Zhang Y, Yang L, Chen Y, Fang Z, Zhou H et al. Cardioprotective effect of remote ischemic preconditioning with postconditioning on donor hearts in patients undergoing heart transplantation: A single-center, double-blind, randomized controlled trial. BMC Anesthesiol. 2019; 19 (1): 1–8. https://doi.org/10.21203/rs.2.182/v1.; Carter KT, Lirette ST, Baran DA, Creswell LL, Panos AL, Cochran RP et al. The Effect of Cardiac Preservation Solutions on Heart Transplant Survival. J Surg Res. 2019; 242: 157–165. https://doi.org/10.1016/j.jss.2019.04.041.; George TJ, Arnaoutakis GJ, Beaty CA, Shah AS, Conte JV, Halushka MK. A novel method of measuring cardiac preservation injury demonstrates University of Wisconsin solution is associated with less ischemic necrosis than Celsior in early cardiac allograft biopsy specimens. J Heart Lung Transplant. 2012; 31 (4): 410–418. https://doi.org/10.1016/j.healun.2011.11.023.; Cannata A, Botta L, Colombo T, Russo CF, Taglieri C, Bruschi G et al. Does the cardioplegic solution have an effect on early outcomes following heart transplantation? Eur J Cardiothorac Surg. 2012; 41 (4): e48–e52. https://doi.org/10.1093/ejcts/ezr321.; Loganathan S, Radovits T, Hirschberg K, Korkmaz S, Koch A, Karck M, Szabó G. Effects of Custodiol-N, a novel organ preservation solution, on ischemia/reperfusion injury. J Thorac Cardiovasc Surg. 2010; 139 (4): 1048–1056. https://doi.org/10.1016/j.jtcvs.2009.09.034.; Mohr A, Brockmann JG, Becker F. HTK-N: Modified Histidine-Tryptophan-Ketoglutarate Solution-A Promising New Tool in Solid Organ Preservation. Int J Mol Sci. 2020; 21 (18): 1–16. https://doi.org/10.3390/ijms21186468.; Szabó G, Loganathan S, Korkmaz-Icöz S, Balogh Á, Papp Z, Brlecic P et al. Improvement of Left Ventricular Graft Function Using an Iron-Chelator-Supplemented Bretschneider Solution in a Canine Model of Orthotopic Heart Transplantation. Int J Mol Sci. 2022; 23 (13): 7453. https://doi.org/10.3390/ijms23137453.; Минасян СМ, Галагудза ММ, Дмитриев ЮВ, Карпов АА, Боброва ЕА, Красичков АС и др. Консервация донорского серд ца: история и современность с позиции трансляционной медицины. Регионарное кровообращение и микроциркуляция. 2014; 13 (3): 4–16. https://doi.org/10.24884/1682-6655-2014-13-3-4-16.; Radakovic D, Karimli S, Penov K, Schade I, Hamouda K, Bening C et al. First clinical experience with the novel cold storage SherpaPakTM system for donor heart transportation. J Thorac Dis. 2020; 12 (12): 7227–7235. https://doi.org/10.21037/jtd-20-1827.; Horch DF, Mehlitz T, Laurich O, Abel A, Reuter S, Pratschke H et al. Organ transport temperature box: Multicenter study on transport temperature of organs. Transplant Proc. 2002; 34 (6): 2320. https://doi.org/10.1016/s0041-1345(02)03253-0.; Michel SG, LaMuraglia Ii GM, Madariaga ML, Anderson LM. Innovative cold storage of donor organs using the Paragonix Sherpa Pak TM devices. Heart Lung Vessel. 2015; 7 (3): 246–255.; Kothari P. Ex-Vivo Preservation of Heart Allografts – An Overview of the Current State. J Cardiovasc Dev Dis. 2023; 10 (3): 105. https://doi.org/10.3390/jcdd10030105.; Ardehali A, Esmailian F, Deng M, Soltesz E, Hsich E, Naka Y et al. Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): a prospective, open-label, multicentre, randomised non-inferiority trial. Lancet. 2015; 385 (9987): 2577–2584. https://doi.org/10.1016/s0140-6736(15)60261-6.; Ragalie WS, Ardehali A. Current status of normothermic ex-vivo perfusion of cardiac allografts. Curr Opin Organ Transplant. 2020; 25 (3): 237–240. https://doi.org/10.1097/mot.0000000000000759.; Stamp NL, Shah A, Vincent V, Wright B, Wood C, Pavey W et al. Successful Heart Transplant after Ten Hours Out-of-body Time using the TransMedics Organ Care System. Heart Lung Circ. 2015; 24 (6): 611–613. https://doi.org/10.1016/j.hlc.2015.01.005.; Voigt JD, Leacche M, Copeland H, Wolfe SB, Pham SM, Shudo Y et al. Multicenter Registry Using Propensity Score Analysis to Compare a Novel Transport/Preservation System to Traditional Means on Postoperative Hospital Outcomes and Costs for Heart Transplant Patients. ASAIO J. 2023; 69 (4): 345–349. https://doi.org/10.1097/mat.0000000000001844.; https://journal.transpl.ru/vtio/article/view/1770

  4. 4
    Academic Journal

    Συνεισφορές: With the support of a Grant for the implementation of the Scientific and Practical Project in the field of medicine: “Applying various protocols for perfusion preservation in kidney and liver transplantation” in conformity with concluded Agreement No. 2312-15/22 of March 25, 2022, При поддержке гранта на реализацию научно-практического проекта в сфере медицины: «Применение различных протоколов перфузионной консервации при трансплантации почек и печени» в соответствии с заключенным Соглашением № 2312-15/22 от 25 марта 2022 года

    Πηγή: Transplantologiya. The Russian Journal of Transplantation; Том 16, № 1 (2024); 116-134 ; Трансплантология; Том 16, № 1 (2024); 116-134 ; 2542-0909 ; 2074-0506

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/860/847; https://www.jtransplantologiya.ru/jour/article/view/860/850; Готье С.В., Хомяков С.М. Донорство и трансплантация органов в Российской Федерации в 2021 году. XIV сообщение регистра Российского трансплантологического общества. Вестник трансплантологии и искусственных органов. 2022;24(3):8–31. https://doi.org/10.15825/1995-1191-2022-3-8-31; Busquets J, Xiol X, Figueras J, Jaurrieta E, Torras J, Ramos E, et al. The impact of donor age on liver transplantation: influence of donor age on early liver function and on subsequent patient and graft survival. Transplantation. 2001;71(12):1765–1771. PMID: 11455256 https://doi.org/10.1097/00007890-200106270-00011; Kawut SM, Reyentovich A, Wilt JS, Anzeck R, Lederer DJ, O'Shea MK, et al. Outcomes of extended donor lung recipients after lung transplantation. Transplantation. 2005;79(3):310–316. PMID: 15699761 https://doi.org/10.1097/01.tp.0000149504.53710.ae; Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY, Robb EL, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431–435. PMID: 25383517 https://doi.org/10.1038/nature13909; Petrenko A, Carnevale M, Somov A, Osorio J, Rodríguez J, Guibert E, et al. Organ preservation into the 2020s: the era of dynamic intervention. Transfus Med Hemother. 2019;46(3):151–172. PMID: 31244584 https://doi.org/10.1159/000499610; Rojas-Pena A, Bartlett RH. Ex situ organ preservation: the temperature paradigm. Transplantation. 2018;102(4):554–556. PMID: 29309378 https://doi.org/10.1097/TP.0000000000002081; Mordant P, Nakajima D, Kalaf R, Iskender I, Maahs L, Behrens P, et al. Mesenchymal stem cell treatment is associated with decreased perfusate concentration ofinterleukin-8 during ex vivo perfusion of donor lungs after 18-hourpreservation. J Heart Lung Transplant. 2016;35(10):1245–1254. PMID: 27444694 https://doi.org/10.1016/j.healun.2016.04.017; Lee JW, Fang X, Gupta N, Serikov V, Matthay MA. Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci USA. 2009;106(38):16357–16362. https://doi.org/10.1073/pnas.0907996106; Lee JW, Krasnodembskaya A, McKenna DH, Song Y, Abbott J, Matthay MA. Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. Am J Respir Crit Care Med. 2013;187(7):751–760. PMID: 23292883 https://doi.org/10.1164/rccm.201206-0990OC; McAuley DF, Curley GF, Hamid UI, Laffey JG, Abbott J, McKenna DH, et al. Clinical grade allogeneic human mesen chymal stem cells restore alveolar fluid clearance inhuman lungs rejected for transplantation. Am J Physiol Lung Cell Mol Physiol. 2014;306(9):L809– L815. PMID: 24532289 https://doi.org/10.1152/ajplung.00358.2013; Stone ML, Zhao Y, Robert Smith J, Weiss ML, Kron IL, Laubach VE, et al. Mesenchymal stromal cell-derived extracellular vesicles attenuate lung ischemiareperfusion injury and enhance reconditioning of donor lungs after circulatory death. Respir Res. 2017;18(1):212. PMID: 29268735 https://doi.org/10.1186/s12931-017-0704-9; Gennai S, Monsel A, Hao Q, Park J, Matthay MA, Lee JW. Microvesicles derived from human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. Am J Transplant. 2015;15(9):2404– 2412. PMID: 25847030 https://doi.org/10.1111/ajt.13271; Park J, Kim S, Lim H, Liu A, Hu S, Lee J, et al. Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe E. coli pneumonia. Thorax. 2019;74(1):43–50. PMID: 30076187 https://doi.org/10.1136/thoraxjnl-2018-211576; Martens A, Ordies S, Vanaudenaerde BM, Verleden SE, Vos R, Van Raemdonck DE, et al. Immunoregulatory effects of multipotent adult progenitor cells in a porcine ex vivo lung perfusion model. Stem Cell Res Ther. 2017;8(1):159. PMID: 28676074 https://doi.org/10.1186/s13287-017-0603-5; La Francesca S, Ting AE, Sakamoto J, Rhudy J, Bonenfant NR, Borg ZD, et al. Multipotent adult progenitor cells decrease cold ischemic injury in ex vivo perfused human lungs: an initial pilot and feasibility study. Transplant Res. 2014;3(1):19. PMID: 25671090 https://doi.org/10.1186/2047-1440-3-19eCollection 2014.; Stone ML, Sharma AK, Mas VR, Gehrau RC, Mulloy DP, Zhao Y, et al. Ex vivo perfusion with adenosine A2A receptor agonist enhances rehabilitation of murine donor lungs after circulatory death. Transplantation. 2015;99(12):2494–2503. PMID: 26262504 https://doi.org/10.1097/TP.0000000000000830; Emaminia A, Lapar DJ, Zhao Y, Steidle JF, Harris DA, Laubach VE, et al. Adenosine A2A agonist improves lung function during ex vivo lung perfusion. Ann Thorac Surg. 2011;92(5):1840–1846. PMID: 22051279 https://doi.org/10.1016/j.athoracsur.2011.06.062; Wagner CE, Pope NH, Charles EJ, Huerter ME, Sharma AK, Salmon MD, et al. Ex vivo lung perfusion with adenosine A2A receptor agonist allows prolonged cold preservation of lungs donated after cardiac death. J Thorac Cardiovasc Surg. 2016;151(2):538–545. PMID: 26323621 https://doi.org/10.1016/j.jtcvs.2015.07.075; Huerter ME, Charles EJ, Downs EA, Hu Y, Lau CL, Isbell JM, et al. Enteral access is not required for esophageal cancer patients undergoing neoadjuvant therapy. Ann Thorac Surg. 2016;102(3):948–954. PMID: 27209608 https://doi.org/10.1016/j.athoracsur.2016.03.041; Charles EJ, Kron IL. Which ischemic mitral valves should be repaired and how? Time will tell. J Thorac Cardiovasc Surg. 2017;154(3):833. PMID: 28826152 https://doi.org/10.1016/j.jtcvs.2017.05.006; Valenza F, Rosso L, Coppola S, Froio S, Colombo J, Dossi R, et al. β-adrenergic agonist infusion during extracorporeal lung perfusion: effects on glucose concentration in the perfusion fluid and on lung function. J Heart Lung Transplant. 2012;31(5):524–530. PMID: 22386450 https://doi.org/10.1016/jhealun.2012.02.001; Kondo T, Chen F, Ohsumi A, Hijiy a K, Motoyama H, Sowa T, et al. β2-adrenoreceptor agonist inhalation during ex vivo lung perfusion attenuates lung injury. Ann Thorac Surg. 2015;100(2):480–486. PMID: 26141779 https://doi.org/10.1016/j.athoracsur.2015.02.136; Hijiya K, Chen-Yoshikawa TF, Kondo T, Motoyama H, Ohsumi A, Nakajima D, et al. Bronchodilator inhalation during ex vivo lung perfusion improves posttransplant graft function after warm ischemia. Ann Thorac Surg. 2017;103(2):447–453. PMID: 27737734 https://doi.org/10.1016/j.athoracsur.2016.07.066; Inci I, Zhai W, Arni S, Inci D, Hillinger S, Lardinois D, et al. Fibrinolytic treatment improves the quality of lungs retrieved from non-heart-beating donors. J Heart Lung Transplant. 2007;26(10):1054–1060. PMID: 17919627 https://doi.org/10.1016/j.healun.2007.07.033; Nakajima D, Cypel M, Bonato R, Machuca TN, Iskender I, Hashimoto K, et al. Ex vivo perfusion treatment of infection in human donor lungs. Am J Transplant. 2016;16(4):1229–1237. PMID: 26730551 https://doi.org/10.1111/ajt.13562; Chen F, Nakamura T, Fujinaga T, Zhang J, Hamakawa H, Omasa M, et al. Protective effect of a nebulized beta2-adrenoreceptor agonist in warm ischemic-reperfused rat lungs. Ann Thorac Surg. 2006;82(2):465–471. PMID: 16863745 https://doi.org/10.1016/j.athoracsur.2006.01.010; Sakamoto J, Chen F, Nakajima D, Yamada T, Ohsumi A, Zhao X, et al. The effect of β-2 adrenoreceptor agonist inhalation on lungs donated after cardiac death in a canine lung transplantation model. J Heart Lung Transplant. 2012;31(7):773–779. PMID: 22534458 https://doi.org/10.1016/j.healun.2012.03.012; Machuca TN, Cypel M, Bonato R, Yeung JC, Chun YM, Juvet S, et al. Safety and efficacy of ex vivo donor lung adenoviral IL-10 gene therapy in a large animal lung transplant survival model. Hum Gene Ther. 2017;28(9):757– 765. PMID: 28052693 https://doi.org/10.1089/hum.2016.070; Andreasson A, Karamanou DM, Perry JD, Perry A, Ӧzalp F, Butt T, et al. The effect of ex vivo lung perfusion on microbial load in human donor lungs. J Heart Lung Transplant. 2014;33(9):910–916. PMID: 24631044 https://doi.org/10.1016/j.healun.2013.12.023; Galasso M, Feld JJ, Watanabe Y, Pipkin M, Summers C, Ali A, et al. Inactivating hepatitis C virus in donor lungs using light therapies during normothermic ex vivo lung perfusion. Nat Commun. 2019;10(1):481. PMID: 30696822 https://doi.org/10.1038/s41467-018-08261-z; Cypel M, Liu M, Rubacha M, Yeung JC, Hirayama S, Anraku M, et al. Functional repair of human donor lungs by IL-10 gene therapy. Sci Transl Med. 2009;1(4):4ra9. PMID: 20368171 https://doi.org/10.1126/scitranslmed.3000266; Yeung JC, Wagnetz D, Cypel M, Rubacha M, Koike T, Chun YM, et al. Ex vivo adenoviral vector gene delivery results in decreased vector-associated inflammation pre- and post-lung transplantation in the pig. Mol Ther. 2012;20(6):1204–1211. PMID: 22453765 https://doi.org/10.1038/mt.2012.57; Figueiredo C, Carvalho Oliveira M, Chen-Wacker C, Jansson K, Höffler K, Yuzefovych Y, et al. Immunoengineering of the vascular endothelium to silence MHC expression during normothermic ex vivo lung perfusion. Hum Gene Ther. 2019;30(4):485–496. PMID: 30261752 https://doi.org/10.1089/hum.2018.117; McAuley DF, Frank JA, Fang X, Matthay MA. Clinically relevant concentrations of beta2-adrenergic agonists stimulate maximal cyclic adenosine monophosphate-dependent airspace fluid clearance and decrease pulmonary edema in experimental acid-induced lung injury. Crit Care Med. 2004;32(7):1470–1476. PMID: 15241090 https://doi.org/10.1097/01.ccm.0000129489.34416.0e; Machuca TN, Hsin MK, Ott HC, Chen M, Hwang DM, Cypel M, et al. Injury-specific ex vivo treatment of the donor lung: pulmonary thrombolysis followed by successful lung transplantation. Am J Respir Crit Care Med. 2013;188(7):878–880. PMID: 24083866 https://doi.org/10.1164/rccm.2013020368LE; Jamieson RW, Zilvetti M, Roy D, Hughes D, Morovat A, Coussios CC, et al. Hepatic steatosis and normothermic perfusion-preliminary experiments in a porcine model. Transplantation. 2011;92(3):289–295. PMID: 21681143 https://doi.org/10.1097/TP.0b013e318223d817; Liu Q, Berendsen T, Izamis ML, Uygun B, Yarmush ML, Uygun K. Perfusion defatting at subnormothermic temperatures in steatotic rat livers. Transplant Proc. 2013;45(9):3209–3213. PMID: 24182786 https://doi.org/10.1016/j.transproceed.2013.05.005; Nagrath D, Xu H, Tanimura Y, Zuo R, Berthiaume F, Avila M, et al. Metabolic preconditioning of donor organs: defatting fatty livers by normothermic perfusion ex vivo. Metab Eng. 2009;11(4–5):274–283. PMID: 19508897 https://doi.org/10.1016/j.ymben.2009.05.005; Hara Y, Akamatsu Y, Maida K, Kashiwadate T, Kobayashi Y, Ohuchi N, et al. A new liver graft preparation method for uncontrolled non-heart-beating donors, combining short oxygenated warm perfusion and prostaglandin E1. J Surg Res. 2013;184(2):1134–1142. PMID: 23688794 https://doi.org/10.1016/j.jss.2013.04.030; Maida K, Akamatsu Y, Hara Y, Tokodai K, Miyagi S, Kashiwadate T, et al. Short oxygenated warm perfusion with prostaglandin E1 administration before cold preservationas a novel resuscitation method for liver grafts from donors after cardiac death in a rat in vivo model. Transplantation. 2016;100(5):1052– 1058. PMID: 26950723 https://doi.org/10.1097/TP.0000000000001127; Nassar A, Liu Q, Farias K, D'Amico G, Buccini L, Urcuyo D, et al. Role of vasodilation during normothermic machine perfusion of DCD porcine livers. Int J Artif Organs. 2014;37(2):165–172. PMID: 24619899 https://doi.org/10.5301/ijao.5000297; Echeverri J, Goldaracena N, Kaths JM, Linares I, Roizales R, Kollmann D, et al. Comparison of BQ123, epoprostenol, and verapamil as vasodilators during normothermic ex vivo liver machine perfusion. Transplantation. 2018;102(4):601–608. PMID: 29189484 https://doi.org/10.1097/TP.0000000000002021; Goldaracena N, Spetzler VN, Echeverri J, Kaths JM, Cherepanov V, Persson R, et al. Inducing hepatitis C virus resistance after pig liver transplantationa proof of concept of liver graft modification using warm ex vivo perfusion. Am J Transplant. 2017;17(4):970–978. PMID: 27805315 https://doi.org/10.1111/ajt.14100; Gillooly AR, Perry J, Martins PN. First report of siRNA uptake (forRNA interference) during ex vivo hypothermic and normothermic liver machine perfusion. Transplantation. 2019;103(3):e56–e57. PMID: 30418428 https://doi.org/10.1097/TP.0000000000002515; Thijssen MF, Brüggenwirth IMA, Gillooly A, Khvorova A, Kowalik TF, Martins PN. Gene silencing with siRNA (RNA interference): a new therapeutic option during ex vivo machine liver perfusion preservation. Liver Transpl. 2019;25(1):140–151. PMID: 30561891 https://doi.org/10.1002/lt.25383; Goldaracena N, Echeverri J, Spetzler VN, Kaths JM, Barbas AS, Louis KS, et al. Anti-inflammatory signaling during ex vivo liver perfusion improves the preservation of pig liver grafts before transplantation. Liver Transpl. 2016;22(11):1573–1583. PMID: 27556578 https://doi.org/10.1002/lt.24603; Rigo F, De Stefano N, NavarroTableros V, David E, Rizza G, Catalano G, et al. Extracellular vesicles from human liver stem cells reduce injury in an ex vivo normothermic hypoxic rat liver perfusion model. Transplantation. 2018;102(5):e205–e210. PMID: 29424767 https://doi.org/10.1097/TP.0000000000002123; Beal EW, Kim JL, Reader BF, Akateh C, Maynard K, Washburn WK, et al. [D-Ala2, D-Leu5] Enkephalin improves liver preservation during normothermic ex vivo perfusion. J Surg Res. 2019;241:323–335. PMID: 31071481 https://doi.org/10.1016/j.jss.2019.04.010; Yu Y, Cheng Y, Pan Q, Zhang YJ, Jia DG, Liu YF. Effect of the selective NLRP3 inflammasome inhibitor mcc950 on transplantation outcome in a pig liver transplantation model with organs from donors after circulatory death preserved by hypothermic machine perfusion. Transplantation. 2019;103(2):353– 362. PMID: 30247318 https://doi.org/10.1097/TP.0000000000002461; Yang B, Hosgood SA, Bagul A, Waller HL, Nicholson ML. Erythropoietin regulates apoptosis, inflammation and tissue remodelling via caspase-3 and IL-1β in isolated hemoperfused kidneys. Eur J Pharmacol. 2011;660(23):420–430. PMID: 21497595 https://doi.org/10.1016/j.ejphar.2011.03.044; Yang C, Hosgood SA, Meeta P, Long Y, Zhu T, Nicholson ML, et al. Cyclic helix B peptide inpreservation solution and autologous blood perfusate ameliorates ischemia-reperfusion injury in isolated porcine kidneys. Transplant Direct. 2015;1(2):e6. PMID: 27500213 https://doi.org/10.1097/TXD.0000000000000515; Tietjen GT, Hosgood SA, DiRito J, Cui J, Deep D, Song E, et al. Nanoparticle targeting to then do the lium during normothermic machine perfusion of human kidneys. Sci Transl Med. 2017;9(418):eaam6764. PMID: 29187644 https://doi.org/10.1126/scitranslmed.aam6764; Pool M, Eertman T, Sierra Parraga J, 't Hart N, Roemeling-van Rhijn M, Eijken M, et al. Infusing mesenchymal stromal cells into porcine kidneys during normothermic machine perfusion: intact MSCs can be traced and localised to glomeruli. Int J Mol Sci. 2019;20(14):3607. PMID: 31340593 https://doi.org/10.3390/ijms20143607; Brasile L, Henry N, Orlando G, Stubenitsky B. Potentiating renal regeneration using mesenchymal stem cells. Transplantation. 2019;103(2):307–313. PMID: 30234788 https://doi.org/10.1097/TP.0000000000002455; Hamaoui K, Gowers S, Boutelle M, Cook TH, Hanna G, Darzi A, et al. Organ pretreatment withcytotopic endothelial localizing peptides to ameliorate microvascular thrombosis and perfusion deficits in ex vivo renal hemoreperfusion models. Transplantation. 2016;100(12):e128–e139. PMID: 27861293 https://doi.org/10.1097/TP.0000000000001437; Gregorini M, Corradetti V, Pattonieri EF, Rocca C, Milanesi S, Peloso A, et al. Perfusion of isolated rat kidney with mesenchymal stromal cells/extracellular vesicles prevents ischaemic injury. J Cell Mol Med. 2017;21(12):3381–3393. PMID: 28639291 https://doi.org/10.1111/jcmm.13249; Bhattacharjee RN, Richard-Mohamed M, Sun Q, Haig A, Aboalsamh G, Barrett P, et al. CORM-401 reduces ischemia reperfusion injury in an ex vivo renal porcine model of the donation after circulatory death. Transplantation. 2018;102(7):1066–1074. PMID: 29677080 https://doi.org/10.1097/TP.0000000000002201; Sedigh A, Nordling S, Carlsson F, Larsson E, Norlin B, Lübenow N, et al. Perfusion of porcine kidneys with macromolecular heparin reduces early ischemia reperfusion injury. Transplantation. 2019;103(2):420–427. PMID: 30299374 https://doi.org/10.1097/TP.0000000000002469; Sierra Parraga JM Rozenberg K, Eijken M, Leuvenink HG, Hunter J, Merino A, et al. Effects of normothermic machine perfusion conditions on mesenchymal stromal cells. Front Immunol. 2019;10:765. PMID: 31024574 https://doi.org/10.3389/fimmu.2019.00765eCollection 2019; https://www.jtransplantologiya.ru/jour/article/view/860

  5. 5
  6. 6
    Academic Journal

    Πηγή: Transplantologiya. The Russian Journal of Transplantation; Том 14, № 2 (2022); 132-141 ; Трансплантология; Том 14, № 2 (2022); 132-141 ; 2542-0909 ; 2074-0506 ; 10.23873/2074-0506-2022-14-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/652/681; https://www.jtransplantologiya.ru/jour/article/view/652/700; Jin Z, Suen KC, Wang Z, Ma D. Review 2: Primary graft dysfunction after lung transplant–pathophysiology, clinical considerations and therapeutic targets. J Anesth. 2020;34(5):729–740. PMID: 32691226 https://doi.org/10.1007/s00540-020-02823-6; Meade MO, Granton JT, Matte-Martyn A, McRae K, Weaver B, Cripps P, et al. A randomized trial of inhaled nitric oxide to prevent ischemia–reperfusion injury after lung transplantation. Am J Respir Crit Care Med. 2003;167(11):14831489. PMID: 12770854 https://doi.org/10.1164/rccm.2203034; Yoon J, Salamanca-Padilla Y. Effect of left ventricular diastolic dysfunction on development of primary graft dysfunction after lung transplant. Curr Opin Anaesthesiol. 2020;33(1):10–16. PMID: 31789901 https://doi.org/10.1097/ACO.0000000000000811; Fiser SM, Tribble CG, Long SM, Kaza AK, Kern JA, Jones DR, et al. Ischemia-reperfusion injury after lung transplantation increases risk of late bronchiolitis obliterans syndrome. Ann Thorac Surg. 2002;73(4):1041-1047. PMID: 11996238 https://doi.org/10.1016/s0003-4975(01)03606-2; Голиков П.П. Оксид азота в клинике неотложных заболеваний. Москва: Медпрактика-М; 2004.; Хубутия М.Ш., Клычникова Е.В., Тазина Е.В., Тарабрин Е.А., Первакова Э.И., Романов А.А. и др. Динамика концентрации нитрита/нитрата и метгемоглобина в крови больных послетрансплантации легких на фоне применения ингаляционного оксида азота. Трансплантология. 2014;4:6–11.; Naka Y, Chowdhury NC, Liao H, Roy DK, Oz MC, Michler RE, et al. Enhanced preservation of orthotopically transplanted rat lungs by nitro glycerin but not hydralazine: requirement for graft vascular homeostasis beyond harvest vasodilation. Circ Res. 1995;76(5):900–906. PMID: 7729008 https://doi.org/10.1161/01.res.76.5.900; Karamsetty MR, Klinger JR. NO: more than just a vasodilator in lung trans plantation. Am J Respir Cell Mol Biol. 2002;26(1):1–5. PMID: 11751196 https://doi.org/10.1165/ajrcmb.26.1.f223; Minamoto K, Pinsky DJ, Fujita T, Naka Y. Timing of nitric oxide donor supplementation determines endothelin-1 regulation and quality of lung preser vation for transplantation. Am J Respir Cell Mol Biol. 2002;26(1):14–21. PMID: 11751199 https://doi.org/10.1165/ajrcmb.26.1.4649; Lindemann S, Sharafi M, Spiecker M, Buerke M, Fisch A, Grosser T, et al. NO reduces PMN adhesion to human vascular endothelial cells due to downregulation of ICAM-1 mRNA and surface expression. Thromb Res. 2000;97(3):113–123. PMID: 10680642 https://doi.org/10.1016/s0049-3848(99)00162-0; Pinsky DJ, Naka Y, Chowdhury NC, Liao H, Oz MC, Michler RE, et al. The nitric oxide/cyclic GMP pathway in organ transplantation: critical role in successful lung preservation. Proc Natl Acad Sci USA. 1994;91(25):12086–12090. PMID: 7527550 https://doi.org/10.1073/pnas.91.25.12086; Liu M, Tremblay L, Cassivi SD, Bai XH, Mourgeon E, Pierre AF, et al. Alterations of nitric oxide synthase expression and activity during rat lung transplantation. Am J Physiol Lung Cell Mol Physiol. 2000;278(5):L1071-L1081. PMID: 10781440 https://doi.org/10.1152/ajplung.2000.278.5.L1071; Schutte H, Witzenrath M, Mayer K, Rosseau S, Seeger W, Grimminger F. Short-term “preconditioning” with inhaled nitric oxide protects rabbit lungs against ischemia-reperfusion injury. Transplantation. 2001;72(8):1363-1370. PMID: 11685104 https://doi.org/10.1097/00007890-200110270-00005; Tagawa T, Suda T, Daddi N, Kozower BD, Kanaan SA, Mohanakumar T, et al. Low-dose endobronchial gene transfer to ameliorate lung graft ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2002;123(4):795–802. PMID: 11986609 https://doi.org/10.1067/mtc.2002.119067; Thabut G, Brugiere O, Leseche G, Stern JB, Fradj K, Herve P, et al. Preventive effect of inhaled nitric oxide and pentoxifylline on ischemia/reperfusion injury after lung transplanta tion. Transplantation. 2001;71(9):1295-1300. PMID: 11397965 https://doi.org/10.1097/00007890-200105150-00019; Kawashima M, Bando T, Nakamura T, Isowa N, Liu M, Toyokuni S, et al. Cytoprotective effects of nitroglycerin in ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med. 2000;161(3 Pt 1):935–943. PMID: 10712346 https://doi.org/10.1164/ajrccm.161.3.9905003; Ardehali A, Laks H, Levine M, Shpiner R, Ross D, Watson LD, et al. A prospective trial of inhaled nitric oxide in clinical lung transplanta tion. Transplantation. 2001;72(1):112-115. PMID: 11468544 https://doi.org/10.1097/00007890-200107150-00022; Adatia I, Lillehei C, Arnold JH, Thompson JE, Palazzo R, Fackler JC, et al. Inhaled nitric oxide in the treatment of postoperative graft dysfunction after lung transplantation. Ann Tho rac Surg. 1994;57(5):1311–1318. PMID: 8179406 https://doi.org/10.1016/00034975(94)91382-x; Date H, Anastosios NT, Trulock EP, Pohl MS, Cooper JD, Patterson GA. Inhaled nitric oxide reduces human lung allograft dysfunction. J Thorac Cardiovasc Surg. 1996;111(5): 913–919. PMID: 8622313 https://doi.org/10.1016/s0022-5223(96)70364-1; Yerebakan C, Ugurlucan M, Bayraktar S, Bethea BT, Conte JV. Effects of inhaled nitric oxide following lung transplantation. J Card Surg. 2009;24(3):269–274. PMID: 19438780 https://doi.org/10.1111/j.1540-8191.2009.00833.x; Fessler J, Godement M, Pirracchio R, Marandon J-Y, Thes J, Sage E, et al. Inhaled nitric oxide dependency at the end of double-lung transplantation: a boosted propensity score cohort analysis. Transpl Int. 2019;32(3):244–256. PMID: 30449027 https://doi.org/10.1111/tri.13381; Курилова О.А., Журавель С.В., Романова А.А., Маринин П.Н., Цурова Д.Х., Каллагов Т.Э. и др. Опыт применения экстракорпоральной мембранной оксигенации для обеспечения двусторонней трансплантации легких. Вестник трансплантологии и искусственных органов. 2014;(2):66–74. https://doi.org/10.15825/1995-1191-2014-2-66-74; Хубутия М.Ш., Чучалин А.Г., Тарабрин Е.А., Первакова Э.И., Гасанов А.М., Боровкова Н.В. и др. (сост.) Алгоритм лечения первичной дисфункции легочного трансплантата и защита донорских легких: методические рекомендации № 39. Москва: НИИ СП им. Н.В. Склифосовского; 2017.; https://www.jtransplantologiya.ru/jour/article/view/652

  7. 7
    Academic Journal

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 36, № 2 (2021); 76-83 ; Сибирский журнал клинической и экспериментальной медицины; Том 36, № 2 (2021); 76-83 ; 2713-265X ; 2713-2927

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/1194/621; Heusch G. Postconditioning: Old wine in a new bottle? J. Am. Coll. Cardiol. 2004;44(5):1111–1112. DOI:10.1016/j.jacc.2004.06.013.; Piper H.M., Meuter K., Schifer C. Cellular mechanisms of ischemia– reperfusion injury. Ann. Thorac. Surg. 2003;75(2):644–648. DOI:10.1016/s0003-4975(02)04686-6.; Inserte J., Hernando V., Garcia-Dorado D. Contribution of calpains to myocardial ischaemia/reperfusion injury. Cardiovasc. Res. 2012;96(1):23–31. DOI:10.1093/cvr/cvs232.; Yellon D.M., Ackbarkhan A.K., Balgobin V., Bulluck H., Deelchand A., Dhuny M.R. et al. Remote ischemic conditioning reduces myocardial infarct size in STEMI patients treated by thrombolysis. J. Am. Coll. Cardiol. 2015;65(25):2764–2765. DOI:10.1016/j.jacc.2015.02.082.; Kleinbongard P., Baars T., Möhlenkamp S., Kahlert P., Erbel R., Heusch G. Aspirate from human stented native coronary arteries vs. saphenous vein grafts: more endothelin but less particulate debris. Am. J. Physiol. Heart Circ. Physiol. 2015;305(8):1222–1229. DOI:10.1152/ajpheart.00358.2013.; Мрочек А.Г., Басалай М.В., Барсукевич В.Ч., Гурин А.В. Эндогенные феномены кардиопротекции и их механизмы. Кардиология в Беларуси. 2014;(3):88–109.; Mrochek A., Basalai M., Barsukevich V., Gurin A. Endogenous phe nomena of cardioprotection and its mechanisms. Cardiology in Belarus. 2014;(3):88–109 (In Russ.).; Hausenloy D.J., Kharbanda R.K., Møller U.K., Ramlall M., Aarøe J., Butler R. et al. Effect of remote ischemic conditioning on clinical outcomes at 12 months in acute myocardial infarction patients: the CONDI-2/ERIC-PPCI trial. Lancet. 2019;394(10207):1415–1424. DOI:10.1016/S0140-6736(19)32039-2.; Schulz R., Kelm M., Heusch G. Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc. Res. 2004;61(3):402–413. DOI:10.1016/j.cardiores.2003.09.019.; Reimer K.A., Jennings R.B. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab. Invest. 1979;40(6):633–644.; Garcia-Dorado D., Andres-Villarreal M., Ruiz-Meana M., Inserte J., Barba I. Myocardial edema: A translational view. J. Mol. Cell Cardiol. 2012;52(5):931–939. DOI:10.1016/j.yjmcc.2012.01.010.; Crimi G., Pica S., Raineri C., Bramucci E., De Ferrari G.M., Klersy C. et al. Remote ischemic postconditioning of the lower limb during primary percutaneous coronary intervention safely reduces enzymatic infarct size in anterior myocardial infarction: A randomized controlled trial. JACC Cardiovasc. Interv. 2013;6(10):1055–1063. DOI:10.1016/j.jcin.2013.05.011.; Bøtker H.E., Kaltoft A.K., Pedersen S.F., Kim W.Y. Measuring myocardial salvage. Cardiovasc. Res. 2012;94(2):266–275. DOI:10.1093/cvr/cvs081.; Lønborg J., Kelbaek H., Vejlstrup N., Jørgensen E., Helqvist S., Saunamäki K. et al. Cardioprotective effects of ischemic postconditioning in patients treated with primary percutaneous coronary intervention, evaluated by magnetic resonance. Circ. Cardiovasc. Interv. 2010;3(1):34–41. DOI:10.1161/CIRCINTERVENTIONS.109.905521.; Bøtker H.E., Kharbanda R., Schmidt M.R., Bøttcher M., Kaltoft A.K., Terkelsen C.J. et al. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: A randomised trial. Lancet. 2010;375(9716):727–734. DOI:10.1016/S0140-6736(09)62001-8.; White S.K., Frohlich G.M., Sado D.M., Maestrini V., Fontana M., Treibel T.A. et al. Remote ischemic conditioning reduces myocardial infarct size and edema in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc. Interv. 2015;8(1B):178–188. DOI:10.1016/j.jcin.2014.05.015.; Munk K., Andersen N.H., Schmidt M.R., Nielsen S.S., Terkelsen C.J., Sloth E. et al. Remote ischemic conditioning in patients with myocardial infarction treated with primary angioplasty: Impact on left ventricular function assessed by comprehensive echocardiography and gated single- photon emission CT. Circ. Cardiovasc. Imaging. 2010;3(6):656–662. DOI:10.1161/CIRCIMAGING.110.957340.; Willenheimer R. Left ventricular remodelling and dysfunction. Can the process be prevented? Int. J. Cardiol. 2000;72(2):143–150. DOI:10.1016/s0167-5273(99)00182-5.; Van Kranenburg M., Magro M., Thiele H., de Waha S., Eitel I., Cochet A. et al. Prognostic value of microvascular obstruction and infarct size, as measured by CMR in STEMI patients. JACC Cardiovasc. Imaging. 2014;7(9):930–939. DOI:10.1016/j.jcmg.2014.05.010.; De Waha S., Patel M.R., Granger C.B., Ohman E.M., Maehara A., Eitel I. et al. Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: an individual patient data pooled analysis from seven randomized trials. Eur. Heart J. 2017;38(47):3502–3510. DOI:10.1093/eurheartj/ehx414.; Symons R., Pontone G., Schwitter J., Francone M., Iglesias J.F., Barison A. et al. Long-Term Incremental Prognostic Value of Cardiovascular Magnetic Resonance After ST-Segment Elevation Myocardial Infarction: A Study of the Collaborative Registry on CMR in STEMI. JACC Cardiovasc. Imaging. 2018;11(6):813–825. DOI:10.1016/j.jcmg.2017.05.023.; https://www.sibjcem.ru/jour/article/view/1194

  8. 8
  9. 9
    Academic Journal

    Συνεισφορές: The study was performed without external funding., Исследование проводилось без спонсорской поддержки.

    Πηγή: Transplantologiya. The Russian Journal of Transplantation; Том 12, № 1 (2020); 28-41 ; Трансплантология; Том 12, № 1 (2020); 28-41 ; 2542-0909 ; 2074-0506 ; 10.23873/2074-0506-2020-12-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.jtransplantologiya.ru/jour/article/view/477/547; https://www.jtransplantologiya.ru/jour/article/view/477/551; Xiao B, Xia W, Zhang J, Liu B, Guo S. Prolonged cold ischemic time results in increased acute rejection in a rat allotransplantation model. J Surg Res. 2010;164(2):e299–e304. PMID: 20934711 https://doi.org/10.1016/j.jss.2010.08.012; Ефуни С.Н. Руководство по гипербарической оксигенации (теория и практика клинического применения). Москва: Медицина; 1986.; Whelan HT, Kindwall E. Hyperbaric Medicine Practice. 4th ed. North Palm Beach: Best Publishing Company; 2017.; Weaver LK. (ed.) Undersea and hyperbaric medical society. Hyperbaric oxygen therapy indications. 13th ed. North Palm Beach: Best Publishing Company; 2014.; Rogatsky GG, Stambler I. Hyperbaric oxygenation for resuscitation and therapy of elderly patients with cerebral and cardio-respiratory dysfunction. Front Biosci (Schol Ed). 2017;9:230–243. PMID: 28410116 https://doi.org/10.2741/s484; Neubauer RA, End E. Hyperbaric oxygenation as an adjunct therapy in strokes due to thrombosis. A review of 122 patients. Stroke. 1980;11(3):297– 300. PMID: 7394869 https://doi.org/10.1161/01.str.11.3.297; Лебедев В.В., Исаков Ю.В., Правденкова С.В. Влияние гипербарической оксигенации на клиническое течение и осложнения в остром периоде ишемических инсультов. Вопросы нейрохирургии имени Н.Н. Бурденко. 1983;3:37–42.; Neubauer RA, Gottlieb SF, Kagan RL. Enhancing "idling" neurons. Lancet. 1990;335(8688):542. PMID: 1968553 https://doi.org/10.1016/0140-6736(90)90777-3; Neubauer RA, Gottlieb SF, Miale A Jr. Identification of hypometabolic areas in the brain using brain imaging and hyperbaric oxygen. Clinical nuclear medicine. 1992;17(6):477–481. PMID: 1617842 https://doi.org/10.1097/00003072- 199206000-00010; Neubauer RA, Neubauer V, Gerstenbrand F. Late treatment of severe brain injury with hyperbaric oxygenation. J Am Physic Surg. 2005;10(2):58–59.; Rogatsky GG, Shifrin EG, Mayevsky A. Optimal dosing as a necessary condition for the efficacy of hyperbaric oxygen therapy in acute ischemic stroke: a critical review. Neurol Res. 2003;25(1):95– 98. PMID: 12564134 https://doi.org/10.1179/016164103101201003; Левина О.А., Ромасенко М.В., Крылов В.В., Петриков С.С., Гольдин М.М., Евсеев А.К. Гипербарическая оксигенация при острых заболеваниях и повреждениях головного мозга. Новые возможности. Новые решения. Нейрохирургия. 2014;4:9–15. https://doi.org/10.17650/1683-3295-2014-0-4-9-15; Mathieu D. (ed.) Handbook on hyperbaric medicine. Berlin: Springer; 2006. 14. Jain KK. Textbook of hyperbaric medicine. Göttingen: Hogrefe & Huber Publishers; 2009.; Теплов В.М., Разумный Н.В., Повзун А.С., Батоцыренов Б.В., Логунов К.В., Русакевич К.И. и др. Возможности применения гипербарической оксигенации в неотложной медицине и реанимации. Учебно-методическое пособие. Санкт-Петербург; 2017.; Krezdorn N, Tasigiorgos S, Wo L, Turk M, Lopdrup R, Kiwanuka H, et al. Tissue conservation for transplantation. Innov Surg Scie. 2017;2(4):171– 187. PMID: 31579751 https://doi.org/10.1515/iss-2017-0010; Kosieradzki M, Rowiński W. Ischemia/reperfusion injury in kidney transplantation: mechanisms and prevention. Transplant Proc. 2008;40(10):3279– 3288. PMID: 19100373 https://doi.org/10.1016/j.transproceed.2008.10.004; Walters AW, Porter GA Jr, Brookes PS. Mitochondria as a drug tar get in ischemic heart disease and cardiomyopathy. Circ Res. 2012;111(9):1222– 1236. PMID: 23065345 https://doi.org/10.1161/CIRCRESAHA.112.265660; Ahmed E, Donovan T, Yujiao L, Zhang Q. Mitochondrial targeted antioxidant in cerebral ischemia. J Neurol Neurosci. 2015;6(2):pii:17. PMID: 26937332 https://doi.org/10.21767/2171- 6625.100017; Kezic A, Spasojevic I, Lezaic V, Bajcetic M. Mitochondria-targeted antioxidants: future perspectives in kidney ischemia reperfusion injury. Oxid Med Cell Longev. 2016;2016:2950503. PMID: 27313826 https://doi.org/10.1155/2016/2950503; Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13. PMID: 19061483 https://doi.org/10.1042/BJ20081386; Jassem W, Fuggle SV, Rela M, Koo DD, Heaton ND. The role of mitochondria in ischemia/reperfusion injury. Transplantation. 2002;73(4):493– 499. PMID: 11889418 https://doi.org/10.1097/00007890-200202270-00001; Jassem W, Heaton ND. The role of mitochondria in ischemia/reperfusion injury in organ transplantation. Kidney Int. 2004;66(2):514–517. PMID: 15253700 https://doi.org/10.1111/j.1523-1755.2004.761_9.x; Collard CD, Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia–reperfusion injury. Anesthesiology. 2001;94(6):1133– 1138. PMID: 11465607 https://doi.org/10.1097/00000542-200106000-00030; Sgarbi G, Giannone F, Casalena GA, Baracca A, Baldassare M, Longobardi P, et al. Hyperoxia fully protects mitochondria of explanted livers. J Bioenerg and Biomembr. 2011;43(6):673–682. PMID: 22015484 https://doi.org/10.1007/s10863-011-9390-3; Thomas MP, Brown LA, Sponseller DR, Williamson SE, Diaz JA, Guyton DP. Myocardial infarct size reduction by the synergistic effect of hyperbaric oxygen and recombinant tissue plasminogen activator. Am Heart J. 1990;120(4):791–800. PMID: 212101010 https://doi.org/1016/0002-8703(90)90194-3; Baynosa RC, Naig AL, Murphy PS, Fang XH, Stephenson LL, Khiabani KT, et al. The effect of hyperbaric oxygen on nitric oxide synthase activity and expression in ischemia-reperfusion injury. J Surg Res. 2013;183(1):355–361. PMID: 23485074 https://doi.org/10.1016/j. jss.2013.01.004; MacKenzie DA, Sollinger HW, Hullet DA. Decreased immunogenicity of human fetal pancreas allografts following hyperbaric oxygen culture. Transplant Proc. 2003;35(4):1499–1502. PMID: 12826204 https://doi.org/10.1016/s0041-1345(03)00362-2; Gurer A, Ozdogan M, Gomceli I, Demirag A, Gulbahar O, Arikok T, et al. Hyperbaric oxygenation attenuates renal ischemia-reperfusion injury in rats. Transplant Proc. 2006;38(10):3337– 3340 PMID: 17175266 https://doi.org/10.1016/j.transproceed.2006.10.184; Godman CA, Joshi R, Giardina C, Perdrizet G, Hightower LE. Hyperbaric oxygen treatment induces antioxidant gene expression. Ann NY Acad Sci. 2010;1197:178–183. PMID: 20536847 https://doi.org/10.1111/j.1749-6632.2009.05393.x; Chen MF, Chen HM, Ueng SW, Shyr MH. Hyperbaric oxygen pretreatment attenuates hepatic reperfusion injury. Liver. 1998;18(2):110– 116. PMID: 9588769 https://doi. org/10.1111/j.1600-0676.1998.tb00135.x; Zamboni WA, Roth AC, Russell RC, Graham B, Suchy H, Kucan JO. Morphologic analysis of the microcirculation during reperfusion of ischemic skeletal muscle and the effect of hyperbaric oxygen. Plast Reconst Surg. 1993;91(6):1110– 1123. PMID: 8479978 https://doi.org/10.1097/00006534-199305000-00022; Kihara K, Ueno S, Sakoda M, Aikou T. Effects of hyperbaric oxygen exposure on experimental hepatic ischemia reperfusion injury: relationship between its timin g and neutrophil sequestration. Liver Transpl. 2005;11(12):1574–1580. PMID: 16315298 https://doi.org/10.1002/lt.20533; Qi Z, Gao CJ, Wang YB, Ma XM, Zhao L, Liu FJ, et al. Effects of hyperbaric oxygen preconditioning on ischemia-reperfusion inflammation and skin flap survival. Chin Med J (Engl). 2013;126(20):3904–3909. PMID: 24157154; Muralidharan V, Christophi C. Hyperbaric oxygen therapy and liver transplantation. HPB (Oxford). 2007;9(3):174– 182. PMID: 18333218 https://doi.org/10.1080/13651820601175926; Sakata N, Chan NK, Ostrowski RP, Chrisler J, Hayes P, Kim S, et al. Hyperbaric oxygen therapy improves early posttransplant islet function. Pediatr Diabetes. 2010;11(7):471–478. PMID: 20144181 https://doi.org/10.1111/j.1399-5448.2009.00629.x; Choudhury R. Hypoxia and hyperbaric oxygen therapy: a review. Int J Gen Med. 2018;11:431–442. PMID: 30538529 https://doi.org/10.2147/IJGM.S172460; Chaves JC, Fagundes DJ, Simões M de J, Bertoletto PR, Oshima CT, Taha MO, et al. Hyperbaric oxygen therapy protects the liver from apoptosis caused by ischemia-reperfusion injury in rats. Microsurgery. 2009:29(7):578–583. PMID: 19399878 https://doi.org/10.1002/micr.20664; Пожилова Е.В., Левченкова О.С., Новиков В.Е. Регуляторная роль митохондриальной поры и возможности её фармакологической модуляции. Обзоры по клинической фармакологии и лекарственной терапии. 2014;12(3):13–19. https://doi.org/10.17816/RCF12313-19; Malazai AJ, Worku DG, McGee J, van Meter K, Slakey DP. The history of hyperbaric oxygen therapy and kidney transplant surgery. Undersea and Hyperbaric Medicine. 2011;38(4):247–255. PMID: 21877553; Lillehei RC, Manax WG, Bloch JH, Eyal Z, Hidalgo F, Longerbeam JK. In vitro preservation of whole organs by hypothermia and hyperbaric oxygenation. Cryobiology. 1964;1(2):181– 193. PMID: 5333442 https://doi.org/10.1016/0011-2240(64)90010-0; Ladaga LG, Nabseth DC, Besznyak I, Hendry WF, McLeod G, Deterling RA. Preservation of canine kidneys by hypothermia and hyperbaric oxygen: Long term survival of autografts following 24-hour storage. Annals of surgery. 1966;163(4):553–558. PMID: 5327272 https://doi.org/10.1097/00000658- 196604000-00007; Slapak M, Wigmore RA, MacLean LD. Twenty-four hour liver preservation by the use of continuous pulsatile perfusion and hyperbaric oxygen. Transplantation. 1967;5(4):1154–1158. PMID: 4860607 https://doi.org/10.1097/00007890- 196707001-00052; Uchida H, Ruiz JO, Alho AV, Schult z LS, Loken MK, Lillehei RC. In vitro and in vivo assessment of the preserved liver under hypothermia and hyperbaria without perfusion. Trans Am SocArtif Intern Organs. 1970;16:300–306. PMID: 4916736; Spilg H, Uys CJ, Hickman R, Saunders SJ, Terblanche J. Twelve-hour liver preservation in the pig using hypothermia and hyperbaric oxygen. Br J Surg. 1972;59(4):273–276. PMID: 4553587; Yu SY, Chiu JH, Yang SD, Yu HY, Hsieh CC, Chen PJ, et al. Preconditioned hyperbaric oxygenation protects the liver against ischemia-reperfusion injury in rats. J Surg Res. 2005;128(1):28– 36. PMID: 15964020 https://doi.org/10.1016/j.jss.2005.04.025; Tran NQ, Malcontenti-Wilson C, Hammoud S, Millar I, Christophi C, Muralidharan V. Hyperbaric oxygen therapy reduces the severity of ischaemia, preservation and reperfusion injury in a rat model of liver transplantation. HPB (Oxford). 2012;14(2):103–114. PMID: 22221571 https://doi.org/10.1111/j.1477-2574.2011.00410.x; Giannone FA, Treré D, Domenicali M, Grattagliano I, Baracca A, Sgarbi G, et al. An innovative hyperbaric hypothermic machine perfusion protects the liver from experimental preservation injury. Scientific World Journal. 2012;2012:573410. PMID: 22593698 https://doi.org/10.1100/2012/573410; Svehlik J Jr, Zábavniková M, Guzanin S, Svehliková G, Svehlik J Sr. Hyperbaric oxygenotherapy as a possible means of preventing ischemic changes in skin grafts used for soft tissue defect closure. Acta Chir Plast. 2007;49(2):31–35. PMID: 17684838; Francis A, Baynosa RC. Hyperbaric oxygen therapy for the compromised graft or flap. Adv Wound Care (New Rochelle). 2017;6(1):23–32. PMID: 28116225 https://doi.org/10.1089/wound.2016.0707; Bayrakci B. Preservation of organs from brain dead donors with hyperbaric oxygen. Pediatr Transplantat. 2008;12(5):506–509. PMID: 18672481 https://doi.org/10.1111/j.1399-3046.2007.00858.x; Sawai T, Niimi A, Takahashi H, Ueda M. Histologic study of the effect of hyperbaric oxygen therapy on autogenous free bone grafts. J Oral Maxillofac Surg. 1996;54(8):975–981. PMID: 8765387 https://doi.org/10.1016/s0278-2391(96)90396-1; Juang JH, Hsu BR, Kuo CH, Uengt SW. Beneficial effects of hyperbaric oxygen therapy on islet transplantation. Cell Transplant. 2002;11(2):95– 101. PMID: 28853948 https://doi.org/10.3727/096020198389825; Solmazgul E, Uzun G, Cermik H, Atasoyu EM, Aydinoz S, Yildiz S. Hyperbaric oxygen therapy attenuates renal ische mia/reperfusion injury in rats. Urol Int. 2007;78(1):82–85. PMID: 17192739 https://doi.org/10.1159/000096941; Rubinstein I, Abassi Z, Milman F, Ovcharenko E, Coleman R, Winaver J, et al. Hyperbaric oxygen treatment improves GFR in rats with ischaemia/ reperfusion renal injury: a possible role for the antioxidant/oxidant balance in the ischaemic kidney. Nephrol Dial Transplant. 2009;24(2):428–436. PMID: 18799609 https://doi.org/10.1093/ndt/gfn511; Ramalho RJ, de Oliveira PS, Cavaglieri RC, Silva C, Medeiros PR, Filho DM, et al. Hyperbaric oxygen therapy induces kidney protection in an ischemia/reperfusion model in rats. Transplant Proc. 2012;44(8):2333–2336. PMID: 23026586 https://doi.org/10.1016/j.transproceed.2012.07.020; Silveira MR, Margarido MR, Vanni JC, Nejo JR, Castro-e-Silva O. Effects of hyperbaric oxygen therapy on the liver after injury caused by the hepatic ischemia-reperfusion process. Acta Cir Bras. 2014;29(Suppl 1):29–33. PMID: 25185053 https://doi.org/10.1590/s0102-86502014001300006; Özden TA, Uzun H, Bohloli M, Toklu AS, Paksoy M, Simsek G, et al. The Effects of hyperbaric oxygen treatment on oxidant and antioxidants levels during liver regeneration in rats. Tohoku J Exp Med. 2004;203(4):253–265. PMID: 15297730 https://doi.org/10.1620/tjem.203.253; Tolentino EC, Castro e Silva O, Zucoloto S, Souza ME, Gomes MC, Sankarankutty AK, et al. Effect of hyperbaric oxygen on liver regeneration in a rat model. Transplant Proc. 2006;38(6):1947– 1952. PMID: 16908331 https://doi.org/10.1016/j.transproceed.2006.06.066; Sheikh AY, Gibson JJ, Rollins MD, Hopf HW, Hussain Z, Hunt TK. Effect of hyperoxia on vascular endothelial growth factor levels in a wound model. Arch Surg. 2000;135(11):1293–1297. PMID: 11074883 https://doi.org/10.1001/archsurg.135.11.1293; Kaelin CM, Im MJ, Myers RA, Manson PH, Hoopes JE. The effects of hyperbaric oxygen on free flaps in rat. Arch Surg. 1990;125(5):607–609. PMID: 2331219 https://doi.org/10.1001/archsurg.1990.01410170053011; Lv H, Han CH, Sun XJ, Liu WW. Application of hyperbaric oxygen in liver transplantation. Med Gas Res. 2016.6(4):212–218. PMID: 28217293 https://doi.org/10.4103/2045- 9912.196903; Ueno S, Tanabe G, Kihara K, Aoki D, Arikawa K, Dogomori H, et al. Early postoperative hyperbaric oxygen therapy modifies neutrophile activation. Hepatogastroenterology. 1999;46(27):1798–1799. PMID: 10430348; Suehiro T, Shimura T, Okamura K, Okada T, Okada K, Hashimoto S, et al. The effect of hyperbaric oxygen treatment on postoperative morbidity of left lobe donor in living donor adult liver transplantation. Hepatogastroenterology. 2008;55(84):1014–1119. PMID: 18705320; Castro-e-Silva O, Sankarankutty AK, Martinelli AL, Souza FF, Teixeira AC, Feres O, et al. Therapeutic effect of hyperbaric oxygen in hepatic artery thrombosis and functional cholestasis after orthotopic liver transplantation. Transplantat Proc. 2006;38(6):1913– 1917. PMID: 16908321 https://doi.org/10.1016/j.transproceed.2006.06.062; Mazariegos GV, O’Toole K, Mieles LA, Dvorchik I, Meza M, Briassoulis G, et al. Hyperbaric oxygen therapy for hepatic artery thrombosis after liver transplantation in children. Liver Transpl Surg. 1999;5(5):429–436. PMID: 10477845 https://doi.org/10.1002/lt.500050518; Grover I, Conley L, Alzate G, Lavine J, Van Hoesen K, Khanna A. Hyperbaric oxygen therapy for hepatic artery thrombosis following liver transplantation: Current concepts. Pediatr Transplantat. 2006;10(2):234–239. PMID: 16573613 https://doi.org/10.1111/j.1399-3046.2005.00415.x; Franchello A, Ricchiuti A, Maffi L, Romagnoli R, Salizzoni M. Hyperbaric oxygen therapy in liver transplantation; is its uselimited to the management of hepatic artery thrombosis? Transpl Int. 2010;23(9):e49–e50. PMID: 19807898 https://doi.org/10.1111/j.1432-2277.2009.00979.x; Kreimer F, de Araújo-Jr GC, C a m p o s J M , E u c l i d e s D M F , D’Albuquerque LAC, Ferraz ÁAB. Preliminary results of hyperbaric oxygen therapy on patients on the waiting list for liver transplantation. ABCD (SãoPaulo). 2011;24(1):48–51. http://dx.doi.org/10.1590/S0102-67202011000100010; Ромасенко М.В., Левина О.А., Пинчук А.В., Сторожев Р.В., Ржевская О.Н. Применение гипербарической оксигенации в комплексной терапии больных после трансплантации почки в раннем послеоперационном периоде. Трансплантология. 2011;2–3:75–79. https:// doi.org/10.23873/2074-0506-2011-0-2-3-75-79; Petzold T, Feindt PR, Carl UM, Gams E. Hyperbaric oxygen therapy in deep sternal wound infection after heart transplantation. Chest. 1999;115(5):1455– 1458. PMID: 10334171 https://doi.org/10.1378/chest.115.5.1455; Higuchi T, Oto T, Millar IL, Levvey BJ, Williams TJ, Snell GI. Preliminary report of the safety and efficacy of hyperbaric oxygen therapy for specific complications of lung transplantation. J Heart Lung Transplant. 2006;25(11):1302–1309. PMID: 17097493 https://doi.org/10.1016/j. healun.2006.08.006; Шабунин А.В., Митрохин А.А., Воднева М.М., Готье С.В., Попцов В.Н., Головинский С.В. и др. Гипербарическая оксигенация при трансплантации органов (клинический опыт на примере трансплантации легких). Вестник трансплантологии и искусственных органов. 2016;18(S):71.; https://www.jtransplantologiya.ru/jour/article/view/477

  10. 10
  11. 11
  12. 12
    Academic Journal

    Πηγή: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 13, № 5 (2016); 74-80 ; Вестник анестезиологии и реаниматологии; Том 13, № 5 (2016); 74-80 ; 2541-8653 ; 2078-5658

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/121/159; Ломиворотов В. В., Шмырев В. А., Ефремов С. М. и др. Динамика содержания тропонина I в сыворотке крови взрослых пациентов с приобретенными пороками сердца, оперированных в условиях нормотермического и гипотермического искусственного кровообращения // Вестн. анестезиол. и реаниматол. – 2014. – Т. 11, № 1. – С. 3–10.; Тимофеев А. Б., Щеголев А. В., Рыжман Н. Н. Современные подходы к терапии сердечной недостаточности при остром инфаркте миокарда // Вестн. анестезиол. и реаниматол. – 2014. – Т. 11, № 1. – С. 68–75.; Balestrino M., Sarocchi M., Adriano E. et al. Potential of creatine or phosphocreatine supplementation in cerebrovascular disease and in ischemic heart disease // Amino Acids. 2016. Jan 21. [Epub ahead of print].; Bottomley P. A., Panjrath G. S., Lai S. et al. Metabolic rates of ATP transfer through creatine kinase (CK Flux) predict clinical heart failure events and death // Sci. Transl. Med. – 2013. – Vol. 215, № 5. – P. 215re3.; Braunwald E., Kloner R. A. The stunned myocardium: prolonged, postischemic ventricular dysfunction // Circulation. – 1982. – Vol. 66, № 6. – P. 1146–1149.; Chambers D. J., Haire K., Morley N. et al. St. Thomas’ hospital cardioplegia: enhanced protection with exogenous creatine phosphate // Ann. Thorac. Surg – 1996. – Vol. 61, № 6. – P. 67–75.; Cleland J. G., Daubert J. C., Erdmann E. et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure // N. Engl. J. Med. – 2005. – Vol. 352, № 15. – P. 1539–1549.; Cossolini M., Sonzogni V., Di Dedda G. et al. Paediatric cold heart surgery: experience with creatine phosphate added to cardioplegic solution. In D’Alessandro LC (ed). Heart Surgery. Roma: Casa Editrice Scientifica Internazionale. – 1993. – P. 442–443.; Dayer M., Cowie M. R. Heart failure: diagnosis and healthcare burden // Clin. Med. – 2004. – Vol. 4, № 1. – P. 13–18.; Ferraro S., Codella C., Palumbo F. et al. Hemodynamic effects of creatine phosphate in patients with congestive heart failure: a double-blind comparison trial versus placebo // Clin. Cardiol. – 1996. – Vol. 19, № 9. – P. 699–703.; Gebhard M. M. Myocardial protection and ischemia tolerance of the globally ischemia heart // Thorac. Cardiovasc. Surg. – 1990. – Vol. 38, № 2. – P. 55–59.; Grazioli I., Strumia E. Terapia con creatina fosfato nel paziente con insufficienza cardiaca in fase di scompenso: studio policentrico // G. Ital. Ric. Clin. Ter. – 1989. – № 10. – P. 39–45.; Hearse J. Ischemia at the crossroads? // Cardiovasc. Drugs Ther. – 1988. – Vol. 2, № 1. – P. 9–15.; Horjus D. L., Oudman I., van Montfrans G. A. et al. Creatine and creatine analogues in hypertension and cardiovascular disease // Cochrane Database Syst. Rev. – 2011. – № 11. – P. CD005184.; Iosseliani D. G., Koledinsky A. G., Kuchkina N. V. Does intracoronary injection of phosphocreatine prevent myocardial reperfusion injury following angioplasty of infarct-related artery in acute-stage of myocardial infarction? // J. Interv. Cardiol. – 2004. – № 6. – P. 10–14.; Jernberg T., Johanson P., Held C. et al. Association between adoption of evidence-based treatment and survival for patients with ST-elevation myocardial infarction // JAMA. – 2011. – Vol. 305, № 16. – P. 1677–1684.; Kolwicz S. C., Purohit S., Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes // Circ. Res. – 2013. – Vol. 113, № 5. – P. 603–616.; Landoni G., Zangrillo A., Lomivorotov V. V. et al. Cardiac protection with phosphocreatine: a meta-analysis // Interact. Cardiovasc. Thorac. Surg. – 2016. Jun 17. [Epub ahead of print].; Li T., Wang N., Zhao M. Neuroprotective effect of phosphocreatine on focal cerebral ischemia-reperfusion injury // J. Biomed. Biotechnol. – 2012. – № 2012. – P. 168756.; Lomivorotov V. V., Boboshko V. A., Chernyavsky A. M. et al. Preventive IABP use of levosimendan infusion in coronary patients with low left ventricular ejection fraction (< 35%) // Patologiya krovoobrashcheniya I kardiokhirurgiya = Circulation Pathology and Cardiac Surgery. – 2011. – № 2. – P. 49–54.; Lomivorotov V. V., Boboshko V. A., Efremov S. M. et al. Levosimendan versus an intra-aortic balloon pump in high-risk cardiac patients // J. Cardiothorac. Vasc. Anesth. – 2012. – Vol. 26, № 4. – P. 596–603.; Lomivorotov V. V., Efremov S. M., Shmirev V. A. et al. Glutamine is cardioprotective in patients with ischemic heart disease following cardiopulmonary bypass // Heart Surg. Forum. – 2011. – Vol. 14, № 6. – P. E384–E388.; Lygate C. A., Bohl S., ten Hove M. et al. Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction // Cardiovasc. Res. – 2012. – Vol. 96, № 3. – P. 466–475.; Mastroroberto P., Di Tommaso L., Chello M. et al. Creatine phosphate protection of the ischemic myocardium during cardiac surgery // Current Therapeutic Research. – 1992. – № 51. – P. 37–45.; Melrose D. G., Dreyer B., Bentall H. H. et al. Elective cardiac arrest // Lancet. – 1955. – № 269. – P. 21–22.; Neubauer S., Krahe T., Schindler R. et al. 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure // Circulation. – 1992. – Vol. 86, № 6. – P. 1810–1818.; Neubauer S. The failing heart – an engine out of fuel // N. Engl. J. Med. – 2007. – Vol. 356, № 11. – P. 1140–1151.; Opie L. H. Cardiac metabolism–emergence, decline, and resurgence. Part II // Cardiovasc. Res. – 1992. – Vol. 26, № 9. – P. 817–830.; Perepech N. B., Nedoshivin A. O., Nesterova I. V. Neoton and thrombolytic therapy of myocardial infarction // Ter. Arkh. – 2001. – Vol. 73, № 9. – P. 50–55.; Pitt B., Zannad F., Remme W. J. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure // N. Engl. J. Med. – 1999. – Vol. 341, № 10. – P. 709–717.; Prabhakar G., Vona-Davis L., Murray D. et al. Phosphocreatine restores high-energy phosphates in ischemic myocardium: implication for off-pump cardiac revascularization // J. Am. Coll. Surg. – 2003. – Vol. 197, № 5. – P. 786–791.; Robinson L.A., Braimbridge M.V., Hearse D.J. Creatine phosphate: an additive myocardial protective and antiarrhythmic agent in cardioplegia // J. Thorac. Cardiovasc. Surg. – 1984. – Vol. 87, № 2. – P. 190–200.; Ruda M. Y., Samarenko M. B., Afonskaya N. I. et al. Reduction of ventricular arrhythmias by phosphocreatine (Neoton) in patients with acute myocardial infarction // Am. Heart J. – 1988. – Vol. 116, № 2. – Pt. 1. – P. 393–397.; Schaper J., Meiser E., Stämmler G. Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts // Circ. Res. – 1985. – Vol. 56, № 3. – P. 377–391.; Semenovsky M. L., Shumakov V. I., Sharov V. G. et al. Protection of ischemic myocardium by exogenous phosphocreatine. II. Clinical, ultrastructural, and biochemical evaluations // J. Thorac. Cardiovasc. Surg. – 1987. – Vol. 94, № 5. – P. 762–769.; Sharov V. G., Afonskaya N. I., Ruda M. Y. et al. Protection of ischemic myocardium by exogenous phosphocreatine (neoton): pharmacokinetics of phosphocreatine, reduction of infarct size, stabilization of sarcolemma of ischemic cardiomyocytes, and antithrombotic action // Biochem. Med. Metab. Biol. – 1986. – Vol. 35, № 1. – P. 101–114.; Shen W., Spindler M., Higgins M. A. et al. The fall in creatine levels and creatine kinase isozyme changes in the failing heart are reversible: complex post-transcriptional regulation of the components of the CK system // J. Mol. Cell. Cardiol. – 2005. – Vol. 39, № 3. – P. 537–544.; Smilari L., La Mela C., Santagati A. Study of left ventricular function in ischemic cardiomyopathies before and after phosphocreatine infusion. echocardiographic study // Current Therapeutic Research. – 1987. – Vol. 41. – P. 557–567.; Spindler M., Meyer K., Stromer H. et al. Creatine kinase deficient hearts exhibit increased susceptibility to ischemia-reperfusion injury and impaired calcium homeostasis // Am. J. Physiol. Heart. Circ. Physiol. – 2004. – Vol. 287, № 3. – P. H1039–H1045.; Strumia E., Pelliccia F., D’Ambrosio G. Creatine phosphate: pharmacological and clinical perspectives // Adv. Ther. – 2012. – Vol. 29, № 2. – P. 99–123.; Tang L. H., Xia Z. Y., Zhao B. et al. Phosphocreatine preconditioning attenuates apoptosis in ischemia-reperfusion injury of rat brain // J. Biomed. Biotechnol. – 2011. – № 2011. – P. 107091.; Tani M., Neely J. R. Mechanisms of reperfusion injury by low Ca2+ and/or high K+ // Am. J. Physiol. – 1990. – Vol. 258, № 4. Pt 2. – P. H1025–H1031.; Tani M., Neely J.R. Role of intracellular Na+ in Ca++ overload and depressed revovery of ventricular function of pererfused ischemic rat hearts: possible of H+/Na+ exchange // Circ. Res. – 1989. – Vol. 4, № 65. – P. 1045–1056.; ten Hove M., Lygate C. A., Fischer A. et al. Reduced inotropic reserve and Increased susceptibility to cardiac ischemia/reperfusion injury in phosphocreatine-deficient guanidinoacetate-N-methyltransferase-knockout mice // Circulation. – 2005. – Vol. 111, № 19. – P. 2477–2485.; Thorelius J., Thelin S., Ronquist G. et al. Biochemical and functional effects of creatine phosphate in cardioplegic solution during aortic valve surgery – a clinical study // Thorac. Cardiovasc. Surg. – 1992. – Vol. 40, № 1. – P. 10–13.; Tokarska-Schlattner M., Epand R. F., Meiler F. et al. Phosphocreatine interacts with phospholipids, affects membrane properties and exerts membrane-protective effects // PLoS One. – 2012. – Vol. 7, № 8. – P. e43178.; VanBenthuysen K. M., McMurtry I. F., Horwitz L. D. Reperfusion after acute coronary occlusion in dogs impairs endothelium-dependent relaxation to acetylcholine and augments contractile reactivity in vitro // J. Clin. Invest. – 1987. – Vol. 79, № 1. – P. 265–274.; Vinten-Johansen J., Johnston W. E., Mills S. A. Reperfusion injury after temporary coronary occlusion // J. Thorac. Cardiovasc. Surg. – 1988. – Vol. 95, № 6. – P. 960–968.; Woo Y. J., Grand T. J., Zentko S. et al. Creatine phosphate administration preserves myocardial function in a model of off-pump coronary revascularization // J. Cardiovasc. Surg. – 2005. – Vol. 46, № 3. – P. 297–305.; Wyss M., Kaddurah-Daouk R. Creatine and creatinine metabolism // Physiol. Rev. – 2000. – Vol. 80, № 3. – P. 1107–1213.

  13. 13
    Academic Journal

    Πηγή: Russian Journal of Transplantology and Artificial Organs; Том 17, № 4 (2015); 46-53 ; Вестник трансплантологии и искусственных органов; Том 17, № 4 (2015); 46-53 ; 1995-1191 ; 10.15825/1995-1191-2015-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/590/506; Lebranchu Y, Bridoux F, Buchter M. Immunoprophylaxis with basiliximab compared with antithymocyte globulin in renal transplanted patients, receiving MMFcontaining triple therapy. Am. J. Transplant. 2002; 2 (1): 48–56.; Hanaway MJ, Woodle ES, Mulgaonkar S. INTAC Study Group. Alemtuzumab induction in renal transplantation. N. Engl. J. Med. 2011; 364 (20): 1909–1919.; Dugast AS, Vanhove B. Immune regulation by non-lymphoid cells in transplantation. Clin. Exp. Immunol. 2009 Apr; 156 (1): 25–34.; Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS et al. Perivascular origin for mesenchymal stem cells in multiple human organs. Cell, Stem cell. 2008; 3: 301–313.; Caplan AI. All MSC are pericytes? Cell, Stem cell. 2008; 3: 229–230.; Aggarwal S, Pittenger R. Human mesenchymal stem cells modulate allogenic immune cell responses. Blood. 2005; 105: 1815–1822.; Климович ИБ. Стволовые клетки как иммуномодуляторы при использовании клеточных технологий. Клеточные технологии для регенеративной медицины / Под ред. Г.П. Пинаева, М.С. Богдановой, А.М. Кольцовой. СПб.: Изд-во Политехнического университета, 2011; 62–86. Klimovich VB. Stem cells as immunomodulators at using of cellular technology. Cellular technology for regenerative medicine (ed. G.P. Pinaev, M.S. Bogdanova, A.M. Koltsova). SPb.: Publishing House of Polytechnical University, 2011; 62–86.; Hoogduijn MJ, Popp FC, Grohnert A et al. MISOT Study Group. Advancement of mesenchymal stem cell therapy in solid organ transplantation (MISOT). Transplantation. 2010; 90 (2): 124–126.; Cao Z, Zhang G, Wang F, Liu H, Liu L, Han Y et al. Protective effects of mesenchymal stem cells with CXCR4 up-regulation in rat renal transplantation model. PLoS One. 2013 Dec; 8 (12): e82949.; Baulier E, Favreau F, Le Corf A, Jayle C, Schneider F, Goujon JM et al. Amniotic fluid-derived mesenchymal stem cells prevent fibrosis and preserve renal function in a preclinical porcine model of kidney transplantation. Stem Cells Transpl. Med. 2014 Jul; 3 (7): 809–820.; Tan J, Wu W, Xu X, Liao L, Zheng F, Messinger S et al. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA. 2012 Mar; 307 (11): 1169– 1177.; Lee H, Park JB, Lee S, Baek S, Kim H, Kim SJ. Intra-osseous injection of donor mesenchymal stem cell (MSC) into the bone marrow in living donor kidney transplantation; pilot study. J. Transpl. Med. 2013 Apr; 11: 96.; Peng Y, Ke M, Xu L, Liu L, Chen X, Xia W et al. Donorderived mesenchymal stem cells combined with lowdose tacrolimus prevent acute rejection after renal transplantation: a clinical pilot study. Transplantation. 2013 Jan; 95 (1): 161–168.; Perico N, Casiraghi F, Gotti E, Introna M, Todeschini M, Cavinato RA et al. Mesenchymal stromal cells and kidney transplantation: pretransplant infusion protects from graft dysfunction while fostering immunoregulation. Transpl. Int. 2013 Sep; 26 (9): 867–878.; Franquesa M, Hoogduijn MI, Baan CC. The impact of mesenchymal stem cell therapy in transplant rejection and tolerans. Curr Opin Organ Transplant. 2012 Aug; 17 (4): 355–361.; Casiraghi F, Perico N, Remuzzi G. Mesenchymal stromal cells to promote solid organ transplantation tolerans. Curr Opin Organ Transplant. 2013 Feb; 18 (1): 51–58.; Aнанич ИВ, Дерхо МА, Концевая СЮ. Биохимические показатели крови у крыс. Успехи современного естествознания. 2013; 9: 29. Ananich IV, Derho MA, Kontsevaya CJu. Biochemical indices of rat blood. Uspehi sovremennogo estestvoznaniya. 2013; 9: 29.; Люндуп АВ. Применение мезенхимальных стромальных клеток костного мозга для коррекции фиброзирующего повреждения печени: Автореф. дис. . канд. мед. наук. М., 2011: 26. Lyundup AV. Primenenie mezenhimal'nyh stromal'nyh kletok kostnogo mozga dlja korrekcii fibrozirujushchego povrezhdenija pecheni: Avtoref. dis. . kand. med. nauk. M., 2011: 26.; https://journal.transpl.ru/vtio/article/view/590

  14. 14
    Academic Journal

    Συνεισφορές: государственное задание “Наука”

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 31, № 3 (2016); 7-15 ; Сибирский журнал клинической и экспериментальной медицины; Том 31, № 3 (2016); 7-15 ; 2713-265X ; 2713-2927 ; 10.29001/2073-8552-2016-31-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/221/222; Влаопулос С., Зумпурлис В.С. JNK: ключевой модулятор внутриклеточной сигнальной системы // Биохимия. – 2004. – № 69(8). – С. 1038–1050.; Зюзьков Г.Н., Жданов В.В., Удут Е.В. и др. Роль JNK и участие p53 в реализации ростового потенциала мезенхимных клеток предшественников в условиях in vitro // Бюллетень экспериментальной биологии и медицины. – 2015. – № 159(2). – С. 205–208.; Маслов Л.Н., Мрочек А.Г., Щепёткин И.А. и др. Роль протеинкиназ в формировании адаптивного феномена ишемического посткондиционирования сердца // Рос. физиологический журнал им. И.М. Сеченова. – 2013. – № 99(4). – С. 433–452.; Рязанцева Н.В., Новицкий В.В., Часовских Н.Ю. и др. Роль редокс зависимых сигнальных систем в регуляции апоптоза при окислительном стрессе // Цитология. – 2009. – № 51(4). – С. 329–334.; Aoki H., Kang P.M., Hampe J. et al. Direct activation of mitochondrial apoptosis machinery by c Jun N terminal kinase in adult cardiac myocytes // J. Biol. Chem. – 2002. – Vol. 277(12). – P. 10244–10250.; Armstrong S.C. Protein kinase activation and myocardial ischemia/reperfusion injury // Cardiovasc. Res. – 2004. – Vol. 61(3). – P. 427–436.; Arslan F., Lai R.C., Smeets M.B. et al. Mesenchymal stem cell derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/ reperfusion injury // Stem Cell Res. – 2013. – Vol. 10(3). – P. 301–312.; Atochin D.N., Schepetkin I.A., Khlebnikov A.I. et al. A novel dual NO donating oxime and c Jun N terminal kinase inhibitor protects against cerebral ischemia reperfusion injury in mice // Neurosci. Lett. – 2016. – Vol. 618. – P. 45–49.; Barancik M., Htun P., Schaper W. Okadaic acid and anisomycin are protective and stimulate the SAPK/JNK pathway // J. Cardiovasc. Pharmacol. – 1999. – Vol. 34(2). – P. 182–190.; Becatti M., Taddei N., Cecchi C. et al. SIRT1 modulates MAPK pathways in ischemic reperfused cardiomyocytes // Cell. Mol. Life Sci. – 2012. – Vol. 69(13). – P. 2245–2260.; Bode A.M., Dong Z. The functional contrariety of JNK // Mol. Carcinog. – 2007. – Vol. 46(8). – P. 591–598.; Bogoyevitch M.A., Kobe B. Uses for JNK: the many and varied substrates of the c-Jun-N-terminal kinases // Microbiol. Mol. Biol. Rev. – 2006. – Vol. 70(4). – P. 1061–1095.; Chambers J.W., Pachori A., Howard S. et al. Inhibition of JNK mitochondrial localization and signaling is protective against ischemia/reperfusion injury in rats // J. Biol. Chem. – 2013. – Vol. 288(6). – P. 4000–4011.; Chaudhury H., Zakkar M., Boyle J. et al. C-Jun-N terminal kinase primes endothelial cells at atheroprone sites for apoptosis // Arterioscler. Thromb. Vasc. Biol. – 2010. – Vol. 30(3). – P. 546–553.; Chen Y.C., Jinn T.R., Chung T.Y. et al. Magnesium lithospermate B extracted from Salvia miltiorrhiza elevates intracellular Ca2+ level in SH SY5Y cells // Acta Pharmacol. Sin. – 2010. – Vol. 31(8). – P. 923–929.; Clerk A., Fuller S.J., Michael A. et al. Stimulation of “stress-regulated” mitogen-activated protein kinases (stress-activated protein kinases/c-Jun-N-terminal kinases and p38 mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses // J. Biol. Chem. – 1998. – Vol. 273(13). – P. 7228–7234.; Dougherty C.J., Kubasiak L.A., Frazier D.P. et al. Mitochondrial signals initiate the activation of c Jun N terminal kinase (JNK) by hypoxia-reoxygenation // FASEB J. – 2004. – Vol. 18(10). – P. 1060–1070.; Dougherty C.J., Kubasiak L.A., Prentice H. et al. Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress // Biochem. J. – 2002. – Vol. 362 (Pt. 3). – P. 561–571.; Duplain H. Salvage of ischemic myocardium: a focus on JNK // Adv. Exp. Med. Biol. – 2006. – Vol. 588. – P. 157–164.; Engelbrecht A.M., Niesler C., Page C. et al. P38 and JNK have distinct regulatory functions on the development of apoptosis during simulated ischaemia and reperfusion in neonatal cardiomyocytes // Basic Res. Cardiol. – 2004. – Vol. 99(5). – P. 338–350.; Ferrandi C., Ballerio R., Gaillard P. et al. Inhibition of c-Jun N-terminal kinase decreases cardiomyocyte apoptosis and infarct size after myocardial ischemia and reperfusion in anaesthetized rats // Br. J. Pharmacol. – 2004. – Vol. 142(6). – P. 953–960.; Frazier D.P., Wilson A., Dougherty C.J. et al. PKC alpha and TAK-1 are intermediates in the activation of c-Jun NH2 terminal kinase by hypoxia reoxygenation // Am. J. Physiol. Heart Circ. Physiol. – 2007. – Vol. 292(4). – P. H1675–1684.; Fryer R.M., Patel H.H., Hsu A.K. et al. Stress activated protein-kinase phosphorylation during cardioprotection in the ischemic myocardium // Am. J. Physiol. Heart. Circ. Physiol. – 2001. – Vol. 281(3). – P. H1184–1192.; Gehringer M., Muth F., Koch P., Laufer S.A. c-Jun N-terminal kinase inhibitors: a patent review (2010–2014) // Expert Opin. Ther. Pat. – 2015. – Vol. 25(8). – P. 849–872.; Gupta S., Barrett T., Whitmarsh A.J. et al. Selective interaction of JNK protein kinase isoforms with transcription factors // The EMBO Journal. – 1996. – Vol. 15(11). – P. 2760–2770.; Hausenloy D.J., Yellon D.M. Survival kinases in ischemic preconditioning and postconditioning // Cardiovasc. Res. – 2006. – Vol. 70(2). – P. 240–253.; Hausenloy D.J., Yellon D.M. Preconditioning and postconditioning: united at reperfusion // Pharmacol. Ther. – 2007. – Vol. 116(2). – P. 173–191.; He H., Li H.L., Lin A. et al. Activation of the JNK pathway is important for cardiomyocyte death in response to simulated ischemia // Cell Death Differ. – 1999. – Vol. 6(10). – P. 987–991.; Hreniuk D., Garay M., Gaarde W. et al. Inhibition of c-Jun N-terminal kinase 1, but not c-Jun N-terminal kinase 2, suppresses apoptosis induced by ischemia/reoxygenation in rat cardiac myocytes // Mol. Pharmacol. – 2001. – Vol. 59(4). — P. 867–874.; Ip Y.T., Davis R.J. Signal transduction by the c-Jun N-terminal kinase (JNK) – from inflammation to development // Curr. Opin. Cell Biol. – 1998. – Vol. 10(2). – P. 205–219.; Irving E.A., Bamford M. Role of mitogen and stress-activated kinases in ischemic injury // J. Cereb. Blood Flow Metab. – 2002. – Vol. 22(6). – P. 631–647.; Jang S., Javadov S. Inhibition of JNK aggravates the recovery of rat hearts after global ischemia: the role of mitochondrial JNK // PLoS One. – 2014. – Vol. 9(11). – P. e113526.; Javadov S., Jang S., Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives // Pharmacol. Ther. – 2014. – Vol. 144(2). – P. 202–225.; Johnson G.L., Nakamura K. The c-jun kinase/stress-activated pathway: regulation, function and role in human disease // Biochim. Biophys. Acta. – 2007. – Vol. 1773(8). – P. 1341–1348.; Kaiser R.A., Liang Q., Bueno O. et al. Genetic inhibition or activation of JNK1/2 protects the myocardium from ischemia–reperfusion induced cell death in vivo // J. Biol. Chem. – 2005. – Vol. 280(38). – P. 32602–32608.; Khalid S., Drasche A., Thurner M. et al. c-Jun N-terminal kinase (JNK) phosphorylation of serine 36 is critical for p66Shc activation // Sci. Rep. – 2016. – Vol. 6. – P. 20930.; Khandoudi N., Delerive P., Berrebi-Bertrand I. et al. Rosiglitazone, a peroxisome proliferator activated receptor-gamma, inhibits the Jun NH(2) terminal kinase/activating protein 1 pathway and protects the heart from ischemia/reperfusion injury // Diabetes. – 2002. – Vol. 51(5). – P. 1507–1514.; Knight R.J., Buxton D.B. Stimulation of c-Jun kinase and mitogen-activated protein kinase by ischemia and reperfusion in the perfused rat heart // Biochem. Biophys. Res. Commun. – 1996. – Vol. 218(1). – P. 83–88.; Laderoute K.R., Webster K.A. Hypoxia/reoxygenation stimulates Jun kinase activity through redox signaling in cardiac myocytes // Circ. Res. – 1997. – Vol. 80(3). – P. 336–344.; Li H.H., Du J., Fan Y.N. et al. The ubiquitin ligase MuRF1 protects against cardiac ischemia/reperfusion injury by its proteasome-dependent degradation of phospho c-Jun // Am. J. Pathol. – 2011. – Vol. 178(3). – P. 1043–1058.; Li C., Gao Y., Tian J. et al. Sophocarpine administration preserves myocardial function from ischemia reperfusion in rats via NF-кB inactivation // J. Ethnopharmacol. – 2011. – Vol. 135(3). – P. 620–625.; Li X.M., Ma Y.T., Yang Y.N. et al. Ischemic postconditioning protects hypertrophic myocardium by ERK1/2 signaling pathway: experiment with mice // Zhonghua Yi Xue Za Zhi. – 2009. – Vol. 89(12). – P. 846–850.; Li C., Wang T., Zhang C. et al. Quercetin attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen activated protein kinase signaling pathways // Gene. – 2016. – Vol. 577(2). – P. 275–280.; Liu Q., Wang J., Liang Q. et al. Sparstolonin B attenuates hypoxia-reoxygenation induced cardiomyocyte inflammation // Exp. Biol. Med. (Maywood). – 2014. – Vol. 239(3). – P. 376–384.; Liu X., Xu F., Fu Y. et al. Calreticulin induces delayed cardioprotection through mitogen; activated protein kinases // Proteomics. – 2006. – Vol. 6(13). – P. 3792–3800.; Liu H.T., Zhang H.F., Si R. et al. Insulin protects isolated hearts from ischemia/reperfusion injury: cross talk between PI3-K/Akt and JNKs // Acta Physiol. Sin. – 2007. – Vol. 59(5). – P. 651–659.; Liu X.H., Zhang Z.Y., Sun S. et al. Ischemic postconditioning protects myocardium from ischemia/reperfusion injury through attenuating endoplasmic reticulum stress // Shock. – 2008. – Vol. 30(4). – P. 422–427.; Messoussi A., Feneyrolles C., Bros A. et al. Recent progress in the design, study, and development of c-Jun N-terminal kinase inhibitors as anticancer agents // Chem. Biol. – 2014. – Vol. 21(11). – P. 1433–1443.; Milano G., Morel S., Bonny C. et al. A peptide inhibitor of c-Jun NH2-terminal kinase reduces myocardial ischemia reperfusion injury and infarct size in vivo // Am. J. Physiol. Heart Circ. Physiol. – 2007. – Vol. 292(4). – P. H1828–1835.; Morrison A., Yan X., Tong C. et al. Acute rosiglitazone treatment is cardioprotective against ischemia reperfusion injury by modulating AMPK, Akt, and JNK signaling in nondiabetic mice // Am. J. Physiol. Heart Circ. Physiol. – 2011. – Vol. 301(3). – P. H895–902.; Nakano A., Baines C.P., Kim S.O. et al. Ischemic preconditioning activates MAPKAPK2 in the isolated rabbit heart: evidence for involvement of p38 MAPK // Circ. Res. – 2000. – Vol. 86(2). – P. 144–151.; Nijboer C.H., van der Kooij M.A., van Bel F. et al. Inhibition of the JNK/AP-1 pathway reduces neuronal death and improves behavioral outcome after neonatal hypoxic ischemic brain injury // Brain Behav. Immun. – 2010. – Vol. 24(5). – P. 812– 821.; Oshikawa J., Kim S.J., Furuta E. et al. Novel role of p66Shc in ROS-dependent VEGF signaling and angiogenesis in endothelial cells // Am. J. Physiol. Heart Circ. Physiol. – 2012. – Vol. 302(3). – P. H724–732.; Ping P., Zhang J., Huang S. et al. PKC-dependent activation of p46/p54 JNKs during ischemic preconditioning in conscious rabbits // Am. J. Physiol. – 1999. – Vol. 277(5 Pt. 2). – P. H1771–1785.; Qi D., Hu X., Wu X. et al. Cardiac macrophage migration inhibitory factor inhibits JNK pathway activation and injury during ischemia/reperfusion // J. Clin. Invest. – 2009. – Vol. 119(12). – P. 3807–3816.; Rose B.A., Force T., Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale // Physiol. Rev. – 2010. – Vol. 90(4). – P. 1507–1546.; Sato M., Bagchi D., Tosaki A. et al. Grape seed proanthocyanidin reduces cardiomyocyte apoptosis by inhibiting ischemia/reperfusion induced activation of JNK-1 and C-JUN // Free Radic. Biol. Med. – 2001. – Vol. 31(6). – P. 729–737.; Shang L., Ananthakrishnan R., Li Q. et al. RAGE modulates hypoxia/reoxygenation injury in adult murine cardiomyocytes via JNK and GSK-3beta signaling pathways // PLoS One. – 2010. – Vol. 5(4). – P. e10092.; Shao Z., Bhattacharya K., Hsich E. et al. c-Jun N-terminal kinases mediate reactivation of Akt and cardiomyocyte survival after hypoxic injury in vitro and in vivo // Circ. Res. – 2006. – Vol. 98(1). – P. 111–118.; Shi S., Li Q.S., Li H. et al. Anti-apoptotic action of hydrogen sulfide is associated with early JNK inhibition // Cell Biol. Int. – 2009. – Vol. 33(10). – P. 1095–1101.; Song Z.F., Ji X.P., Li X.X. et al. Inhibition of the activity of poly (ADP-ribose) polymerase reduces heart ischaemia/reperfusion injury via suppressing JNK-mediated AIF translocation // Cell Mol. Med. – 2008. – Vol. 12(4). – P. 1220–1228.; Sun L., Isaak C.K., Zhou Y. et al. Salidroside and tyrosol from Rhodiola protect H9c2 cells from ischemia/reperfusion induced-apoptosis // Life Sci. – 2012. – Vol. 91(5–6). – P. 151–158.; Sun H.Y., Wang N.P., Halkos M. et al. Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways // Apoptosis. – 2006. – Vol. 11(9). – P. 1583–1593.; Talmor D., Applebaum A., Rudich A. et al. Activation of mitogen-activated protein kinases in human heart during cardiopulmonary bypass // Circ. Res. – 2000. – Vol. 86(9). – P. 1004–1007.; Vassalli G., Milano G., Moccetti T. Role of Mitogen-Activated Protein Kinases in myocardial ischemia reperfusion injury during heart transplantation // J. Transplant. – 2012. – Vol. 2012. – P. 928954.; Waetzig V., Herdegen T. Context-specific inhibition of JNKs: overcoming the dilemma of protection and damage // Trends Pharmacol. Sci. – 2005. – Vol. 26(9). – P. 455–461.; Walshe C.M., Laffey J.G., Kevin L. et al. Sepsis protects the myocardium and other organs from subsequent ischaemic/reperfusion injury via a MAPK dependent mechanism // Intensive Care Med. Exp. – 2015. – Vol. 3(1). – P. 35.; Wang Z., Huang H., He W. et al. Regulator of G-protein signaling 5 protects cardiomyocytes against apoptosis during in vitro cardiac ischemia-reperfusion in mice by inhibiting both JNK and P38 signaling pathways [Electronic resource] // Biochem. Biophys. Res. Commun. – 2016. – Vol. 473(2). – P. 551–557.; Wang J., Yang L., Rezaie A.R. et al. Activated protein C protects against myocardial ischemic/reperfusion injury through AMP-activated protein kinase signaling // J. Thromb. Haemost. – 2011. – Vol. 9(7). – P. 1308–1317.; Wei J., Wang W., Chopra I. et al. C-Jun N-terminal kinase (JNK-1) confers protection against brief but not extended ischemia during acute myocardial infarction // J. Biol. Chem. – 2011. – Vol. 286(16). – P. 13995–14006.; Wei C., Zhao Y., Wang L. et al. H2S restores the cardioprotection from ischemic post-conditioning in isolated aged rat hearts // Cell Biol. Int. – 2015. – Vol. 39(10). – P. 1173–1176.; Wiltshire C., Gillespie D.A., May G.H. Sab (SH3BP5), a novel mitochondria-localized JNK interacting protein // Biochem. Soc. Trans. – 2004. – Vol. 32 (Pt. 6). – P. 1075–1077.; Wu J., Li J., Zhang N. et al. Stem cell-based therapies in ischemic-heart diseases: a focus on aspects of microcirculation and inflammation // Basic Res. Cardiol. – 2011. – Vol. 106(3). – P. 317–324.; Xie P., Guo S., Fan Y. et al. Atrogin-1/MAFbx enhances simulated ischemia/reperfusion induced apoptosis in cardiomyocytes through degradation of MAPK phosphatase-1 and sustained JNK-activation // J. Biol. Chem. – 2009. – Vol. 284(9). – P. 5488–5496.; Xu J., Qin X., Cai X. et al. Mitochondrial JNK activation triggers autophagy and apoptosis and aggravates myocardial injury-following ischemia/reperfusion // Biochim. Biophys. Acta. – 2015. – Vol. 1852(2). – P. 262–270.; Xu T., Wu X., Chen Q. et al. The anti-apoptotic and cardioprotective effects of salvianolic acid A on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of the ERK1/2/JNK pathway // PLoS One. – 2014. – Vol. 9(7). – P. e102292.; Xu H., Yao Y., Su Z. et al. Endogenous HMGB1 contributes to ischemia reperfusion-induced myocardial apoptosis by potentiating the effect of TNF-alpha/JNK // Am. J. Physiol. Heart Circ. Physiol. – 2011. – Vol. 300(3). – P. H913–921.; Yang L.M., Xiao Y.L., Ou Yang J.H. Inhibition of magnesium lithospermate B on the c-Jun N-terminal kinase 3 mRNA-expression in cardiomyocytes encountered ischemia/reperfusion injury // Acta Pharmacol. Sin. – 2003. – Vol. 38(7). – P. 487–491.; Yin T., Sandhu G., Wolfgang C.D. et al. Tissue specific pattern of stress kinase activation in ischemic/reperfused heart and kidney // J. Biol. Chem. – 1997. – Vol. 272(32). – P. 19943–19950.; Yue T.L., Wang C., Gu J.L. et al. Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart // Circ. Res. – 2000. – Vol. 86(6). – P. 692–699.; Zaha V.G., Qi D., Su K.N. et al. AMPK is critical for mitochondrial function during reperfusion after myocardial ischemia // J. Mol. Cell. Cardiol. – 2016. – Vol. 91. – P. 104–113.; Zhang J., Li X.X., Bian H.J. et al. Inhibition of the activity of Rho-kinase reduces cardiomyocyte apoptosis in heart ischemia/reperfusion via suppressing JNK-mediated AIF translocation // Clin. Chim. Acta. – 2009. – Vol. 401(1–2). – P. 76–80.; Zhang G.M., Wang Y., Li T.D. et al. Change of JNK MAPK and its influence on cardiocyte apoptosis in ischemic postconditioning // J. Zhejiang Univ. – 2009. – Vol. 38(6). – P. 611–619.; Zhang G.M., Wang Y., Li T.D. et al. Post conditioning with gradually increased reperfusion provides better cardioprotection in rats // World J. Emerg. Med. – 2014. – Vol. 5(2). – P. 128–134.; Zinkel S., Gross A., Yang E. BCL2 family in DNA damage and cell cycle control // Cell Death Differ. – 2006. – Vol. 13(8). – P. 1351–1359.; https://www.sibjcem.ru/jour/article/view/221

  15. 15
  16. 16
    Academic Journal

    Πηγή: Russian Journal of Transplantology and Artificial Organs; Том 15, № 1 (2013); 39-44 ; Вестник трансплантологии и искусственных органов; Том 15, № 1 (2013); 39-44 ; 1995-1191 ; 10.15825/1995-1191-2013-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/138/80; Abu-Amara1 M., Gurusamy K., Hori S. Systematic re- view of randomized controlled trials of pharmacological interventions to reduce ischaemia-reperfusion injury in elective liver resection with vascular occlusion // HPB (Oxford). 2010. Vol. 12 (1). P. 4–14.; Beck-Schimmer B., Breitenstein S., Urech S., De Con- no E. et al. A randomized controlled trial on pharmaco- logical preconditioning in liver surgery using a volatile anesthetic // Ann. Surg. 2008. Vol. 248. P. 909–918.; Bussutil R., Klintmalm G. Transplantation of the liver // Elsevier. 2005. P. 186.; Kakizoe S., Yanaga K., Starzl T., Demetris J. Evaluation of protocol before transplantation and reperfusion biop- sies from human orthotopic liver allografts: Considera- tions of preservation and early immunological injury // Hepatology. 1990. Vol. 11. P. 932–941.; Kiuchi T., Oldhafer K., Schlitt H., Nashan B. et al. Back- ground and prognostic implications of perireperfusion tis- sue injuries in human liver transplants: A panel histoche- mical study // Transplantation. 1998. Vol. 66. P. 737–747.; Koneru B., Fisher A., He Y., Klein K. et al. Ischemic pre- conditioning in deceased donor liver transplantation: a prospective randomized clinical trial of safety and effi- cacy // Liver Transplantation. 2005. Vol. 11. P. 196–202.; Miller R. Millers Anesthesia // Elsevier. 2010. 617 p.; Ohkohchi N. Mechanisms of preservation and ischemic/ reperfusion injury in liver transplantation // Transplanta-; tion Proceedings. 2002. Vol. 34 (7). P. 26–35.; Okamoto S., Corso C., Leiderer R., Rascher W. et al. Role of hypotension in brain-death associated impair- ment of livermicrocirculation and viability // Transplant; Int. 2000. Vol. 13. P. 428–435.; https://journal.transpl.ru/vtio/article/view/138

  17. 17
    Academic Journal

    Πηγή: Russian Journal of Transplantology and Artificial Organs; Том 12, № 4 (2010); 11-18 ; Вестник трансплантологии и искусственных органов; Том 12, № 4 (2010); 11-18 ; 1995-1191 ; 10.15825/1995-1191-2010-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/339/281; Готье С.В., Мойсюк Я.Г., Ибрагимова О.С. Тенден- ции развития органного донорства и трансплантации в Российской Федерации в 2006–2008 гг. Сообще- ние 1 (по данным регистра Российского трансплан- тационного общества) // Вест. трансплантологии и искусственных органов. 2009. Т. 11. No 3. С. 8–16.; Иванов К.П., Мельникова Н.Н. Роль лейкоцитов в ди- намике микроциркуляции в норме и при патологии // Журнал общей биологии. 2004. Т. 62. No 3. С. 3–13.; Резник О.Н. Организационные и технологические основы получения и селекции почек для трансплан- тации: Автореферат дис. . д-ра мед. наук / О.Н. Рез- ник; НИИТиИО. М., 2008. С. 224.; Chang G.J. et al. Expanding the donor pool: can the Spanish model work in the United States? // Amer. J. of Transplant. 2003. Vol. 3. No 10. P. 1259–1263.; De Vries A.J. et al. Leucocyte depletion during cardiac surgery: a comparison of different filtration strategies // Perfusion. 2003. Vol. 18. P. 31.; Fieux F., Losser M.-R., Bourgeois E. et al. Kidney re- trieval after sudden out of hospital refractory cardiac ar- rest: a cohort of uncontrolled non heart beating donors // Critical Care. 2009. Vol. 13. P. 141.; Garcia C.E., Bramhall S., Mirza D.F. Use of marginal donors // Current Opinion in Organ Transplantation. 2000. Vol. 5. P. 50–56.; Gomez M., Alvarez J., Arias J. et al. Cardiopulmonary bypass and profound hypothermia as a means for obtain- ing kidney grafts from irreversible cardiac arrest donors: Cooling technique // Transplant. Proc. 1993. Vol. 25. P. 1501–1503.; Harper S., Nicholson M. et al. Leucocyte depletion improves renal function during reperfusion using an experimental isolated haemoperfused organ preserva- tion system // British Journal of Surgery. 2006. Vol. 93. P. 623–629.; Ko W.-J., Chen Y.-S., Tsai P.-R., Lee P.-H. Extracorpo- real membrane oxygenation support of donor abdominal organs in non-heart-beating donors // Clin. Transplanta- tion. 2000. Vol. 14. P. 152–156.; Koffman G., Gambaro G. Renal transplantation from non heart beating donors: A review of the European ex- perience // J. Nephrol. 2003. No 16. P. 334–341.; Koo D.H., Fuggle S.V. Impact of ischemia/reperfusion injury and early inflammatory responses in kidney trans- plantation // Transplantation Rewiews. 2000. Vol. 14. No 2. P. 210–224.; Kootstra G. Statement on non-heart-beating programs // Transplant. Proс. 1995. Vol. 27. No 3. P. 2965–2968.; Kootstra G. Asystolic or non-heartbeating donor //; Transplantation. 1997. Vol. 63. No 7. P. 917–921.; Kootstra G., Kievit M.D., Nederstigt A. et al. Organ Do- nors: Heartbeating and Non-heartbeating // World J. Sur-; gery. 2002. Vol. 26. P. 181–184.; Lee C.Y., Tsai M.K., Lee P.H. et al. Expanding the donor pool: use of renal transplants from non-heart-beating do- nors supported with extracorporeal membrane oxygena- tion // Clin. Transplant. 2005. Vol. 19. No 3. P. 383–390.; Linfert D., Chowdhry T., Rabb H. et al. Lymphocytes and ischemia-reperfusion injury // Transplant. Rev. 2009. Vol. 23. No 1. P. 1–10.; Magliocca J.F. et al. Extracorporeal support for organ donation after cardiac death effectively expands the do- nor pool // J. Trauma. 2005. Vol. 58. P. 1095–1102.; Matesanz R., Miranda B. Expanding the organ donor pool: the Spanish Model // Kidney Int. 2001. Vol. 59. No 4. P. 1594.; Moers C. et al. Machine perfusion or cold storage in de- ceased-donor kidney transplantation // N. Engl. J. Med. 2009. Vol. 360. P. 7–19.; Rowiński W. Future of transplantation medicine // Ann. Transplant. 2007. Vol. 12. No 1. P. 5–10.; Rozenthal R. Organ Donation: Quo vadis? // Annals of Transplantation. 2006. Vol. 11 No 3. P. 49–51.; Stubenitsky B.M., Booster M.H., Nidersting A.P. Kidney preservation in the next millenium // Transpl. Int. 1999. Vol. 12. P. 83–91.; Sung R.S., Punch J.D. Uncontrolled DCDs: The Next Step? // American Journal of Transplantation. 2006. Vol. 6. P. 1505–1506.; https://journal.transpl.ru/vtio/article/view/339

  18. 18
  19. 19
  20. 20