Showing 1 - 6 results of 6 for search '"индуцированные плюрипотентные клетки"', query time: 0.47s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Contributors: The study reported in this publication was carried out as part of a publicly funded research project No. 056-00154-19-00 and was supported by the FSBI «SCEEMP» of the Ministry of Health of Russia (R&D public accounting No. AAAA-A18-118021590045-2)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00154-19-00 на проведение прикладных научных исследований (номер государственного учета НИР AAAAA18-118021590045-2).

    Source: Biological Products. Prevention, Diagnosis, Treatment; Том 19, № 4 (2019); 225-232 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 19, № 4 (2019); 225-232 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2019-19-4

    File Description: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/254/250; Guttmacher AE, Collins FS. Genomic medicine – a primer. N Engl J Med. 2002;347(19):1512–20. https://doi.org/10.1056/NEJMra012240; Fischer A, Cavazzana-Calvo M. Gene therapy of inherited diseases. Lancet. 2008;371(9629):2044–7. https://doi.org/10.1016/S0140-6736(08)60874-0; Мельникова ЕВ, Меркулова ОВ, Рачинская ОА, Чапленко АА, Меркулов ВА, Олефир ЮВ и др. Современные подходы к проведению оценки качества препаратов для клеточной терапии. Биофармацевтический журнал. 2016;8(4):35–46.; Abbott A. Italians first to use stem cells. Nature. 1992;356(6369):465. https://doi.org/10.1038/356465a0; Bordignon C, Notarangelo LD, Nobili N, Ferrari G, Casorati G, Panina P, et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients. Science. 1995;270(5235):470–5. https://doi.org/10.1126/science.270.5235.470; Chan B, Wara D, Bastian J, Hershfield MS, Bohnsack J, Azen CG, et al. Long-term efficacy of enzyme replacement therapy for Adenosine deaminase (ADA)-deficient Severe Combined Immunodeficiency (SCID). Clin Immunol. 2005;117(2):133–43. https://doi.org/10.1016/j.clim.2005.07.006; Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, et al. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science. 1995;270(5235):475–80. https://doi.org/10.1126/science.270.5235.475; Aiuti A, Vai S, Mortellaro A, Casorati G, Ficara F, Andolfi G, et al. Immune reconstitution in ADA-SCID after PBL gene therapy and discontinuation of enzyme replacement. Nat Med. 2002;8(5):423–5. https://doi.org/10.1038/nm0502-423; Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A, et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science. 2002;296(5577):2410–3. https://doi.org/10.1126/science.1070104; Rashidghamat E, McGrath JA. Novel and emerging therapies in the treatment of recessive dystrophic epidermolysis bullosa. Intractable Rare Dis Res. 2017;6(1):6–20. https://doi.org/10.5582/irdr.2017.01005; Wong T, Gammon L, Liu L, Mellerio JE, Dopping-Hepenstal PJ, Pacy J, et al. Potential of fibroblast cell therapy for recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 2008;128(9):2179–89. https://doi.org/10.1038/jid.2008.78; Nagy N, Almaani N, Tanaka A, Lai-Cheong JE, Techanukul T, Mellerio JE, McGrath JA. HB-EGF induces COL7A1 expression in keratinocytes and fibroblasts: possible mechanism underlying allogeneic fibroblast therapy in recessive dystrophic epidermolysis Bullosa. J Invest Dermatol. 2011;131(8):1771–4. https://doi.org/10.1038/jid.2011.85; Natsuga K, Sawamura D, Goto M, Homma E, Goto-Ohguchi Y, Aoyagi S, et al. Response of intractable skin ulcers in recessive dystrophic epidermolysis bullosa patients to an allogeneic cultured dermal substitute. Acta Derm Venereol. 2010;90(2):165–9. https://doi.org/10.2340/00015555-0776; Falabella AF, Schachner LA, Valencia IC, Eeaglstein WH. The use of tissue-engineered skin (Apligraf) to treat a newborn with epidermosis bullosa. Arch Dermatol. 1999;135(10):1219–22. https://doi.org/10.1001/archderm.135.10.1219; Prockop DJ. Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol Ther. 2009;17(6):939–46. https://doi.org/10.1038/mt.2009.62; Conget P, Rodriguez F, Kramer S, Allers C, Simon V, Palisson F, et al. Replenishment of type VII collagen and re-epithelialization of chronically ulcerated skin after intradermal administration of allogeneic mesenchymal stromal cells in two patients with recessive dystrophic epidermolysis bullosa. Cytotherapy. 2010;12(3):429–31. https://doi.org/10.3109/14653241003587637; Jonkman MF, Scheffer H, Stulp R, Pas HH, Nijenhuis M, Heeres K, et al. Revertant mosaicism in epidermolysis bullosa caused by mitotic gene conversion. Cell. 1997;88(4):543–51. https://doi.org/10.1016/s0092-8674(00)81894-2; Gostynski A, Deviaene FC, Pasmooij AM, Pas HH, Jonkman MF. Adhesive stripping to remove epidermis in junctional epidermolysis bullosa for revertant cell therapy. Br J Dermatol. 2009;161(2):444–7. https://doi.org/10.1111/j.1365-2133.2009.09118.x; Tolar J, McGrath JA, Xia L, Riddle MJ, Lees CJ, Eide C, et al. Patient-specific naturally gene-reverted induced pluripotent stem cells in recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 2014;134(5):1246–54. https://doi.org/10.1038/jid.2013.523; Umegaki-Arao N, Pasmooij AM, Itoh M, Cerise JE, Guo Z, Levy B, et al. Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa. Sci Transl Med. 2014;6(264):264ra164. https://doi.org/10.1126/scitranslmed.3009342; De Rosa L, Carulli S, Cocchiarella F, Quaglino D, Enzo E, Franchini E, et al. Long-term stability and safety of transgenic cultured epidermal stem cells in gene therapy of junctional epidermolysis bullosa. Stem Cell Reports. 2013;2(1):1–8. https://doi.org/10.1016/j.stemcr.2013.11.001; Siprashvili Z, Nguyen NT, Gorell ES, Loutit K, Khuu P, Furukawa LK, et al. Safety and wound outcomes following genetically corrected autologous epidermal grafts in patients with recessive dystrophic epidermolysis bullosa. JAMA. 2016;316(17):1808–17. https://doi.org/10.1001/jama.2016.15588; Titeux M, Pendaries V, Zanta-Boussif MA, Décha A, Pironon N, Tonasso L, et al. SIN retroviral vectors expressing COL7A1 under human promoters for ex vivo gene therapy of recessive dystrophic epidermolysis bullosa. Mol Ther. 2010;18(8):1509–18. https://doi.org/10.1038/mt.2010.91; Ortiz-Urda S, Lin Q, Green CL, Keene DR, Marinkovich MP, Khavari PA. Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue. J Clin Invest. 2003;111(2):251–5. https://doi.org/10.1172/JCI17193; Piel FB. The present and future global burden of the inherited disorders of hemoglobin. Hematol Oncol Clin North Am. 2016;30(2):327–41. https://doi.org/10.1016/j.hoc.2015.11.004; Cao A, Galanello R. Beta-thalassemia. Genet Med. 2010;12(2):61–76. https://doi.org/10.1097/GIM.0b013e3181cd68ed; Lucarelli G, Isgrò A, Sodani P, Gaziev J. Hematopoietic stem cell transplantation in thalassemia and sickle cell anemia. Cold Spring Harb Perspect Med. 2012;2(5):a011825. https://doi.org/10.1101/cshperspect.a011825; Takekoshi KJ, Oh YH, Westerman KW, London IM, Leboulch P. Retroviral transfer of a human beta-globin/delta-globin hybrid gene linked to beta locus control region hypersensitive site 2 aimed at the gene therapy of sickle cell disease. Proc Natl Acad Sci USA. 1995;92(7):3014–8. https://doi.org/10.1073/pnas.92.7.3014; Thompson AA, Walters MC, Kwiatkowski J, Rasko JEJ, Ribeil JA, Hongeng S, et al. Gene therapy in patients with transfusion-dependent β-thalassemia. N Engl J Med. 2018;378(16):1479–93. https://doi.org/10.1056/NEJMoa1705342; Ingram VM. A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature. 1956;178(4537):792–4. https://doi.org/10.1038/178792a0; Strouse JJ, Lanzkron S, Beach MC, Haywood C, Park H, Witkop C, et al. Hydroxyurea for sickle cell disease: a systematic review for efficacy and toxicity in children. Pediatrics. 2008;122(6):1332–42. https://doi.org/10.1542/peds.2008-0441; Krishnamurti L, Abel S, Maiers M, Flesch S. Availability of unrelated donors for hematopoietic stem cell transplantation for hemoglobinopathies. Bone Marrow Transplant. 2003;31(7):547–50. https://doi.org/10.1038/sj.bmt.1703887; Badat M, Davies J. Gene therapy in a patient with sickle cell disease. N Engl J Med. 2017;376(21):2093–4. https://doi.org/10.1056/NEJMc1704009; Fairbanks KD, Tavill AS. Liver disease in alpha 1-antitrypsin deficiency: a review. Am J Gastroenterol. 2008;103(8):2136–41.; Gooptu B, Lomas DA. Conformational pathology of the serpins: themes, variations, and therapeutic strategies. Annu Rev Biochem. 2009;78:147–76. https://doi.org/10.1146/annurev.biochem.78.082107.133320; Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, et al. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature. 2011;478(7369):391–6. https://doi.org/10.1038/nature10424; Wang W, Lin C, Lu D, Ning Z, Cox T, Melvin D, et al. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci USA. 2008;105(27):9290–5. https://doi.org/10.1073/pnas.0801017105; Graw J, Brackmann HH, Oldenburg J, Schneppenheim R, Spannagl M, Schwaab R. Haemophilia A: from mutation analysis to new therapies. Nat Rev Genet. 2005;6(6):488–501. https://doi.org/10.1038/nrg1617; Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S, et al. Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell. 2015;17(2):213–20. https://doi.org/10.1016/j.stem.2015.07.001; Béroud C, Tuffery-Giraud S, Matsuo M, Hamroun D, Humbertclaude V, Monnier N, et al. Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy. Hum Mutat. 2007;28(2):196–202. https://doi.org/10.1002/humu.20428; Wilton SD, Lloyd F, Carville K, Fletcher S, Honeyman K, Agrawal S, Kole R. Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides. Neuromuscul Disord. 1999;9(5):330–8. https://doi.org/10.1016/s0960-8966(99)00010-3; Young CS, Hicks MR, Ermolova NV, Nakano H, Jan M, Younesi S, et al. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell. 2016;18(4):533–40. https://doi.org/10.1016/j.stem.2016.01.021; Law PK, Goodwin TG, Fang Q, Duggirala V, Larkin C, Florendo JA, et al. Feasibility, safety, and efficacy of myoblast transfer therapy on Duchenne muscular dystrophy boys. Cell Transplant. 1992;1(2-3):235–44. https://doi.org/10.1177/0963689792001002-305; Skuk D, Goulet M, Roy B, Chapdelaine P, Bouchard JP, Roy R, et al. Dystrophin expression in muscles of Duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol. 2006;65(4):371–86. https://doi.org/10.1097/01.jnen.0000218443.45782.81; https://www.biopreparations.ru/jour/article/view/254

  4. 4
  5. 5
  6. 6