Εμφανίζονται 1 - 20 Αποτελέσματα από 45 για την αναζήτηση '"ионообменная хроматография"', χρόνος αναζήτησης: 0,67δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
    Academic Journal
  4. 4
    Academic Journal

    Πηγή: Fine Chemical Technologies; Vol 18, No 3 (2023); 254-264 ; Тонкие химические технологии; Vol 18, No 3 (2023); 254-264 ; 2686-7575 ; 2410-6593

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/1974/1937; https://www.finechem-mirea.ru/jour/article/view/1974/1938; https://www.finechem-mirea.ru/jour/article/downloadSuppFile/1974/1051; McCarthy W.P., O’Callaghan T.F., Danahar M., Gleeson D., O’Connor C., Fenelon M.A., et al. Chlorate and Other Oxychlorine Contaminants Within the Dairy Supply Chain. Compr. Rev. Food Sci. Food Saf. 2018;17(6):1561–1575. https://doi.org/10.1111/1541-4337.12393; Dannehl D., Schuch I., Gao Y., Cordiner S., Schmidt U. Effects of hypochlorite as a disinfectant for hydroponic systems on accumulations of chlorate and phytochemical compounds in tomatoes. Eur. Food Res. Technol. 2016;242(3):345–353. https://doi.org/10.1007/s00217-015-2544-5; Stanford B.D., Pisarenko A.N., Snyder S.A., Gordon G. Perchlorate, bromate, and chlorate in hypochlorite solutions: Guidelines for utilities. J. Am. Water Works Assoc. 2011;103(6):71–83. https://doi.org/10.1002/j.1551-8833.2011.tb11474.x; Wang Z.X., Jin X., Gao Y.F., Kong F.Y., Wang W.J., Wang W. Fluorometric and colorimetric determination of hypochlorite using carbon nanodots doped with boron and nitrogen. Microchim. Acta. 2019;186(6):Article number 328. https://doi.org/10.1007/s00604-019-3443-4; Lu L., Zhang J., Yang X. Simple and selective colorimetric detection of hypochlorite based on anti-aggregation of gold nanoparticles. Sensors Actuators B: Chem. 2013;184:189–195. https://doi.org/10.1016/j.snb.2013.04.073; Girenko D.V., Gyrenko A.A., Nikolenko N.V. Potentiometric Determination of Chlorate Impurities in Hypochlorite Solutions. Int. J. Anal. Chem. 2019;2019. https://doi.org/10.1155/2019/2360420; Xie L., Zheng R., Hu H., Li L. Determination of hypochlorite and bisulfite in water by bifunctional colorimetric sensor based on octupolar conjugated merocyanine dyes. Microchem. J. 2022;172(PA):106931. https://doi.org/10.1016/j.microc.2021.106931; Hammar L., Wranglén G. Cathodic and anodic efficiency losses in chlorate electrolysis. Electrochim. Acta. 1964;9(1):1–16. https://doi.org/10.1016/0013-4686(64)80001-3; Levanov A.V., Isaikina O.Y. Mechanism and Kinetic Model of Chlorate and Perchlorate Formation during Ozonation of Aqueous Chloride Solutions. Ind. Eng. Chem. Res. 2020;59(32):14278–14287. https://doi.org/10.1021/acs.iecr.0c02770; Alfredo K., Stanford B., Roberson J.A., Eaton A. Chlorate challenges for water systems. J. Am. Water Works Assoc. 2015;107(4):E187–196. https://doi.org/10.5942/jawwa.2015.107.0036; Li X.A., Zhou D.M., Xu J.J., Chen H.Y. Determination of chloride, chlorate and perchlorate by PDMS microchip electrophoresis with indirect amperometric detection. Talanta. 2008;75(1):157–162. https://doi.org/10.1016/j.talanta.2007.10.054; Biesaga M., Kwiatkowska M., Trojanowicz M. Separation of chlorine-containing anions by ion chromatography and capillary electrophoresis. J. Chromatogr. A. 1997;777(2):375–381. https://doi.org/10.1016/S0021-9673(97)00338-5; Sanz Rodriguez E., Lam S., Smith G.G., Haddad P.R., Paull B. Ultra-trace determination of oxyhalides in ozonated aquacultural marine waters by direct injection ion chromatography coupled with triple-quadrupole mass spectrometry. Heliyon. 2021;7(4):e06885. https://doi.org/10.1016/j.heliyon.2021.e06885; Ma L., Wen S., Yuan J., Zhang D., Lu Y., Zhang Y., et al. Detection of chlorite, chlorate and perchlorate in ozonated saline. Exp. Ther. Med. 2020;20(3):2569–2576. https://doi.org/10.3892/etm.2020.9005; Rao B., Estrada N., McGee S., Mangold J., Gu B., Jackson W.A. Perchlorate production by photodecomposition of aqueous chlorine solutions. Environ. Sci. Technol. 2012;46(21):11635–11643. https://doi.org/10.1021/es3015277; Dietrich A.M., Ledder T.D., Gallagher D.L., Grabeel M.N., Hoehn R.C. Determination of Chlorite and Chlorate in Chlorinated and Chloraminated Drinking Water by Flow Injection Analysis and Ion Chromatography. Anal. Chem. 1992;64(5):496–502. https://doi.org/10.1021/ac00029a009; Yuan Y., Wang D., Long W., Deng F., Yu S., Tian J., et al. Ratiometric fluorescent detection of hypochlorite in aqueous solution and living cells using an ionic probe with aggregation-induced emission feature. Sensors Actuators B: Chem. 2021;330:129324. https://doi.org/10.1016/j.snb.2020.129324; Zaporozhets O.A., Pogrebnyak O.S., Vizir N.N. Spectrophotometric determination of hypochlorite by N,N-diethylaniline. J. Water Chem. Technol. 2011;33(1):31–36. https://doi.org/10.3103/s1063455x11010061; Asakai T. Perchlorate ion standard solution: multipath titrimetric approach using three different stoichiometric reactions—Towards the establishment of SI traceable chemical standards. Metrologia. 2020;57(3):035005. https://doi.org/10.1088/1681-7575/ab79bf; Watanabe T., Idehara T., Yoshimura Y., Nakazawa H. Simultaneous determination of chlorine dioxide and hypochlorite in water by high-performance liquid chromatography. J. Chromatogr. A. 1998;796(2):397–400. https://doi.org/10.1016/S0021-9673(97)01009-1; Mavroudakis L., Mavrakis E., Kouvarakis A., Pergantis S.A. Determination of chlorate, perchlorate and bromate anions in water samples by microbore reversed-phase liquid chromatography coupled to sonic-spray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2017;31(11):911–918. https://doi.org/10.1002/rcm.7866; Themelis D.G., Delmer W.W., Gordon G. Determination of low concentrations of chlorite and chlorate ions by using a flow-injection system. Analytica Chimica Acta. 1989;225:437–441. https://doi.org/10.1016/s0003-2670(00)84634-6; Stahl R. Ion chromatographic determination of chloride, chlorate, and perchlorate in sulfuric acid solutions. Chromatographia. 1993;37(5–6):300–302. https://doi.org/10.1007/bf02278638; Gilchrist E.S., Healy D.A., Morris V.N., Glennon J.D. A review of oxyhalide disinfection by-products determination in water by ion chromatography and ion chromatography-mass spectrometry. Anal. Chim. Acta. 2016;942:12–22. https://doi.org/10.1016/j.aca.2016.09.006; Bebeshko G.I., Karpov Y.A. Current methods of determination of chlorine in inorganic substances (Overview). Inorg. Mater. 2012;48(15):1341–1348. https://doi.org/10.1134/s002016851214004x; Young T.R., Cheng S., Li W., Dodd M.C. Rapid, high-sensitivity analysis of oxyhalides by non-suppressed ion chromatography-electrospray ionization-mass spectrometry: Application to ClO4-, ClO3-, ClO2-, and BrO3- quantification during sunlight/chlorine advanced oxidation. Environ. Sci.: Water Res. Technol. 2020;6:2580–2596. https://doi.org/10.1039/D0EW00429D; Gallidabino M.D., Irlam R.C., Salt M.C., O’Donnell M., Beardah M.S., Barron L.P. Targeted and non-targeted forensic profiling of black powder substitutes and gunshot residue using gradient ion chromatography – high resolution mass spectrometry (IC-HRMS). Anal. Chim. Acta. 2019;1072:1–14. https://doi.org/10.1016/j.aca.2019.04.048; Pisarenko A.N., Stanford B.D., Quiñones O., Pacey G.E., Gordon G., Snyder S.A. Rapid analysis of perchlorate, chlorate and bromate ions in concentrated sodium hypochlorite solutions. Anal. Chim. Acta. 2010;659(1–2):216–223. https://doi.org/10.1016/j.aca.2009.11.061; Okada T., Asawa T., Sugiyama Y., Iwai T., Kirihara M., Kimura Y. Sodium hypochlorite pentahydrate (NaOCl·5H2O) crystals; An effective re-oxidant for TEMPO oxidation. Tetrahedron. 2016;72(22):2818–2827. https://doi.org/10.1016/j.tet.2016.03.064; Reviewer Guidance. Validation of Chromatographic Methods. Washington: Center for Drug Evaluation and Research (CDER); 1994. Vol. 2. 33 p.

  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal

    Πηγή: Epidemiology and Vaccinal Prevention; Том 21, № 5 (2022); 107-119 ; Эпидемиология и Вакцинопрофилактика; Том 21, № 5 (2022); 107-119 ; 2619-0494 ; 2073-3046

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.epidemvac.ru/jour/article/view/1680/882; Опимах И. Эдвард Дженнер и история вакцинации. Медицинские технологии. Оценка и выбор. 2018. С. 77–81. doi:10.31556/2219-0678.2018.34.4.077-081.; Wang X, Hunter A, Mozier N. Host Cell Proteins in Biologics Development: Identification, Quantitation and Risk Assessment. Biotechnology and Bioengineering. 2009; Vol. 103, No. 3. P. 446–458. doi:10.1002/bit.22304.; Ягшис Г, Линдског Е, Лаки К и др. Биофармацевтическое производство. Разработка, проектирование и внедрение производственных процессов. Издательство Профессия; 2020.; Pilely K, Johansen M, Lund R, et al. Monitoring process-related impurities in biologics – host cell protein analysis. Analytical and Bioanalytical Chemistry. 2022. N.414. P. 747–758. doi:10.1007/s00216021-03648-2.; Li M, Qiu Y. A review on current downstream bio-processing technology of vaccine products. Vaccine. 2013. N31. P. 1264–1267. doi:10.1016/j.vaccine.2012.12.056.; Montagnon B. Polio and rabies vaccines produced in continuous cell lines: a reality for Vero cell line. In: Continuous Cell Lines as substrates for biologicals. Dev. Biol. Stand. 1989. N70. P. 27-47.; Piniaeva A, et al. Immunogenicity and safety of inactivated sabin-strain polio vaccine «PoliovacSin»: Clinical trials phase I and II. Vaccines. 2021. N9. P. 565. https://doi.org/10.3390/vaccines9060565.; Vorovitch M, Grishina K, Volok V, et al. Evervac: phase I/II study of immunogenicity and safety of a new adjuvant-free TBE vaccine cultivated in Vero cell culture. Human Vaccines and Immunotherapeutics. 2020. N16. P. 2123–2130. doi:10.1080/21645515.2020.1757990.; Pato T, Souza M, Mattos D, et al. Purification of yellow fever virus produced in Vero cells for inactivated vaccine manufacture. Vaccine. 2019. N37. P. 3214–3220. doi:10.1016/j.vaccine.2019.04.077.; Tiwari M, Parida M, Santhosh S, et al. Assessment of immunogenic potential of Vero adapted formalin inactivated vaccine derived from novel ECSA genotype of Chikungunya virus. Vaccine. 2009. N27. P. 2513–2522. doi:10.1016/j.vaccine.2009.02.062.; Kovpak A, Ivin Y, Piniaeva A, et al. Application of ultrafiltration membranes for purificatiand concentration of sabin poliovirus type 1. Zhurnal Mikrobiologii Epidemiologii i Immunobiologii. 2021. Vol.98, N2. P. 135–143. doi: https://doi.org/10.36233/0372-9311-94.; Piniaeva А, Kovpak A, Ivin Y, et al. Selection of Sorbent for Poliovirus Vaccine Strain Concentrate Purification by Gel Filtration. Biotekhnologiya. 2021. N37. P. 84–94. doi:10.21519/0234-2758-2021-37-684-94.; Yang H, Zhang L, Galinski M. A probabilistic model for risk assessment of residual host cell DNA in biological products. Vaccine. 2010. N28. P. 3308–3311. doi:10.1016/j.vaccine.2010.02.099.; Andreani N, Renzi S, Piovani G, et al. Potential neoplastic evolution of Vero cells: in vivo and in vitro characterization. Cytotechnology. 2017. N69. P. 741–750. doi:10.1007/s10616-017-0082-7.; Recommendations and guidelines for biological substances used in medicine and other documents. WHO TRS №897, Geneva, 2000.; European Pharmacopoeia (Ph. Eur.), 10th ed.; EDQM: Strasbourg, France.; Kalbfuss B, Wolff M, Morenweiser R, et al. Purification of cell culture-derived human influenza A virus by size-exclusion and anion-exchange chromatography. Biotechnology and Bioengineering. 2007. N96. P. 932–944. doi:10.1002/bit.21109.; Kimia Z, Hosseini S, Talesh S, et al. A novel application of ion exchange chromatography in recombinant hepatitis B vaccine downstream processing: Improving recombinant HBsAg homogeneity by removing associated aggregates. J Chromatogr B Analyt Technol Biomed Life Sci. 2019. N1113. P. 20–29. doi:10.1016/j.jchromb.2019.03.009.; INSTRUCTIONS IN 40 300 010. WorkBeads 40 / 100 SEC WorkBeads 40 / 10 000 SEC WorkBeads 40 / 1000 SEC WorkBeads Macro SEC. 2020. Bio-Works. Sweden.; Иванов А. П., Козлов В. Г., Клеблеева Т.Д., и др. Система иммуноферментного анализа на основе специфических антител класса (IgY) из яичных желтков для количественного определения D-антигена в инактивированных полиовирусных вакцинах. Вопросы вирусологии. 2014. №59. С. 39–42.; Capto S, Capto Q and Capto DEAE Ion exchange resins. Instructions for Use. 2020. Cytiva. Доступно на: https://cdn.cytivalifesciences.com/api/public/content/digi-14017-original; CM Sepharose Fast Flow, DEAE Sepharose Fast Flow, Q Sepharose Fast Flow, SP Sepharose Fast Flow Ion Exchange Media. Instructions for Use. 2020. Cytiva. Доступно на: https://cdn.cytivalifesciences.com/api/public/content/digi-13013-original; Thomassen Y, Van Eikenhorst G, Van Der Pol L, et al. Isoelectric point determination of live polioviruses by capillary isoelectric focusing with whole column imaging detection. Anal Chem. 2013. N85. P. 6089–6094. doi:10.1021/ac400968q.; Liu B, Cao B, Wang C, et al. Immunogenicity and Safety of Childhood Combination Vaccines: A Systematic Review and Meta-Analysis. Vaccines (Basel). 2022. Vol. 10, N3. P. 472. doi:10.3390/vaccines10030472.; Намазова-Баранова Л. С., Харит С. М., Перминова О. А. и др. Безопасность и иммуногенность полностью жидкой шестивалентной вакцины АбКДСИПВ-ГепВ-Hib у здоровых детей 1-го года жизни в Российской Федерации. Эпидемиология и Вакцинопрофилактика. 2019;18(3):28–39. doi:10.31631/2073-3046-2019-18-3-28-3926.; Брико Н. И., Попович Л. Д., Миндлина А. Я. и др. Сравнительная оценка предотвращаемого социально-экономического ущерба при различных подходах к профилактике вакциноуправляемых инфекций в рамках Национального календаря профилактических прививок. Эпидемиология и Вакцинопрофилактика. 2020;19(1):4–13. doi:10.31631/2073-30462020-19-1-4-13.; Суетина И. Г., Иллек Я. Ю., Хлебникова Н. В. и др. Проблема своевременности вакцинации детей раннего возраста и пути ее решения. Эпидемиология и Вакцинопрофилактика. 2019;18(5):85–91. doi:10.31631/2073-3046-2019-18-5-85-91.; Loiacono M, Pool V, van Aalst Rю DTaP combination vaccine use and adherence: A retrospective cohort study. Vaccine. 2021. Vol. 39, N7. P. 1064-1071. doi:10.1016/j.vaccine.2021.01.009; Kurosky S, Davis K, Krishnarajah G. Effect of combination vaccines on completion and compliance of childhood vaccinations in the United States. Human Vaccines and Immunotherapeutics. 2017. N13. P. 2494–2502. doi:10.1080/21645515.2017.1362515; https://www.epidemvac.ru/jour/article/view/1680

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20