Εμφανίζονται 1 - 6 Αποτελέσματα από 6 για την αναζήτηση '"интегральные соотношения"', χρόνος αναζήτησης: 0,50δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συγγραφείς: V. A. Kot, В. А. Кот

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 64, № 4 (2020); 495-505 ; Доклады Национальной академии наук Беларуси; Том 64, № 4 (2020); 495-505 ; 2524-2431 ; 1561-8323 ; 10.29235/1561-8323-2020-64-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/907/904; Alexiades, V. Mathematical Modeling of Melting and Freezing Processes / V. Alexiades, A. D. Solomon. - New York, 1993. - 340 p. https://doi.org/10.1201/9780203749449; Cannon, J. R. The One-Dimensional Heat Equation / J. R. Cannon. - California, 1984. - 483 p. https://doi.org/10.1017/cbo9781139086967; Gupta, S. C. The Classical Stefan Problem. Basic Concepts, Modelling and Analysis / S. C. Gupta. - Amsterdam, 2003.; Lunardini, V. J. Heat Transfer with Freezing and Thawing / V. J. Lunardini. - London, 1991. - 437 p. https://doi.org/10.1016/c2009-0-09960-7; Tarzia, D. A. A bibliography on moving-free boundary problems for heat diffusion equation. The Stefan and related problems / D. A. Tarzia // MAT Serie A. - 2000. - Vol. 2. - P. 1-297. https://doi.org/10.26422/mat.a.2000.2.tar; Tarzia, D. A. Explicit and Approximated Solutions for Heat and Mass Transfer Problems with a Moving Interface / D. A. Tarzia // Advanced Topics in Mass Transfer. - 2011. - P. 439-484. https://doi.org/10.5772/14537; Goodman, T. The heat balance integral methods and its application to problems involving a change of phase / T. Goodman // Trans. ASME. - 1958. - Vol. 90. - P. 335-342.; Bollati, J. Heat balance integral methods applied to the one-phase Stefan problem with a convective boundary condition at the fixed face / J. Bollati, J. Semitiel, D. A. Tarzia // Appl. Math. Comput. - 2018. - Vol. 331. - P. 1-19. https://doi.org/10.1016/j.amc.2018.02.054; Mitchell, S. L. Application of standard and refined heat balance integral methods to one-dimensional Stefan problems /S. L. Mitchell, T. Myers // SIAM Rev. - 2010. - Vol. 52, N 1. - P. 57-86. https://doi.org/10.1137/080733036; Roday, A. Analysis of phase-change in finite slabs subjected to convective boundary conditions: part I - melting / A. Roday, M. Kazmierczak // Int. Rev. Chem. Eng. - 2009. - Vol. 1. - P. 87-99.; Tarzia, D. A. Relationship between Neumann solutions for two-phase Lame-Clapeyron-Stefan problems with convective and temperature boundary conditions / D. A. Tarzia // Therm. Sci. - 2017. - Vol. 21, N 1. - P. 187-197. https://doi.org/10.2298/tsci140607003t; Whye-Teong, Ang. A numerical method based on integro-differential formulation for solving a one-dimensional Stefan problem / Ang. Whye-Teong // Numerical Methods for Partial Differential Equations. - 2008. - Vol. 24, N 3. - P. 939949. https://doi.org/10.1002/num.20298; Kot, V. A. Integral Method of Boundary Characteristics in Solving the Stefan Problem: Dirichlet Condition // Journal of Engineering Physics and Thermophysics. - 2016. - Vol. 89, N 5. - P. 1289-1314. https://doi.org/10.1007/s10891-016-1499-0; Kot, V. A. Solution of the Classical Stefan Problem: Neumann Condition / V. A. Kot // Journal of Engineering Physics and Thermophysics. - 2017. - Vol. 90, N 4. - P. 889-917. https://doi.org/10.1007/s10891-017-1638-2; Kot, V. A. Integral Method of Boundary Characteristics: The Dirichlet Condition. Principles / V. A. Kot // Heat Transfer Res. - 2016. - Vol. 47, N 11. - P. 1035-1055. https://doi.org/10.1615/heattransres.2016014882; https://doklady.belnauka.by/jour/article/view/907

  2. 2
  3. 3
    Academic Journal

    Περιγραφή αρχείου: application/pdf

    Relation: Bulletin of Odessa State Academy of Civil Engineering and Architecture;Issue 70; https://dspace.pdau.edu.ua/handle/123456789/628

  4. 4
    Academic Journal

    Περιγραφή αρχείου: application/pdf

    Relation: Вестник Тюменского государственного университета. — 1998. — № 2; Кутрунов, В. Н. Некоторые интегральные тождества математической физики / В. Н. Кутрунов, З. С. Курята. — Текст : электронный // Вестник Тюменского государственного университета. — 1998. — № 2. — С. 34–41.

  5. 5
  6. 6