Εμφανίζονται 1 - 20 Αποτελέσματα από 103 για την αναζήτηση '"ишемическая кардиомиопатия"', χρόνος αναζήτησης: 0,91δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: Исследование выполнено за счет грантов Российского научного фонда: № 22-25-00821, https:// rscf.ru/project/22-25-00821/ (изучение иммунофенотипа клеток, MCP-1, SDF-1) и № 22-25-20038, https://rscf.ru/project/22-25-20038/ и средств Администрации Томской области (изучение VEGF-А и HIF-1α). Публикация размещена при участии Балтийского федерального университета им. И. Канта.

    Πηγή: Medical Immunology (Russia); Том 26, № 5 (2024); 1053-1060 ; Медицинская иммунология; Том 26, № 5 (2024); 1053-1060 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/3116/2023; Чумакова С.П., Уразова О.И., Шипулин В.М., Суходоло И.В., Стельмашенко А.И., Денисенко О.А., Андреев С.Л., Дёмин М.С., Чурина Е.Г. Продукция медиаторов ангиогенеза и структура сосудистой стенки в сердце при ишемической кардиомиопатии // Acta Biomedica Scientifica, 2023. Т. 8, № 6. С. 81-90.; Calabrese E.J. Hormesis and endothelial progenitor cells. Dose Response, 2022, Vol. 20, no. 1, 15593258211068625. doi:10.1177/15593258211068625; Chopra H., Hung M.K., Kwong D.L., Zhang C.F., Pow E.H.N. Insights into endothelial progenitor cells: origin, classification, potentials, and prospects. Stem Cells Int., 2018, Vol. 2018, 9847015. doi:10.1155/2018/9847015.; Chumakova S.P., Urazova O.I., Shipulin V.M., Andreev S.L., Denisenko O.A., Gladkovskaya M.V., Litvinova L.S., Bubenchikov M.A. Role of angiopoietic coronary endothelial dysfunction in the pathogenesis of ischemic cardiomyopathy. Biomedicines. 2023, Vol. 11, no. 7, 1950. doi:10.3390/biomedicines11071950.; Cowman S.J., Koh M.Y. Revisiting the HIF switch in the tumor and its immune microenvironment. Trends Cancer, 2022, Vol. 8, no. 1, pp. 28-42.; Del Buono M.G., Moroni F., Montone R.A., Azzalini L., Sanna T., Abbate A. Ischemic cardiomyopathy and heart failure after acute myocardial infarction. Curr. Cardiol. Rep., 2022, Vol. 24, no. 10, pp. 1505-1515.; Felker G.M., Shaw G.M., O’Connor C.M. A standardized definition of ischemic cardiomyopathy for use in clinical research. J. Am. Coll. Cardiol., 2002, Vol. 39, no. 2, pp. 208-210.; Jiang Q., Huang K., lu F., Deng S., Yang Z., Hu S. Modifying strategies for SDF-1/CXCR4 interaction during mesenchymal stem cell transplantation. Gen. Thorac. Cardiovasc. Surg., 2022, Vol. 70, no. 1, pp. 1-10.; Korbecki J., KojderK., Kapczuk P., Kupnicka P., Gawronska-Szklarz B., Gutowska I., Chlubek D., Baranowska-Bosiacka I. The effect of hypoxia on the expression of CXC chemokines and CXC chemokine receptors – a review of literature. Int. J. Mol. Sci, 2021, Vol. 22, no. 2, 843. doi:10.3390/ijms22020843.; Nagasawa T. CXCL12/SDF-1 andCXCR4. Front.Immunol.,2015,Vol.6,301. doi:10.3389/fimmu.2015.00301.; Sato Т., Takeda N. The roles of HIF-1α signaling in cardiovascular diseases. J. Cardiol., 2023, Vol. 81, no. 2, pp. 202-208.; Shi С., Pamer E.G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol., 2011, Vol. 11, no. 11, pp. 762-774.; Singh S., Anshita D., Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int. Immunopharmacol., 2021, Vol. 101, Part B, 107598. doi:10.1016/j.intimp.2021.107598.; Teh Y.C., Ding J.L., Ng L.G., Chong S.Z. Capturing the fantastic voyage of monocytes through time and space. Front. Immunol., 2019, Vol. 10, 834. doi:10.3389/fimmu.2019.00834.; Zhong J., Rajagopalan S. Dipeptidyl peptidase-4 regulation of SDF-1/CXCR4 axis: implications for cardiovascular disease. Front. Immunol., 2015, Vol. 6, 477. doi:10.3389/fimmu.2015.00477.; Zhou Y., Zhu X., Cui H., Shi J., Yuan G., Shi S., Hu Y. The Role of the VEGF family in coronary heartdisease. Front. Cardiovasc. Med., 2021, Vol. 8, 738325. doi:10.3389/fcvm.2021.738325.; https://www.mimmun.ru/mimmun/article/view/3116

  2. 2
  3. 3
    Academic Journal

    Πηγή: Medical Visualization; Том 27, № 4 (2023); 22-34 ; Медицинская визуализация; Том 27, № 4 (2023); 22-34 ; 2408-9516 ; 1607-0763

    Περιγραφή αρχείου: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/1241/813; https://medvis.vidar.ru/jour/article/view/1241/848; https://medvis.vidar.ru/jour/article/downloadSuppFile/1241/1905; https://medvis.vidar.ru/jour/article/downloadSuppFile/1241/1906; https://medvis.vidar.ru/jour/article/downloadSuppFile/1241/2103; https://medvis.vidar.ru/jour/article/downloadSuppFile/1241/2104; Шипулин В.М., Пряхин А.С., Андреев С.Л., Шипулин В.В., Козлов Б.Н. Современное состояние проблемы хирургического лечения ишемической кардиомиопатии. Кардиология. 2019; 59 (9): 71–82. https://doi.org/10.18087//cardio.2019.9.n329; Oshima H., Tokuda Y., Araki Y. et al. Predictors of early graft failure after coronary artery bypass grafting for chronic total occlusion. Interact. Cardiovasc. Thorac. Surg. 2016; 23: 142–149. https://doi.org/10.1093/icvts/ivw084; Velazquez E.J., Lee K.L., Deja M.A. et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N. Engl. J. Med. 2011; 364 (17): 1607–1616. https://doi.org/10.1056/NEJMoa1100356; Amin S., Werner R.S., Madsen P.L. et al. Intraoperative bypass graft flow measurement with transit time flowmetry: a clinical assessment. Ann. Thorac. Surg. 2018; 106: 532–538. https://doi.org/10.1016/j.athoracsur.2018.02.067; Kieser T.M., Taggart D.P. Current status of intra-operative graft assessment: Should it be the standard of care for coronary artery bypass graft surgery? J. Card. Surg. 2018; 33: 219–228. https://doi.org/10.1111/jocs.13546; Takami Y., Takagi Y. Roles of Transit-Time Flow Measurement for Coronary Artery Bypass Surgery. Thorac. Cardiovasc. Surg. 2018; 66: 426–433. https://doi.org/10.1055/s-0037-1618575; Walpoth B.H., Mohadjer A., Gersbach P. et al. Intraoperative internal mammary artery transit-time flow measurements: comparative evaluation of two surgical pedicle preparation techniques. Eur. J. Cardiothorac. Surg. 1996; 10: 1064–1068; discussion 1069–1070. https://doi.org/10.1016/s1010-7940(96)80353-8; Wu S.-J., Li Y.-C., Shi Z.-W. et al. Alteration of cholinergic anti-inflammatory pathway in rat with ischemic cardiomyopathy-modified electrophysiological function of heart. J. Am. Heart Assoc. 2017; 6 (9): e006510. https://doi.org/10.1161/JAHA.117.006510; Strecker T., Rösch J., Weyand M., Agaimy A. Pathological findings in cardiac apex removed during implantation of left ventricular assist devices (LVAD) are non-specific: 13-year-experience at a German Heart Center. Int. J. Clin. Exp. Pathol. 2014; 7: 5549–5556.; Hol P.K., Fosse E., Mork B.E. et al. Graft control by transit time flow measurement and intraoperative angiography in coronary artery bypass surgery. Heart Surg. Forum. 2001; 4: 254–257; discussion 257–258.; Neumann F.-J., Sousa-Uva M., Ahlsson A. et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019; 40 (2): 87–165. https://doi.org/10.1093/eurheartj/ehy394; Di Giammarco G., Pano M., Cirmeni S. et al. Predictive value of intraoperative transit-time flow measurement for short-term graft patency in coronary surgery. J. Thorac. Cardiovasc. Surg. 2006; 132 (3): 468–474. https://doi.org/10.1016/j.jtcvs.2006.02.014; Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS), European Association for Percutaneous Cardiovascular Interventions (EAPCI); Wijns W. et al. Guidelines on myocardial revascularization. Eur. Heart J. 2010; 31: 2501–2555. https://doi.org/10.1093/eurheartj/ehq277; Lehnert P., Møller C.H., Damgaard S. et al. Transit-time flow measurement as a predictor of coronary bypass graft failure at one year angiographic follow-up. J. Card. Surg. 2015; 30 (1): 47–52. https://doi.org/10.1111/jocs.12471; Su P., Gu S., Liu Y. et al. Off-Pump Coronary Artery Bypass Grafting with Mini-Sternotomy in the Treatment of Triple-Vessel Coronary Artery Disease. Int. Heart J. 2018; 59: 474–481. https://doi.org/10.1536/ihj.17-067; Yu Y., Zhang F., Gao M.X. et al. The application of intra-operative transit time flow measurement to accurately assess anastomotic quality in sequential vein grafting. Interact. Cardiovasc. Thorac. Surg. 2013; 17 (6): 938–943. https://doi.org/10.1093/icvts/ivt398; Niclauss L. Techniques and standards in intraoperative graft verification by transit time flow measurement after coronary artery bypass graft surgery: a critical review. Eur. J. Cardiothorac. Surg. 2017; 51 (1): 26–33. https://doi.org/10.1093/ejcts/ezw203; Hudorovic N., Visnja V.H. eComment. SPECT perfusion quantification for chronic total occlusion. Interact. Cardiovasc. Thorac. Surg. 2016; 23(1): 149. https://doi.org/10.1093/icvts/ivw134; Шипулин В.В., Саушкин В.В., Пряхин А.С., Андреев С.Л., Веснина Ж.В., Завадовский К.В. Возможности перфузионной сцинтиграфии миокарда в обследовании пациентов с ишемической кардиомиопатией. REJR. 2019; 9 (3):155–175. https://doi.org/10.21569/2222-7415-2019-9-3-155-175; Felker G.M., Shaw L.K., O’Connor C.M. A standardized definition of ischemic cardiomyopathy for use in clinical research. J. Am. Coll. Cardiol. 2002; 39 (2): 210–218. https://doi.org/10.1016/s0735-1097(01)01738-7; Kirklin J.K., Blackstone E.H. Kirklin/Barratt-Boyes Cardiac Surgery, 4th Edition. Elsevier, 2013. 2256 p. ISBN 978-1416063919.; Menicanti L., Di Donato M. The Dor procedure: what has changed after fifteen years of clinical practice? J. Thorac. Cardiovasc. Surg. 2002; 124 (5): 886–890. https://doi.org/10.1067/mtc.2002.129140; Cooley D.A. Ventricular endoaneurysmorrhaphy: a simplified repair for extensive postinfarction aneurysm. J. Card. Surg. 1989; 4 (3): 200–205. https://doi.org/10.1111/j.1540-8191.1989.tb00282.x; Judkins M.P. Selective coronary arteriography. I. A percutaneous transfemoral technic. Radiology. 1967; 89 (5): 815–824. https://doi.org/10.1148/89.5.815; Jelenc M., Jelenc B., Klokočovnik T. et al. Understanding coronary artery bypass transit time flow curves: role of bypass graft compliance. Interact. Cardiovasc. Thorac. Surg. 2014; 18 (2): 164–168. https://doi.org/10.1093/icvts/ivt457; Henzlova M.J., Duvall W.L., Einstein A.J. et al. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers. J. Nucl. Cardiol. 2016; 23 (3): 606–639. https://doi.org/10.1007/s12350-015-0387-x; Cerqueira M.D., Weissman N.J., Dilsizian V. et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002; 105 (4): 539–542. https://doi.org/10.1161/hc0402.102975; Germano G., Kavanagh P.B., Waechter P. et al. A new algorithm for the quantitation of myocardial perfusion SPECT. I: technical principles and reproducibility. J. Nucl. Med. 2000; 41 (4): 712–719.; Ficaro E.P., Lee B.C., Kritzman J.N., Corbett J.R. Corridor 4DM: the Michigan method for quantitative nuclear cardiology. J. Nucl. Cardiol. 2007; 14 (4): 455–465. https://doi.org/10.1016/j.nuclcard.2007.06.006; Jokinen J.J., Werkkala K., Vainikka T. et al. Clinical value of intra-operative transit-time flow measurement for coronary artery bypass grafting: a prospective angiography-controlled study. Eur. J. Cardiothorac. Surg. 2011; 39 (6): 918–923. https://doi.org/10.1016/j.ejcts.2010.10.006; Walker P.F., Daniel W.T., Moss E. et al. The accuracy of transit time flow measurement in predicting graft patency after coronary artery bypass grafting. Innovations (Phila). 2013; 8 (6): 416–419. https://doi.org/10.1097/IMI.0000000000000021; Di Giammarco G., Rabozzi R. Can transit-time flow measurement improve graft patency and clinical outcome in patients undergoing coronary artery bypass grafting? Interact. Cardiovasc. Thorac. Surg. 2010; 11 (5): 635–640. https://doi.org/10.1510/icvts.2010.235663; Honda K., Okamura Y., Nishimura Y. et al. Graft flow assessment using a transit time flow meter in fractional flow reserve-guided coronary artery bypass surgery. J. Thorac. Cardiovasc. Surg. 2015; 149 (6): 1622–1628. https://doi.org/10.1016/j.jtcvs.2015.02.050; Kieser T.M., Rose S., Kowalewski R., Belenkie I. Transit-time flow predicts outcomes in coronary artery bypass graft patients: a series of 1000 consecutive arterial grafts. Eur. J. Cardiothorac. Surg. 2010; 38 (2): 155–162. https://doi.org/10.1016/j.ejcts.2010.01.026; Leong D.K.H., Ashok V., Nishkantha A. et al. Transit-time flow measurement is essential in coronary artery bypass grafting. Ann. Thorac. Surg. 2005; 79 (3): 854–857; discussion 857–858. https://doi.org/10.1016/j.athoracsur.2004.06.010; Matre K., Birkeland S., Hessevik I., Segadal L. Comparison of transit-time and Doppler ultrasound methods for measurement of flow in aortocoronary bypass grafts during cardiac surgery. Thorac. Cardiovasc. Surg. 1994; 42 (3): 170–174. https://doi.org/10.1055/s-2007-1016481; Tokuda Y., Song M.-H., Ueda Y. et al. Predicting early coronary artery bypass graft failure by intraoperative transit time flow measurement. Ann. Thorac. Surg. 2007; 84 (6): 1928–1933. https://doi.org/10.1016/j.athoracsur.2007.07.040; Verhoye J.-P., Abouliatim I., Drochon A. et al. Collateral blood flow between left coronary artery bypass grafts and chronically occluded right coronary circulation in patients with triple vessel disease. Observations during complete revascularisation of beating hearts. Eur. J. Cardiothorac. Surg. 2007; 31 (1): 49–54. https://doi.org/10.1016/j.ejcts.2006.09.033; Rossi M., Jiritano F., Malta E., Renzulli A. Competitive flow between a vein and an arterial graft at transit-time flow measurement. Interact. Cardiovasc. Thorac. Surg. 2012; 15 (2): 288–289. https://doi.org/10.1093/icvts/ivs152; Pinarli A.E., Gürsürer M., Aksoy M. et al. Assessment of graft patency rate after coronary artery bypass surgery by exercise TL-201 single photon emission computed tomography. Int. J. Angiol. 1998; 7 (4): 313–316. https://doi.org/10.1007/s005479900122; Taki J., Ichikawa A., Nakajima K. et al. Comparison of flow capacities of arterial and venous grafts for coronary artery bypass grafting: evaluation with exercise thallium-201 single-photon emission tomography. Eur. J. Nucl. Med. 1997; 24 (12): 1487–1493. https://doi.org/10.1007/s002590050178; Yada T., Futagami Y., Koyama T. et al. Graft patency and myocardial viability after aorto-coronary bypass surgery evaluated by exercise 201T1 myocardial SPECT. J. Cardiol. 1988; 18 (2): 299–306. (In Japanese); Kureshi S.A., Tamaki N., Yonekura Y. et al. Value of stress thallium-201 emission tomography for predicting improvement after coronary bypass grafting and assessing graft patency. Jpn. Heart J. 1989; 30 (3): 287–299. https://doi.org/10.1536/ihj.30.287; Lakkis N.M., Mahmarian J.J., Verani M.S. Exercise thallium-201 single photon emission computed tomography for evaluation of coronary artery bypass graft patency. Am. J. Cardiol. 1995; 76 (3): 107–111. https://doi.org/10.1016/s0002-9149(99)80039-3; Al Aloul B., Mbai M., Adabag S. et al. Utility of nuclear stress imaging for detecting coronary artery bypass graft disease. BMC Cardiovasc. Disord. 2012; 12: 62. https://doi.org/10.1186/1471-2261-12-62; Murashita T., Makino Y., Kamikubo Y. et al. Quantitative gated myocardial perfusion single photon emission computed tomography improves the prediction of regional functional recovery in akinetic areas after coronary bypass surgery: useful tool for evaluation of myocardial viability. J. Thorac. Cardiovasc. Surg. 2003; 126 (5):1328–1334. https://doi.org/10.1016/s0022-5223(03)00822-5; Slomka P., Xu Y., Berman D., Germano G. Quantitative analysis of perfusion studies: strengths and pitfalls. J. Nucl. Cardiol. 2012; 19 (2): 338–346. https://doi.org/10.1007/s12350-011-9509-2; Czaja M., Wygoda Z., Duszańska A. et al. Interpreting myocardial perfusion scintigraphy using single-photon emission computed tomography. Part 1. Kardiochir. Torakochirurgia Pol. 2017; 14 (3): 192–199. https://doi.org/10.5114/kitp.2017.70534; https://medvis.vidar.ru/jour/article/view/1241

  4. 4
    Academic Journal

    Συνεισφορές: Исследование выполнено при поддержке гранта Российского научного фонда № 22-25-00821, https://rscf.ru/project/22-25-00821/.

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 12, № 4 (2023); 120-132 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 12, № 4 (2023); 120-132 ; 2587-9537 ; 2306-1278

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1324/841; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1324/1320; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1324/1321; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1324/1322; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1324/1323; Dang H., Ye Y., Zhao X., Zeng Y. Identification of candidate genes in ischemic cardiomyopathy by gene expression omnibus database. BMC Cardiovasc Disord. 2020; 20(1): 320. doi:10.1186/s12872-020-01596-w; Cabac-Pogorevici I., Muk B., Rustamova Y., Kalogeropoulos A., Tzeis S., Vardas P. Ischaemic cardiomyopathy. Pathophysiological insights, diagnostic management and the roles of revascularisation and device treatment. Gaps and dilemmas in the era of advanced technology Eur J Heart Fail. 2020; 22(5): 789-799. doi:10.1002/ejhf.1747; Ali H.R., Michel C.R., Lin Y.H., McKinsey T.A., Jeong M.Y., Ambardekar A.V., et all. Defining decreased protein succinylation of failing human cardiac myofibrils in ischemic cardiomyopathy. Mol Cell Cardiol. 2020; 138: 304-317. doi:10.1016/j.yjmcc.2019.11.159; Mallick R., Ylä-Herttuala S. Therapeutic Potential of VEGF-B in Coronary heart disease and heart failure: dream or vision? Cells. 2022; 11(24): 4134. doi:10.3390/cells11244134; Cavalcante S.L., Lopes S., Bohn L., Cavero-Redondo I., Álvarez-Bueno C., Viamonte S., Santos M., Oliveira J., Ribeiro F. Effects of exercise on endothelial progenitor cells in patients with cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Meta-Analysis Rev Port Cardiol (Engl Ed). 2019; 38(11): 817-827. doi:10.1016/j.repc.2019.02.016; Botts S.R., Fish J.E., Howe K.L. Dysfunctional vascular endothelium as a driver of atherosclerosis: emerging insights into pathogenesis and treatment. Front Pharmacol. 2021; 12: 787541. doi:10.3389/fphar.2021.787541; Ungvari Z., Tarantini S., Kiss T., Wren J.D., Giles C.B., Griffin C.T., Murfee W.L., Pacher P., Csiszar A. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol. 2018; 15(9): 555–565. doi:10.1038/s41569-018-0030-z; Zhang J. Biomarkers of endothelial activation and dysfunction in cardiovascular diseases. Rev Cardiovasc Med. 2022; 23(2): 73. doi:10.31083/j.rcm2302073; Gimbrone M.A., García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016; 118(4): 620–636. doi:10.1161/CIRCRESAHA.115.306301; Топузова М.П., Алексеева Т.М., Вавилова Т.В., Сироткина О.В., Клочева Е.Г. Циркулирующие эндотелиоциты и их предшественники как маркер дисфункции эндотелия у больных артериальной гипертензией, перенесших ишемический инсульт (Обзор). Артериальная гипертензия. 2018; 24(1): 57-64. doi:10.18705/1607-419X-2018-24-1-57-64; Lopes J., Teixeira M., Cavalcante S., Gouveia M., Duarte A., Ferreira M.,et al. Reduced levels of circulating endothelial cells and endothelial progenitor cells in patients with heart failure with reduced ejection fraction. Arch Med Res. 2022; 53(3): 289-295. doi:10.1016/j.arcmed.2022.02.001; Jaipersad A.S., Lip G.Y.H., Silverman S., Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol. 2014; 63(1): 1-11. doi:10.1016/j.jacc.2013.09.019; Elsheikh E., Uzunel M., He Z., Holgersson J., Nowak G., Sumitran-Holgersson S. Only a specific subset of human peripheral-blood monocytes has endothelial-like functional capacity. Blood. 2005; 106(7): 2347-55. doi:10.1182/blood-2005-04-1407; Yan F., Liu X., Ding H., Zhang W. Paracrine mechanisms of endothelial progenitor cells in vascular repair. Acta Histochem. 2022; 124(1): 151833. doi:10.1016/j.acthis.2021.151833; Куртукова М.О., Бугаева И.О., Иванов А.Н. Факторы, регулирующие ангиогенез. Современные проблемы науки и образования. 2015; 5: 246.; Braile M., Marcella S., Cristinziano L., Galdiero M.R., Modestino L., Ferrara A.L., Varricchi G., Marone G., Loffredo S. VEGF-A in Cardiomyocytes and Heart Diseases. Int J Mol Sci. 2020; 21(15): 5294. doi:10.3390/ijms21155294; Grismaldo A., Sobrevia L., Morales L. Role of platelet-derived growth factor c on endothelial dysfunction in cardiovascular diseases. Biochim Biophys Acta Gen Subj. 2022; 1866(10): 130188. doi:10.1016/j.bbagen.2022.130188; Oprescu N., Micheu M.M., Scafa-Udriste A., Popa-Fotea N-M., Dorobantu M. Inflammatory markers in acute myocardial infarction and the correlation with the severity of coronary heart disease. Ann Med. 2021; 53(1): 1040–1046. doi:10.1080/07853890.2021.1916070; Гордеева К., Каде А.Х. Изменение цитокинового статуса при стабильной стенокардии напряжения напряжения. Медицинский вестник Юга России. Обзоры. 2016; 1: 15-21. doi:10.21886/2219-8075-2016-1-15-21; Felker G.M., Shaw G.M., O’Connor C.M. A standardized definition of ischemic cardiomyopathy for use in clinical research. Journal of the American College of Cardiology. 2002; 39 (2): 208–210. doi:10.1016/s0735-1097(01)01738-7; Shantsila E., Blann A.D., Lip G.Y.H. Circulating endothelial cells: from bench to clinical practice. J Thromb Haemost. 2008; 6(5): 865-868. doi:10.1111/j.1538-7836.2008.02918.x; Valgimigli M., Rigolin G.M., Fucili A., Porta M.D., Soukhomovskaia O., Malagutti P., Bugli A.M., Bragotti L.Z., Francolini G., Mauro E., Castoldi G., Ferrari R. CD34+ and endothelial progenitor cells in patients with various degrees of congestive heart failure. Circulation. 2004; 110: 1209–1212. doi:10.1161/01.CIR.0000136813.89036.21; Morrone D., Picoi M.E.L., Felice F., Martino A.D., Scatena C., Spontoni P., Naccarato A.G., Di Stefano R., Bortolotti U., Dal Monte M., Pini S., Abelli M., Balbarini A. Endothelial progenitor cells: an appraisal of relevant data from bench to bedside. Int. J. Mol. Sci. 2021; 22: 12874. doi:10.3390/ijms222312874; Melincovici C.S., Boşca A.B., Şuşman S., Mărginean M., Mihu C., Istrate M., Moldovan I.M., Roman A.L., Mihu C.M. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018, 59(2): 455–467; Zhou Y., Zhu X, Cui H., Shi J., Yuan G., Shi S., Hu Y. The Role of the VEGF Family in Coronary Heart Disease. Front Cardiovasc Med. 2021; 8: 738325. doi:10.3389/fcvm.2021.738325.; Сергеенко И.В., Семенова А.Е., Масенко В.П., Хабибуллина Л.И., Габрусенко С.А., Кухарчук В.В., Беленков Ю.Н. Влияние реваскуляризации миокарда на динамику сосудистого эндотелиального и трансформирующего факторов роста у больных ишемической болезнью сердца. Кардиоваскуляр-ная терапия и профилактика. 2007; 6(5); 12-17.; Прасолов А.В., Князева Л.А., Князева Л.И., Жукова Л.А. Изменение показателей цитокинового статуса у больных ИБС: стабильной стенокардией напряжения II-III функционального класса в зависимости от терапии. Вестник новых медицинских технологий. 2009; 14(2); 146-147.; Goumans M-J., Dijke P.T. TGF-β Signaling in Control of Cardiovascular Function. Cold Spring Harb Perspect Biol. 2018; 10(2): a022210. doi:10.1101/cshperspect.a022210; Rajendran S., Shen X., Glawe J., Kolluru G.K., Kevil C.G. Nitric oxide and hydrogen sulfide regulation of ischemic vascular growth and remodeling. Compr Physiol. 2019; 9(3): 1213–1247. doi:10.1002/cphy.c180026; Li J-H., Li Y., Huang D., Yao M. Role of stromal cell-derived factor-1 in endothelial progenitor cell-mediated vascular repair and regeneration. Tissue Eng Regen Med. 2021; 18(5): 747–758. doi:10.1007/s13770-021-00366-9

  5. 5
    Academic Journal

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Принято в печать ; Сибирский журнал клинической и экспериментальной медицины; Принято в печать ; 2713-265X ; 2713-2927

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/1578/748; Eric J.V., Kerry L.L., Robert H.J., Hussein R.A., James A.H., Julio A.P. et al. Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N. Engl. J. Med. 2016;374(16):1511–1520. DOI:10.1056/nejmoa1602001.; El Ouazzani J., Jandou I. Aneurysm and pseudoaneurysm of the left ventricle. Ann. Med. Surg. (Lond.). 2022;75:103405. DOI:10.1016/j.amsu.2022.103405.; Чрагян В.А., Арутюнян В.Б., Кадыралиев Б.К., Мялюк П.А., Вронский А.С., Лилотхия С.Х. Заднебазальные аневризмы левого желудочка. Особенности и тактика хирургического лечения. Евразийский кардиологический журнал. 2018;2:52–57.; Di Donato M., Castelvecchio S., Burkhoff D., Frigiola A., Raweh A., Menicanti L. Baseline left ventricular volume and shape as determinants of reverse remodeling induced by surgical ventricular reconstruction. Ann. Thorac. Surg. 2011;92(5):1565–1571. DOI:10.1016/j.athoracsur.2011.04.062.; Айманов Р.В., Гутор С.С., Андреев С.Л., Ваизов В.Х., Шипулин В.М. Реконструкция левого желудочка при митральной аннулопластике и коронарном шунтировании. Кардиология и сердечно-сосудистая хирургия. 2014;7(5):9–12.; https://www.sibjcem.ru/jour/article/view/1578

  6. 6
    Academic Journal

    Συνεισφορές: Исследование выполнено за счет гранта Российского научного фонда № 22-25-20038 (https://rscf.ru/project/22-25-20038/), а так же средств Администрации Томской области (договор с РОО «ТПС» № 22-04 от 28.06.2022 в рамках реализации регионального проекта РНФ № 22-25-20038).

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 11, № 3 (2022); 84-96 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 11, № 3 (2022); 84-96 ; 2587-9537 ; 2306-1278

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1164/698; Adhyapak S.M., Parachuri V.R. Tailoring therapy for ischemic cardiomyopathy: is Laplace's law enough? Ther Adv Cardiovasc Dis. 2017; 11 (9): 231–234. doi:10.1177/1753944717718719.; Шипулин В.М., Пряхин А.С., Андреев С.Л., Шипулин В.В., Чумакова С.П., Рябова Т.Р., Стельмашенко А.И., Беляева С.А., Лелик Е.В. Современные клинико-фундаментальные аспекты в диагностике и лечении пациентов с ишемической кардиомиопатией (обзор). Сибирский журнал клинической и экспериментальной медицины. 2021; 36 (1): 20–29. doi:10.29001/2073-8552-2021-36-1-20-29.; Dang H, Ye Y, Zhao X, Zeng Y. Identification of candidate genes in ischemic cardiomyopathy by gene expression omnibus database. BMC Cardiovasc Disord. 2020; 20 (1): 320. doi:10.1186/s12872-020-01596-w.; Gyöngyösi M., Winkler J., Ramos I., Do QT., Firat H., McDonald K., González A., Thum T., Díez J., Jaisser F., Pizard A., Zannad F. Myocardial fibrosis: biomedical research from bench to bedside. Eur J Heart Fail. 2017; 19 (2): 177–191. doi:10.1002/ejhf.696.; Kaski J.-C., Crea F., Gersh B. J., Camici P.G. Reappraisal of Ischemic Heart Disease. Fundamental Role of Coronary Microvascular Dysfunction in the Pathogenesis of Angina Pectoris. Circulation. 2018; 138: 1463-1480 doi:10.1161/CIRCULATIONAHA.118.031373; Poston R.N. Atherosclerosis: integration of its pathogenesis as a self-perpetuating propagating inflammation: a review. Cardiovasc Endocrinol Metab. 2019; 8 (2): 51–61. doi:10.1097/XCE.0000000000000172.; Мельникова Ю.С., Макарова Т.П. Эндотелиальная дисфункция как центральное звено патогенеза хронических болезней. Казан.мед.жур. 2015; 96 (4): 659–665. doi:10.17750/KMJ2015-65.; Eligini S., Cosentino N., Fiorelli S., Fabbiocchi F., Niccoli G., Refaat H., Camera M., Calligaris G., De Martini S., Bonomi A., Veglia F., Fracassi F., Crea F., Marenzi G., Tremoli E. Biological profile of monocyte-derived macrophages in coronary heart disease patients: implications for plaque morphology. Sci Rep. 2019; 9 (1): 8680. doi:10.1038/s41598-019-44847-3.; Xu H., Jiang J., Chen W., Li W., Chen Z. Vascular Macrophages in Atherosclerosis. J Immunol Res. 2019: 4354786. doi:10.1155/2019/4354786.; Moroni F., Ammirati E., Norata G.D., Magnoni M., Camici P.G. The Role of Monocytes and Macrophages in Human Atherosclerosis, Plaque Neoangiogenesis, and Atherothrombosis. Mediators Inflamm. 2019: 7434376. doi:10.1155/2019/7434376.; Dick S.A., Zaman R. Epelman S. Using High-Dimensional Approaches to Probe Monocytes and Macrophages in Cardiovascular Disease. Front Immunol. 2019; 10: 2146. doi:10.3389/fimmu.2019.02146; Hamers A.A.J., Dinh H.Q., Thomas G.D., Marcovecchio P., Blatchley A., Nakao C.S., Kim C., McSkimming C., Taylor A.M., Nguyen A.T., McNamara C.A., Hedrick C.C. Human Monocyte Heterogeneity as Revealed by High-Dimensional Mass Cytometry. Arterioscler Thromb Vasc Biol. 2019; 39 (1): 25–36. doi:10.1161/ATVBAHA.118.311022; Rojas J., Salazar J., Martínez M.S., Palmar J., Bautista J., Chávez-Castillo M., Gómez A., Bermúdez V. Macrophage heterogeneity and plasticity: impact of macrophage biomarkers on atherosclerosis. Scientifica (Cairo). 2015; 2015: 851252. doi:10.1155/2015/851252.; Jaipersad A.S., Lip G.Y., Silverman S, Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. J Am Coll Cardiol. 2014; 63 (1): 1–11. doi:10.1016/j.jacc.2013.09.019; Li D.W., Liu Z.Q., Wei J., Liu Y., Hu L.S. Contribution of endothelial progenitor cells to neovascularization (Review). Int J Mol Med. 2012; 30 (5): 1000-1006. doi:10.3892/ijmm.2012.1108; Esquiva G., Grayston A., Rosell A. Revascularization and endothelial progenitor cells in stroke. Am J Physiol Cell Physiol. 2018; 315 (5): 664–674. doi:10.1152/ajpcell.00200.2018.; Ozkok A., Yildiz A. Endothelial Progenitor Cells and Kidney Diseases. Kidney Blood Press Res. 2018; 43 (3): 701–718. doi:10.1159/000489745.; Денисенко О.А., Чумакова С.П., Уразова О.И. Эндотелиальные прогениторные клетки: происхождение и роль в ангиогенезе при сердечно-сосудистой патологии. Сибирский журнал клинической и экспериментальной медицины. 2021; 36 (2): 23–29. doi:10.29001/2073-8552-2021-36-2-23-29.; Felker G.M., Shaw G.M., O’Connor C.M. A standardized definition of ischemic cardiomyopathy for use in clinical research. Journal of the American College of Cardiology. 2002; 39 (2): 208–210. doi:10.1016/s0735-1097(01)01738-7.; Mitruţ R., Stepan A.E., Mărgăritescu C., Andreiana B.C., Kesse A.M., Simionescu C.E., Militaru C. Immunoexpression of MMP-8, MMP-9 and TIMP-2 in dilated cardiomyopathy. Rom J Morphol Embryol. 2019; 60 (1): 119–124.; Shahid F., Gregory Y., Lip H., Shantsila E. Role of Monocytes in Heart Failure and Atrial Fibrillation J Am Heart Assoc. 2018; 7 (3) doi:10.1161/JAHA.117.007849.; Lin N., Simon M.C. Hypoxia-inducible factors: key regulators of myeloid cells during inflammation. J Clin Invest. 2016; 126 (10): 3661–3671. doi:10.1172/JCI84426.; Чумакова С.П., Уразова О.И., Винс М.В., Шипулин В.М., Пряхин А.С., Букреева Е.Б., Буланова А.А., Кошель А.П., Новицкий В.В. Содержание гипоксия-индуцируемых факторов и медиаторов иммуносупрессии в крови при заболеваниях, ассоциированных с гипоксией. Бюллетень сибирской медицины. 2020; 19 (3): 105–112. doi:10.20538/1682-0363-2020-3-105-112.; Lafuse W.P., Wozniak D.J., Rajaram M.V.S. Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair. Cells. 2020; 10 (1): 51. doi:10.3390/cells10010051.; Колотов К.А., Распутин П.Г. Моноцитарный хемотаксический протеин-1 в физиологии и медицине. Пермский медицинский журнал. 2018; 35 (4): 99–105. doi:10.17816/pmj35399-105.

  7. 7
    Academic Journal

    Συνεισφορές: Исследование выполнено за счёт гранта Российского научного фонда № 22-25-00821 (https://rscf.ru/project/22-25-00821/).

    Πηγή: Acta Biomedica Scientifica; Том 7, № 5-2 (2022); 21-30 ; 2587-9596 ; 2541-9420

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/3822/2424; Chen C, Tian J, He Z, Xiong W, He Y, Liu S. Identified three interferon induced proteins as novel biomarkers of human ischemic cardiomyopathy. Int J Mol Sci. 2021; 22(23): 13116. doi:10.3390/ijms222313116; Dang H, Ye Y, Zhao X, Zeng Y. Identification of candidate genes in ischemic cardiomyopathy by gene expression omnibus database. BMC Cardiovasc Disord. 2020; 20(1): 320. doi:10.1186/s12872-020-01596-w; Зюзенков М.В. Ишемическая кардиомиопатия. Военная медицина. 2013; 1: 35-36.; Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, González-Garrido A, Villarreal-Molina T, Jacobo-Albavera L. Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches. Int J Mol Sci. 2021; 22(8): 3850. doi:10.3390/ijms22083850; Xue M, Qiqige C, Zhang Q, Zhao H, Su L, Sun P, et al. Effects of tumor necrosis factor α (TNF-α) and interleukina 10 (IL-10) on intercellular cell adhesion molecule-1 (ICAM-1) and cluster of differentiation 31 (CD31) in human coronary artery endothelial cells. Med Sci Monit. 2018; 24: 4433-4439. doi:10.12659/MSM.906838; Cui S, Men L, Li Y, Zhong Y, Yu S, Li F, et al. Selenoprotein S attenuates tumor necrosis factor-α-induced dysfunction in endothelial cells. Mediators Inflamm. 2018; 2018: 1625414. doi:10.1155/2018/1625414; Lopes-Coelho F, Silva F, Gouveia-Fernandes S, Martins C, Lopes N, Domingues G, et al. Monocytes as endothelial progenitor cells (EPCs), another brick in the wall to disentangle tumor angiogenesis. Cells. 2020; 9(1): 107. doi:10.3390/cells9010107; Peplow PV. Growth factor- and cytokine-stimulated endothelial progenitor cells in post-ischemic cerebral neovascularization. Neural Regen Res. 2014; 9(15): 1425-1429. doi:10.4103/1673-5374.139457; Prisco AR, Prisco MR, Carlson BE, Greene AS. TNF-α increases endothelial progenitor cell adhesion to the endothelium by increasing bond expression and affinity. Am J Physiol Heart Circ Physiol. 2015; 308(11): 1368-1381. doi:10.1152/ajpheart.00496.2014; Qiu Y, Zhang C, Zhang G, Tao J. Endothelial progenitor cells in cardiovascular diseases. Aging Med (Milton). 2018; 1(2): 204-208. doi:10.1002/agm2.12041; Li D-W, Liu Z-Q, Wei J, Liu Y, Hu L-S. Contribution of endothelial progenitor cells to neovascularization (Review). Int J Mol Med. 2012; 30(5): 1000-1006. doi:10.3892/ijmm.2012.1108; Singh S, Anshita D, Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol. 2021; 101(Pt B): 107598. doi:10.1016/j.intimp.2021.107598; Коваль С.Н., Милославский Д.К., Снегурская И.А., Щенявская Е.Н. Факторы ангиогенеза при заболеваниях внутренних органов (обзор литературы). Вiсник проблем бiологii i медицини. 2012; 3, 2(95): 11-15.; Sinha SK, Miikeda A, Fouladian Z, Mehrabian M, Edillor C, Shih D, et al. Local macrophage colony-stimulating factor expression regulates macrophage proliferation and apoptosis in atherosclerosis. Arterioscler Thromb Vasc Biol. 2021; 41(1): 220-233. doi:10.1161/ATVBAHA.120.315255; Денисенко O.A., Чумакова С.П., Уразова О.И. Эндотелиальные прогениторные клетки: происхождение и роль в ангиогенезе при сердечно-сосудистой патологии. Сибирский журнал клинической и экспериментальной медицины. 2021; 36(2): 23-29. doi:10.29001/2073-8552-2021-36-2-23-29; Felker GM, Shaw LK, O’Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002; 39(2): 210-218. doi:10.1016/s0735-1097(01)01738-7; Mudyanadzo TA. Endothelial progenitor cells and cardiovascular correlates. Cureus. 2018; 10(9): e3342. doi:10.7759/cureus.3342; Lin C-P, Lin F-Y, Huang P-H, Chen Y-L, Chen W-C, Chen H-Y, et al. Endothelial progenitor cell dysfunction in cardiovascular diseases: Role of reactive oxygen species and inflammation. Biomed Res Int. 2013; 2013: 845037. doi:10.1155/2013/845037; Nova-Lamperti E, Zúñiga F, Ormazábal V, Escudero C, Aguayo C. Vascular regeneration by endothelial progenitor cells in health and diseases. In: Lenasi H (ed.). Microcirculation Revisited. From Molecules to Clinical Practice. 2016: 231-258.; Ha X-Q, Li J, Mai C-P, Cai X-L, Yan C-Y, Jia C-X, et al. The decrease of endothelial progenitor cells caused by high altitude may lead to coronary heart disease. Eur Rev Med Pharmacol Sci. 2021; 25(19): 6101-6108. doi:10.26355/eurrev_202110_26888; George AL, Bangalore-Prakash P, Rajoria S, Suriano R, Shanmugam A, Mittelman A, et al. Endothelial progenitor cell biology in disease and tissue regeneration. J Hematol Oncol. 2011; 4: 24. doi:10.1186/1756-8722-4-24; Bartoszewski R, Moszyńska A, Serocki M, Cabaj A, Polten A, Ochocka R, et al. Primary endothelial cell-specific regulation of hypoxia-inducible factor (HIF)-1 and HIF-2 and their target gene expression profiles during hypoxia. FASEB J. 2019; 33(7): 7929-7941. doi:10.1096/fj.201802650RR; Naserian S, Abdelgawad ME, Bakshloo MA, Ha G, Arouche N, Cohen JL, et al. The TNF/TNFR2 signaling pathway is a key regulatory factor in endothelial progenitor cell immunosuppressive effect. Cell Commun Signal. 2020; 18(1): 94. doi:10.1186/s12964-020-00564-3; Goukassian DA, Qin G, Dolan C, Murayama T, Silver M, Curry C, et al. Tumor necrosis factor-alpha receptor p75 is required in ischemia-induced neovascularization. Circulation. 2007; 115(6): 752-762. doi:10.1161/CIRCULATIONAHA.106.647255; https://www.actabiomedica.ru/jour/article/view/3822

  8. 8
  9. 9
    Academic Journal

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 36, № 1 (2021); 20-29 ; Сибирский журнал клинической и экспериментальной медицины; Том 36, № 1 (2021); 20-29 ; 2713-265X ; 2713-2927

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/1128/593; Burch G.E., Tsui C.Y., Harb J.M. Ischemic cardiomyopathy. Am. Heart J. 1972;83(3):340–350. DOI:10.1016/0002-8703(72)90435-8.; Felker G.M., Shaw L.K., O’Connor C.M. A standardized definition of ischemic cardiomyopathy for use in clinical research. J. Am. Coll. Cardiol. 2002;39(2):210–218. DOI:10.1016/s0735-1097(01)01738-7.; Pfeffer M.A., Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81(4):1161–1172. DOI:10.1161/01.cir.81.4.1161.; Шипулин В.М., Козлов Б.Н., Кривощеков Е.В., Казаков В.А., Лежнев А.А., Бабокин В.Е. и др. Морфофункциональная характеристика миокарда пациентов с постинфарктным ремоделированием как возможная причина неблагоприятных результатов оперативного лечения. Грудная и сердечно-сосудистая хирургия. 2009;5:37–41.; Bolognese L., Neskovic A.N., Parodi G., Cerisano G., Buonamici P., Santoro G.M. et al. Left ventricular remodeling after primary coronary angioplasty. Circulation. 2002;106(18):2351–2357. DOI:10.1161/01.CIR.0000036014.90197.FA.; Page B., Young R., Iyer V., Suzuki G., Lis M., Korotchkina L. et al. Persistent regional downregulation in mitochondrial enzymes and upregulation of stress proteins in swine with chronic hibernating myocardium. Circ. Res. 2008;102(1):103–112. DOI:10.1161/CIRCRESAHA.107.155895.; Slezak J., Tribulova N., Okruhlicova L., Dhingra R., Bajaj A., Freed D. et al. Hibernating myocardium: Pathophysiology, diagnosis, and treatment. Can. J. Physiol. Pharmacol. 2009;87(4):252–265. DOI:10.1139/Y09-011.; Ross J. Jr. Myocardial persusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation. 1991;83(3):1076–1083. DOI:10.1161/01.cir.83.3.1076.; Vanoverschelde J.L., Wijns W., Depre C., Essamri B., Heyndrickx G.R., Borgers M. et al. Mechanisms of chronic regional postischemic; dysfunction in humans: new insights from the study of noninfarcted collateral-dependent myocardium. Circulation. 1993;87(5):1513–1523. DOI:10.1161/01.cir.87.5.1513.; Bartekova M., Radosinska J., Jelemensky M., Dhalla N.S. Role of cytokines and inflammation in heart function during health and disease. Heart Fail. Rev. 2018;23(5):733–758. DOI:10.1007/s10741-018-9716-x.; Ziegler-Heitbrock L. The CD14+CD16+ blood monocytes: their role infection and inflammation. J. Leukoc. Biol. 2007;81(3):584–592. DOI:10.1189/jlb.0806510.; Shapouri-Moghaddam A., Mohammadian S., Vazini H., Taghadosi M., Esmaeili S.A., Mardani F. et al. Macrophage plasticity, polarization, and function in health and disease. J. Cell Physiol. 2018;233(9):6425–6440. DOI:10.1002/jcp.26429.; Чумакова С.П., Уразова О.И., Шипулин В.М., Новицкий В.В., Хардикова С.А. Цитокины как индукторы постперфузионной системной воспалительной реакции у кардиохирургических больных с различной продолжительностью коронарной патологии. Бюллетень сибирской медицины. 2017;16(4):260–268. DOI:10.20538/1682-0363-2017-4-260-268.; Shipulin V.M., Kazakov V.A., Suhodolo I.V., Krivoshekov E.V., Lezhnev A.A., Kozlov B.N. et al. Causes of repeated remodeling of left ventricle after Dor procedure. Interact. Cardiovasс. Thorac. Surg. 2007;6(6):772–777.; Miner E.C., Miller W.L. A look between the cardiomyocytes: The extracellular matrix in heart failure. Mayo Clin. Proc. 2006;81(1):71–76. DOI:10.4065/81.1.71.; Laurent G.L., Sparrow M.P., Bates P.C., Millward D.J. Turnover of muscle protein in the fowl. Collagen content and turnover in cardiac and skeletal muscles of the adult fowl and the changes during stretchinduced growth. Biochem. J. 1978;176(2):419–427. DOI:10.1042/bj1760419.; Horn M.A., Trafford A.W. Aging and the cardiac collagen matrix: Novel mediators of fibrotic remodelling. J. Mol. Cell Cardiol. 2016;93:175–185. DOI:10.1016/j.yjmcc.2015.11.005.; Nikolaos G.F. The extracellular matrix in ischemic and nonischemic heart failure. Circ. Res. 2019;125:117–146. DOI:10.1161/CIRCRESAHA.119.311148.; Yancy P.P.W., Jessup M., Bozkurt B., Butler J., Casey D.E. Jr., Drazner M.H. et al. ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2013;62(16):147–239. DOI:10.1016/j.jacc.2013.05.019.; Шипулин В.М., Гутор С.С., Суходоло И.В., Борисова Л.В., Андреев С.Л., Катков В.А. и др. Морфологические и молекулярные показатели состояния миокарда: прогноз исходов хирургического лечения больных ишемической кардиомиопатией. Клин. и эксперимент. хир. Журн. им. акад. Б.В. Петровского. 2015;(1):5–14.; Стельмашенко А.И., Беляева С.А. Морфологические и молекулярные предикторы повторного ремоделирования левого желудочка при ишемической кардиомиопатии. Морфологический альманах имени В.Г. Ковешникова. 2019;17(4):71–75.; Саушкин В.В., Мишкина А.И., Шипулин В.В., Завадовский К.В. Значение радионуклидной оценки механической диссинхронии сердца в обследовании пациентов кардиологического профиля. Российский электронный журнал лучевой диагностики. 2019;9(1):186–202. DOI:10.21569/2222-7415-2019-9-1-186-202.; Mitra D., Basu S. Equilibrium radionuclide angiocardiography: Its usefulness in current practice and potential future applications. World J. Radiol. 2012;4(10):421–430. DOI:10.4329/wjr.v4.i10.421.; Van Dijk J.D. Dose optimization in nuclear cardiac imaging, time for the next step? J. Nucl. Cardiol. 2019;26(6):1981–1983. DOI:10.1007/s12350-018-1441-2.; Шипулин В.В., Саушкин В.В., Пряхин А.С., Андреев С.Л., Веснина Ж.В., Завадовский К.В. Возможности перфузионной сцинтиграфии миокарда в обследовании пациентов с ишемической кардиомиопатией. Российский электронный журнал лучевой диагностики. 2019;9(3):155–175. DOI:10.21569/2222-7415-2019-9-3-155-175.; Завадовский К.В., Андреев С.Л., Шипулин В.В. Патент РФ № RU2695902 С1. Cпособ неинвазивной оценки сократительного резерва левого желудочка сердца у пациентов с ишемической кардиомиопатией. Опубл. 29.07.2019.; Pennell D.J. Cardiovascular magnetic resonance. Circulation. 2010;121(5):692–705. DOI:10.1161/CIRCULATIONAHA.108.811547.; Дор В., Ди Донато М., Сивая Ф. Постинфарктное ремоделирование левого желудочка: магнитно-резонансная томография для оценки патофизиологии после реконструкции левого желудочка. Грудная и сердечно-сосудистая хирургия. 2014;56(3):14–27.; Thornhill R.E., Prato F.S., Wisenberg G. The assessment of myocardial viability: А review of current diagnostic imaging approaches. J. Cardiovasc. Magn. Reson. 2002;4(3):381–410. DOI:10.1081/jcmr-120013301.; Усов В.Ю., Архангельский В.А., Федоренко Е.В. Оценка жизнеспособности поврежденного миокарда у кардиохирургических больных: сравнение возможностей магнитно-резонансной томографии и эмиссионной томографии. Комплексные проблемы сердечно-сосудистых заболеваний. 2014;(3):124–133.; Castelvecchio S., Careri G., Ambrogi F., Camporeale A., Menicanti L., Secchi F. et al. Myocardial scar location as detected by cardiac magnetic resonance is associated with the outcome in heart failure patients undergoing surgical ventricular reconstruction. Eur. J. Cardiothorac. Surg. 2018;53(1):143–149. DOI:10.1093/ejcts/ezx197.; Богунецкий А.А., Александрова Е.А., Усов В.Ю., Шипулин В.М. МРТ сердца с контрастным усилением: роль оценки показателей сократительной функции и доли жизнеспособного миокарда левого желудочка в прогнозировании послеоперационной динамики у больных с ишемической кардиомиопатией. Медицинская визуализация. 2014;(4):99–106.; Пряхин А.С., Шипулин В.М., Андреев С.Л., Александрова Е.А., Шипулин В.В., Кужелева Е.А. и др. Предоперационное применение контрастной магнитно-резонансной томографии сердца у пациентов с ишемической кардиомиопатией, подвергнутых хирургической реконструкции левого желудочка. Cибирский журнал клинической и экспериментальной медицины. 2020;35(2):131–139. DOI:10.29001/2073-8552-2020-35-2-131-139.; Андреев С.Л., Усов В.Ю., Александрова Е.А., Шипулин В.М. Критерий прогнозирования течения послеоперационного периода у больных ишемической кардиомиопатией по данным магнитно-резонансной томографии. Cибирский журнал клинической и экспериментальной медицины. 2015;30(2):69–71. DOI:10.29001/2073-8552-2015-30-2-69-71.; Picano E. Stress еchocardiography. Berlin–Heidelberg: Springer-Verlag; 2009:612.; Marmor A., Schneeweiss A. Prognostic value of noninvasively obtained left ventricular contractile reserve in patients with severe heart failure. J. Am. Coll. Cardiol. 1997;29(2):422–428. DOI:10.1016/s0735-1097(96)00493-7.; Cortigiani L., Sorbo S., Miccoli M., Scali M.C., Simioniuc A., Morrone D. et al. Prognostic value of cardiac power output to left ventricular mass in patients with left ventricular dysfunction and dobutamine stress echo negative by wall motion criteria. Eur. Heart J. – Cardiovasc. Imag. 2017;18(2):153–158. DOI:10.1093/ehjci/jew073.; Dini F.L., Mele D., Conti U., Ballo P., Citro R., Menichetti F. et al. Peak рower оutput to left ventricular mass: An index to predict ventricular pumping performance and morbidity in advanced heart failure. J. Am. Soc. Echocardiogr. 2010;23(12):1259–1265. DOI:10.1016/j.echo.2010.08.030.; Шипулин В.М., Андреев С.Л., Пряхин А.С., Рябова Т.Р., Шипулин В.В., Козлов Б.Н. и др. Значение стресс-методов в оценке риска ранних послеоперационных осложнений у пациентов с ишемической кардиомиопатией. Кардиология и сердечно-сосудистая хирургия. 2020;13(6):502–509. DOI:10.17116/kardio202013061502.; Killip T., Passamani E., Davis K. Coronary artery surgery study (CASS): А randomized trial of coronary bypass surgery. Eight years follow-up and survival in patients with reduced ejection fraction. Circulation. 1985;72(6-2):V102–109.; Yamaguchi A., Adachi H., Kawahito K., Murata S., Ino T. Left ventricular reconstruction benefits patients with dilated ischemic cardiomyopathy. Ann. Thorac. Surg.2005;79(2):456–461. DOI:10.1016/j.athoracsur.2004.07.045.; Doulamis I., Perrea D., Chloroyiannis I. Left ventricular reconstruction surgery in ischemic heart disease: A systematic review of the past two decades. J. Cardiovasc. Surg. (Torino). 2019;60(3):422–430. DOI:10.23736/S0021-9509.18.10647-1.; Velazquez E.J., Lee K.L., Deja M.A., Jain A., Sopko G., Marchenko A. et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N. Engl. J. Med. 2011;364(17):1607–1616. DOI:10.1056/NEJMoa1100356.; Neumann F., Sousa-Uva M., Ahlsson A., Alfonso F., Banning A.P., Benedetto U. et al. 2018 ESC/EACTS Guidelines on myocardial; revascularization. Eur. Heart J. 2019;40(2):87–165. DOI:10.1093/eurheartj/ehy394.; Michler R.E., Rouleau J.L., Al-Khalidi H.R., Bonow R.O., Pellikka P.A., Pohost M. et al.; STICH Trial Investigators. Insights from the STICH trial: Сhange in left ventricular size after coronary artery bypass grafting with and without surgical ventricular reconstruction. J. Thorac. Cardiovasc. Surg. 2013;146(5):1139–1145. DOI:10.1016/j.jtcvs.2012.09.007.; Klein P., Bax J.J., Shaw L.J., Feringa H.H.H., Versteegh M.I.M., Dion R.A.E. et al. Early and late outcome of left ventricular reconstruction surgery in ischemic heart disease. Eur. J. Cardiothor. Surg. 2008;34(6):1149–1157. DOI:10.1016/j.ejcts.2008.06.045.; Dowling R.D. Results of partial left ventriculectomy in patients with end-stage idiopathic dilated cardiomyopathy. J. Heart Lung Transplant. 1998;17(12):1208–1212.; Michler R.E., Pohost G.M., Wrobel K. et al. Influence of left ventricular volume reduction on outcome after coronary artery bypass grafting with or without surgical ventricular reconstruction. Paper presented at ACC. 10, 59th Annual Scientific Session, Atlanta, March 2010.; Dor V., Di Donato M., Sabatier M., Montiglio F. Left ventricular reconstruction by endoventricular circular patch plasty repair: A 17-year experience. Semin. Thorac. Cardiovasc. Surg. 2001;13(4):435–447. DOI:10.1053/stcs.2001.29966.; Di Donato M., Castelvecchio S., Kukulski T., Bussadori C., Giacomazzi F., Frigiola A. et al. Surgical ventricular restoration: Left ventricular shape influence on cardiac function, clinical status, and survival. Ann. Thorac. Surg. 2009;87(2):455–461. DOI:10.1016/j.athoracsur.2008.10.071.; Calafiore A.M., Iaco A.L., Kheirallah H., Sheikh A.A., Al Sayed H., El Rasheed M. et al. Outcome of left ventricular surgical remodelling after the STICH trial. Eur. J. Cardiothorac. Surg. 2016;50(4):693–701. DOI:10.1093/ejcts/ezw103.; Пряхин А.С., Шипулин В.М., Андреев С.Л., Шипулин В.В., Козлов Б.Н. Результаты реконструктивных вмешательств у больных с ишемической кардиомиопатией. Современные проблемы науки и образования. 2020;(2):124. DOI:10.17513/spno.29645.; Babokin V., Shipulin V., Batalov R., Popov S. Surgical ventricular reconstruction with endocardectomy along radiofrequency ablationinduced markings. J. Thorac. Cardiovasc. Surg. 2013;146(5):1133–1138. DOI:10.1016/j.jtcvs.2012.08.067.; Nikolic S.D., Khairkhahan A., Ryu M., Champsaur G., Breznock E., Dae M. Percutaneous implantation of an intraventricular device for the treatment of heart failure: experimental results and proof of concept. J. Card. Fail. 2009;15(9):790–797. DOI:10.1016/j.cardfail.2009.05.014.; Kumanohoso T., Otsuji Y., Yoshifuku S., Matsukida K., Koriyama C., Kisanuki A. et al. Mechanism of higher incidence of ischemic mitral regurgitation in patients with inferior myocardial infarction: quantitative analysis of left ventricular and mitral valve geometry in 103 patients with prior myocardial infarction. J. Thorac. Cardiovasc. Surg. 2003;125(1):135–143. DOI:10.1067/mtc.2003.78.; Grigioni F., Enriquez-Sarano M., Zehr K.J., Bailey K.R., Tajik A.J. Ischemic mitral regurgitation: Long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation. 2001;103(13):1759–1764. DOI:10.1161/01.cir.103.13.1759.; Kainuma S., Taniguchi K., Toda K., Funatsu T., Miyagawa S., Kondoh H. et al. Restrictive mitral annuloplasty with or without surgical ventricular reconstruction in ischaemic cardiomyopathy: Impacts on neurohormonal activation, reverse left ventricular remodelling and survival. Eur. J. Heart Fail. 2014;16(2):189–200. DOI:10.1002/ejhf.24.; Petrus A.H.J., Dekkers O.M., Tops L.F., Timmer E., Klautz R.J.M., Braun J. Impact of recurrent mitral regurgitation after mitral valve repair for functional mitral regurgitation: long-term analysis of competing outcomes. Eur. Heart J. 2019;40(27):2206–2214. DOI:10.1093/eurheartj/ehz306.; Айманов Р.В., Гутор С.С., Андреев С.Л., Ваизов В.Х., Шипулин В.М. Реконструкция левого желудочка при митральной аннулопластике и коронарном шунтировании. Кардиология и сердечно-сосудистая хирургия. 2014;7(5):9–12.; Tozzi P., Siniscalchi G., Ferrari E., Kirsch M., Havoz D. Percutaneous increase of mitral leaflet coaptation length after mitral valve repair: Results from a preclinical study. Interact. Cardiovasc. Thorac. Surg. 2018;26(4):681–686. DOI:10.1093/icvts/ivx391.; https://www.sibjcem.ru/jour/article/view/1128

  10. 10
    Academic Journal

    Πηγή: Siberian Journal of Clinical and Experimental Medicine; Том 35, № 2 (2020); 131-139 ; Сибирский журнал клинической и экспериментальной медицины; Том 35, № 2 (2020); 131-139 ; 2713-265X ; 2713-2927 ; 10.29001/2073-8552-2020-35-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.sibjcem.ru/jour/article/view/986/541; Saeed M., Higgins C.B., Geschwind J.-F., Wendland M.F. T1-relaxation kinetics of extracellular, intracellular and intravascular MR contrast agents in normal and acutely reperfused infracted myocardium using echoplanar MR imaging. European Radiology. 2000;10(2):310–318. DOI:10.1007/s003300050050.; Pennell D.J. Cardiovascular magnetic resonance. Circulation. 2010;121(5):692–705. DOI:10.1161/CIRCULATIONAHA.108.811547.; Yoon Y.E., Kitagawa K., Kato S., Nakajima H., Kurita T., Dohi K. et al. Prognostic value of unrecognised myocardial infarction detected by late gadolinium-enhanced MRI in diabetic patients with normal global and regional left ventricular systolic function. European Radiology. 2013;23(8):2101–2108. DOI:10.1007/s00330-013-2817-y.; Yang S., Kang S.J., Song J.K., Moon D.H., Song J.-M., Kang D.-H. et al. Diagnosis of viable myocardium using velocity data of doppler myocardial imaging: Сomparison with positron emission tomography. J. Am. Soc. Echocardiogr. 2004;7(9):933–940. DOI:10.1016/j.echo.2004.05.001.; Castelvecchio S., Careri G., Ambrogi F., Camporeale A., Menicanti L., Secchi F. et al. Myocardial scar location as detected by cardiac magnetic resonance is associated with the outcome in heart failure patients undergoing surgical ventricular reconstruction. European Journal Cardio-Тhoracic Surgery. 2018;53(1):143–149. DOI:10.1093/ejcts/ezx197.; Buckberg G., Athanasuleas C., Conte J. Surgical ventricular restoration for the treatment of heart failure. Nat. Rev. Cardiol. 2012;9(12):703–716. DOI:10.1038/nrcardio.2012.143.; Pfeff er M., Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81(4):1161–1172. DOI:10.1161/01.cir.81.4.1161.; Шипулин В.М., Козлов Б.Н., Кривощеков Е.В., Казаков В.А., Лежнев А.А., Бабокин В.Е. и др. Морфофункциональная характеристика миокарда пациентов с постинфарктным ремоделированием как возможная причина неблагоприятных результатов оперативного лечения. Грудная и сердечно-сосудистая хирургия. 2009;(5):37–41.; Velazquez E., Lee K.L., Deja M.A., Jain A., Sopko G., Marchenko A. et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N. Engl. J. Med. 2011;364(17):1607–1616. DOI:10.1056/NEJMoa1100356.; Bonow R.О., Maurer G., Lee K., Holly T.A., Binkley P.F., Desvigne-Nickens P. et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N. Engl. J. Med. 2011;364(17):1617–1625. DOI:10.1056/NEJMoa1100358.; Jha S., Flamm S., Kwon D. Revascularization in heart failure in the postSTICH era. Curr. Heart Fail. Rep. 2013;10(4):365–372. DOI:10.1007/s11897-013-0168-2.; Panza J., Ellis A., Al-Khalidi H., Holly T., Berman D., Oh J. et al. Myocardial viability and long-term outcomes in ischemic cardiomyopathy. N. Engl. J. Med. 2019;381(8):739–748. DOI:10.1056/nejmoa1807365.; https://www.sibjcem.ru/jour/article/view/986

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Πηγή: Bulletin of Siberian Medicine; Том 17, № 4 (2018); 16-22 ; Бюллетень сибирской медицины; Том 17, № 4 (2018); 16-22 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2018-17-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/1973/1467; Heymans S., Hirsch E., Anker S.D., Aukrust P., Balligand J.L., Cohen-Tervaert J.W., Drexler H., Filippatos G., Felix S.B., Gullestad L., Hilfiker-Kleiner D., Janssens S., Latini R., Neubauer G., Paulus W.J., Pieske B., Ponikowski P., Schroen B., Schultheiss H.P., Tschоpe C., Van Bilsen M., Zannad F., McMurray J., Shah A.M. Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2009; 11 (2): 119–129. DOI:10.1093/eurjhf/hfn043.; Лямина С.В., Малышев И.Ю. Поляризация макрофагов в современной концепции формирования иммунного ответа. Медицинские науки. Фундаментальные исследования. 2014; 10 (5): 930–935.; Glezeva N., Voon V., Watson C., Horgan S., McDonald K., Ledwidge M., Baugh J. Exaggerated inflammation and monocytosis associate with diastolic dysfunction in heart failure with preserved ejection fraction: evidence of M2 macrophage activation in disease pathogenesis. J. Card. Fail. 2015; 21 (2): 167–177. DOI:10.1016/j.cardfail.2014.11.004.; Hilgendorf Ingo, Swirski Filip K., Swirski M.D. Making a difference: Monocyte Heterogeneity in Cardiovascular Disease. Curr. Atheroscler. Rep. 2012; 14 (5): 450–459. DOI:10.1007/s11883-012-0274-8.; Laan A.M., Ter Horst E.N., Delewi R., Begieneman M.P., Krijnen P.A., Hirsch A., Lavaei M., Nahrendorf M., Horrevoets A.J., Niessen H.W., Piek J.J. Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. Eur. Heart. J. 2014; 35 (6): 376–385. DOI:10.1093/eurheartj/eht331.; Матвеева В.Г., Головкин А.С., Григорьев Е.В. Субпопуляционный состав моноцитов – прогностический маркер тяжелых осложнений системного воспалительного ответа после операции коронарного шунтирования. Комплексные проблемы сердечно-сосудистых заболеваний. 2014; 4: 5–12.; Barisionea C., Garibaldia S., Ghigliottia G., Fabbia P., Altieria P., Casalea M., Spallarossaa P., Berteroa G., Balbia M., Corsigliab L., Brunellia C. CD14CD16 monocyte subset levels in heart failure patients. Disease Markers. 2010; 28 (2): 115–124. DOI:10.3233/DMA-2010-0691.; Loems Ziegler-Heitbrock, Thomas P.J. Hofer. Toward a Refined Definition of Monocyte Subsets. Front Immunol. 2013; 4: 23. DOI:10.3389/fimmu.2013.00023.; Anker S.D., Egerer K.R., Volk H.D., Kox W.J., Poole-Wilson P.A., Coats A.J. Elevated soluble CD14 receptors and altered cytokines in chronic heart failure. Am. J. Cardiol. 1997; 79 (10): 1426–1430.; Italiani P., Boraschi D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front Immunol. 2014; 5: 514. DOI:10.3389/fimmu.2014.00514.; Hamilton J.A. Colony-stimulating factor in inflammation and autoimmunity. Nat. Rev. Immunol. 2008; 8 (7): 533– 544. DOI:10.1038/nri2356.; https://bulletin.tomsk.ru/jour/article/view/1973

  19. 19
  20. 20