Εμφανίζονται 1 - 1 Αποτελέσματα από 1 για την αναζήτηση '"инфильтрирующие опухоль лимфоциты"', χρόνος αναζήτησης: 0,44δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Obstetrics, Gynecology and Reproduction; Vol 19, No 4 (2025); 575-589 ; Акушерство, Гинекология и Репродукция; Vol 19, No 4 (2025); 575-589 ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2481/1376; Злокачественные новообразования в России в 2023 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2024. 276 с.; Kim D.H., Lee K.E. Discovering breast cancer biomarkers candidates through mRNA expression analysis based on The Cancer Genome Atlas Database. J Pers Med. 2022;12(10):1753. https://doi.org/10.3390/jpm12101753.; Venetis K., Pepe F., Pescia C. et al. ESR1 mutations in HR+/HER2-metastatic breast cancer: enhancing the accuracy of ctDNA testing. Cancer Treat Rev. 2023:121:102642. https://doi.org/10.1016/j.ctrv.2023.102642.; Guerini-Rocco E., Venetis K., Cursano G. et al. Standardized molecular pathology workflow for ctDNA-based ESR1 testing in HR+/HER2-metastatic breast cancer. Review Crit Rev Oncol Hematol. 2024:201:104427. https://doi.org/10.1016/j.critrevonc.2024.104427.; Мехтиева Н.И. Современные тенденции в диагностике и лечении первично операбельного рака молочной железы (обзор литературы). Опухоли женской репродуктивной системы. 2018;14(4):24–34. https://doi.org/10.17650/1994-4098-2018-14-4-24-34.; Tzanikou E., Markou A., Politaki E. et al. PIK3CA hotspot mutations in circulating tumor cells and paired circulating tumor DNA in breast cancer: a direct comparison study. Mol Oncol. 2019;13(12):2515–30. https://doi.org/10.1002/1878-0261.12540.; Bonacho T., Rodrigues F., J Liberal J. Immunohistochemistry for diagnosis and prognosis of breast cancer: a review. Biotech Histochem. 2020;95(2):71–91. https://doi.org/10.1080/10520295.2019.1651901.; Ravelli A., Reuben J.M., Lanza F. et al. Breast cancer circulating biomarkers: advantages, drawbacks, and new insights. Tumour Biol. 2015;36(9):6653–65. https://doi.org/10.1007/s13277-015-3944-7.; Stergiopoulou D., Georgoulias V., Markou A. et al. Development and validation of a multi-marker liquid bead array assay for the simultaneous detection of PIK3CA and ESR1 hotspot mutations in single circulating tumor cells (CTCs). Heliyon. 2024;10(19):e37873. https://doi.org/10.1016/j.heliyon.2024.e37873.; Dieci M.V., Tsvetkova V., Gaia Griguolo G. et al. Integration of tumour infiltrating lymphocytes, programmed cell-death ligand-1, CD8 and FOXP3 in prognostic models for triple-negative breast cancer: Analysis of 244 stage I-III patients treated with standard therapy. Eur J Cancer. 2020:136:7–15. https://doi.org/10.1016/j.ejca.2020.05.014.; Клинические рекомендации – Рак молочной железы – 2021-2022-2023 (20.01.2023). М.: Министерство здравоохранения Российской Федерации, 2023. 94 с. Режим доступа: https://cr.minzdrav.gov.ru/preview-cr/379_4. [Дата обращения: 15.01.2025].; Loibl S., Poortmans P., Morrow M. et al. Breast cancer. Lancet. 2021;397(10286):1750–69. https://doi.org/10.1016/S0140-6736(20)32381-3.; Зикиряходжаев А.Д., Сарибекян Э.К., Сухотько А.С., Трегубова А.В. Генетически-ассоциированный рак молочной железы. Профилактика и лечение. Медицинская генетика. 2019;18(10):3–9. https://doi.org/10.25557/2073-7998.2019.10.3-9.; Lin C.-L., Jin X., Ma D. et al. Genetic interactions reveal distinct biological and therapeutic implications in breast cancer. Cancer Cell. 2024;42(4):701–719.e12. https://doi.org/10.1016/j.ccell.2024.03.006.; De Talhouet S., Peron J., Vuilleumier A. et al. Clinical outcome of breast cancer in carriers of BRCA1 and BRCA2 mutations according to molecular subtypes. Sci Rep. 2020;10(1):7073. https://doi.org/10.1038/s41598-020-63759-1.; Loi S., Drubay D., Adams S. et al. Tumor-infiltrating lymphocytes and prognosis: a pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol. 2019;37(7):559–69. https://doi.org/10.1200/JCO.18.01010.; André F., Ciruelos E., Rubovszky G. et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 2019;380(20):1929–40. https://doi.org/10.1056/NEJMoa1813904.; Pohl-Rescigno E., Hauke J., Loibl S. et al. Association of germline variant status with therapy response in high-risk early-stage breast cancer: a secondary analysis of the GeparOcto Randomized Clinical Trial. JAMA Oncol. 2020;6(5):744–8. https://doi.org/10.1001/jamaoncol.2020.0007.; Herzog S.K., Fuqua S.A.W. ESR1 mutations and therapeutic resistance in metastatic breast cancer: progress and remaining challenges. Br J Cancer. 2022;126(2):174–86. https://doi.org/10.1038/s41416-021-01564-x.; Najim O., Seghers S., Sergoynne L. et al. The association between type of endocrine therapy and development of estrogen receptor-1 mutation(s) in patients with hormone-sensitive advanced breast cancer: a systematic review and meta-analysis of randomized and non-randomized trials. Biochim Biophys Acta Rev Cancer. 2019;1872(2):188315. https://doi.org/10.1016/j.bbcan.2019.188315.; Tokat U.M., Bilgiç S.N., Aydın E. et al. Elacestrant plus alpelisib in an ESR1 and PIK3CA co-mutated and heavily pretreated metastatic breast cancer: the first case report for combination efficacy and safety. Ther Adv Med Oncol. 2024:16:17588359241297101. https://doi.org/10.1177/17588359241297101.; Gelsomino L., Caruso A., Tasan E. et al. Evidence that CRISPR-Cas9 Y537S-mutant expressing breast cancer cells activate Yes-associated protein 1 to driving the conversion of normal fibroblasts into cancer-associated fibroblasts. Cell Commun Signal. 2024;22(1):545. https://doi.org/10.1186/s12964-024-01918-x.; Wang M.-H., Liu Z.-H., Zhang H.-X. et al. Hsa_circRNA_000166 accelerates breast cancer progression via the regulation of the miR-326/ ELK1 and miR-330-5p/ELK1 axes. Ann Med. 2024;56(1):2424515. https://doi.org/10.1080/07853890.2024.2424515.; Angelico G., Broggi G., Tinnirello G. et al. Tumor infiltrating lymphocytes (TILS) and PD-L1 expression in breast cancer: a review of current evidence and prognostic implications from pathologist's perspective. Cancers (Basel). 2023;15(18):4479. https://doi.org/10.3390/cancers15184479.; van den Ende N.S., Nguyen A.H., Jager A. et al. Triple-negative breast cancer and predictive markers of response to neoadjuvant chemotherapy: a systematic review. Int J Mol Sci. 2023;24(3):2969. https://doi.org/10.3390/ijms24032969.; The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. https://doi.org/10.1038/nature11412.; Barzaman K., Karami J., Zarei Z. et al. Breast cancer: biology, biomarkers, and treatments. Int Immunopharmacol. 2020:84:106535. https://doi.org/10.1016/j.2020.106535.; Grüntkemeier L., Khurana A., Bischoff F.Z. et al. Single HER2-positive tumor cells are detected in initially HER2-negative breast carcinomas using the DEPArray™-HER2-FISH workflow. Breast Cancer. 2022;29(3):487–97. https://doi.org/10.1007/s12282-022-01330-8.; Zhang L., Chen W., Liu S. et al. Targeting breast cancer stem cells. Int J Biol Sci. 2023;19(2):552–70. https://doi.org/10.7150/ijbs.76187.; Gonzalez-Ericsson P.I., Stovgaard E.S., Sua L.F. et al. The path to a better biomarker: application of a risk management framework for the implementation of PD-L1 and TILs as immuno-oncology biomarkers in breast cancer clinical trials and daily practice. J Pathol. 2020;250(5):667–84. https://doi.org/10.1002/path.5406.; Loi S., Michiels S., Adams S. et al. The journey of tumor-infiltrating lymphocytes as a biomarker in breast cancer: clinical utility in an era of checkpoint inhibition. Ann Oncol. 2021;32(10):1236–44. https://doi.org/10.1016/j.annonc.2021.07.007.; Abdelrahman A.E., Rashed H.E., Toam M. et al. Clinicopathological significance of the immunologic signature (PDL1, FOXP3+ Tregs, TILs) in early stage triple-negative breast cancer treated with neoadjuvant chemotherapy. Ann Diagn Pathol. 2021:51:151676. https://doi.org/10.1016/j.anndiagpath.2020.151676.; Тюляндин С.А., Артамонова Е.В., Жукова Л.Г. и др. Практические рекомендации по лекарственному лечению рака молочной железы. Злокачественные опухоли. 2022;12(3s2–1):155–197. https://doi.org/10.18027/2224-5057-2022-12-3s2-155-197.; Liu Y. HER2-low breast cancer: insights on pathological testing. Transl Breast Cancer Res. 2023:4:15. https://doi.org/10.21037/tbcr-23-15.; Horisawa N., Adachi Y., Takatsuka D. et al. The frequency of low HER2 expression in breast cancer and a comparison of prognosis between patients with HER2-low and HER2-negative breast cancer by HR status. Breast Cancer. 2022;29(2):234–41. https://doi.org/10.1007/s12282-021-01303-3.; Denkert C., Lambertini C., Fasching P.A. et al. Biomarker data from the phase III KATHERINE study of adjuvant T-DM1 versus trastuzumab for residual invasive disease after neoadjuvant therapy for HER2-positive breast cancer. Clin Cancer Res. 2023;29(8):1569–81. https://doi.org/10.1158/1078-0432.CCR-22-1989.; Takada M., Toi M. Neoadjuvant treatment for HER2-positive breast cancer. Chin Clin Oncol. 2020;9(3):32. https://doi.org/10.21037/cco-20-123.; Takano T., Masuda N., Ito M. et al. Long-term outcomes of neoadjuvant trastuzumab emtansine + pertuzumab (T-DM1 + P) and docetaxel + carboplatin + trastuzumab + pertuzumab (TCbHP) for HER2-positive primary breast cancer: results of the randomized phase 2 JBCRG20 study (Neo-peaks). Breast Cancer Res Treat. 2024;207(1):33–48. https://doi.org/10.1007/s10549-024-07333-7.; Masuda N., Ohtani S., Takano T. et al. A randomized, 3-arm, neoadjuvant, phase 2 study comparing docetaxel + carboplatin + trastuzumab + pertuzumab (TCbHP), TCbHP followed by trastuzumab emtansine and pertuzumab (T-DM1+P), and T-DM1+P in HER2-positive primary breast cancer. Breast Cancer Res Treat. 2020;180(1):135–46. https://doi.org/10.1007/s10549-020-05524-6.; https://www.gynecology.su/jour/article/view/2481