Εμφανίζονται 1 - 20 Αποτελέσματα από 61 για την αναζήτηση '"ингибиторы тирозинкиназы"', χρόνος αναζήτησης: 0,83δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Πηγή: Rational Pharmacotherapy in Cardiology; Vol 19, No 2 (2023); 203-208 ; Рациональная Фармакотерапия в Кардиологии; Vol 19, No 2 (2023); 203-208 ; 2225-3653 ; 1819-6446

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.rpcardio.com/jour/article/view/2841/2418; https://www.rpcardio.com/jour/article/downloadSuppFile/2841/781; https://www.rpcardio.com/jour/article/downloadSuppFile/2841/782; Кириченко Ю.Ю., Ильгисонис И.С., Иванова Т.В. и др. Кардиоваскулотоксические проявления противоопухолевой терапии: влияние на ремоделирование миокарда и сосудистого русла. Кардиоваскулярная Терапия и Профилактика. 2021;20(7):2923. DOI:10.15829/1728- 8800-2021-2923.; Lyon AR, Lopez-Fernandez T, Couch SM, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;23(10):e333-e465. DOI:10.1093/eurheartj/ehac244.; Osterlund P, Kinos S, Pfeiffer P, et.al. Continuation of fluoropyrimidine treatment with S-1 after cardiotoxicity on capecitabine- or 5-fluorouracil-based therapy in patients with solid tumours: a multicentre retrospective observational cohort study. ESMO Open. 2022;7(3):100427. DOI:10.1016/j.esmoop.2022.100427.; Peng J, Dong C, Wang C, et.al. Cardiotoxicity of 5-fluorouracil and capecitabine in Chinese patients: a prospective study. Cancer Commun. 2018;38(1):22. DOI:10.1186/s40880-018-0292-1.; Visvikis A, Kyvelou SM, Pietri P, et.al. Cardiotoxic Profile and Arterial Stiffness of Adjuvant Chemotherapy for Colorectal Cancer. Cancer Manag Res. 2020;12:1175-85. DOI:10.2147/CMAR.S223032.; Campia U, Moslehi JJ, Amiri-Kordestani R, et al. Cardio-Oncology: Vascular and Metabolic Perspectives. Circulation. 2019;139(13):e579-e602. DOI:10.1161/CIR.0000000000000641.; Филатова А.Ю., Виценя М.В., Потехина А.В., и др. Атеросклероз брахиоцефальных артерий и артериальная жесткость у больных раком молочной железы. Кардиология. 2019;59(1S):43-52.; Shah CP, Mareb JS. Cardiotoxicity due to targeted anticancer agents: a growing challenge. Ther Adv Cardiovasc Dis. 2019;13:1753944719843435. DOI:10.1177/1753944719843435.; Touyz RM, Herrmann SMS, Herrmann J. Vascular toxicities with VEGF inhibitor therapies–focus on hypertension and arterial thrombotic events. J Am Soc Hypertens. 2018;12(6):409-25. DOI:10.1016/j.jash.2018.03.008.; Li M, Kroetz DL. Bevacizumab-Induced Hypertension: Clinical Presentation and Molecular Understanding. Pharmacol Ther. 2018;182:152-60. DOI:10.1016/j.pharmthera.2017.08.012.; Cohen JB, Geara AS, Hogan JJ, et al. Hypertension in Cancer Patients and Survivors Epidemiology, Diagnosis, and Management. JACC Cardio Oncol. 2019;1(2):238-51. DOI:10.1016/j.jaccao.2019. 11.009.; Catino AB, Hubbard RA, Chirinos JA, et al. Longitudinal assessment of vascular function with sunitinib in patients with metastatic renal cell carcinoma. Circ Heart Fail. 2018;11(3):e 004408. DOI:10.1161/CIRCHEARTFAILURE.117.004408.; Bottinor WJ, Shuey MM, Manouchehri A, et al. Renin-Angiotensin-Aldosterone System Modulates Blood Pressure Response During Vascular Endothelial Growth Factor Receptor Inhibition. JACC Cardi Oncol. 2019;1(1):14-23. DOI:10.1016/j.jaccao.2019.07.002.; Res E, Kyvelou SM, Vlachopoulos C, et al. Metastatic malignancies and the effect on arterial stiffness and blood pressure levels: the possible role of chemotherapy. Onco Targets Ther. 2018:11:6785-93. DOI:10.2147/OTT.S156318.; Макеева Л.М., Емелина Е.И., Быкова А.В. и др. Сравнительный анализ нарушений сердечно-сосудистой системы у пациентов с хроническим миелолейкозом на фоне лечения ингибиторами тирозинкиназы. Клиническая Онкогематология. 2020;13(1):104-11. DOI:10.21320/2500-2139-2020-13-1-104-111.; Hadzijusufovic E, Albrecht-Schgoer K, Huber K, et al. Nilotinib-induced vasculopathy: identification of vascular endothelial cells as a primary target site. Leukemia. 2017;31(11):2388-97. DOI:10.1038/leu.2017.245.; Kim AS, Khorana AA, McCrae KR. Mechanisms and biomarkers of cancer-associated thrombosis. Transl Res. 2020;225:33-53. DOI:10.1016/j.trsl.2020.06.012.; Плохова Е. В., Дундуа Д. П. Проблема тромбоза у пациентов со злокачественными заболеваниями. Кардиология. 2018;58(S9):19-28. DOI:10.18087/cardio.2523.; Chang HM, Okwuosa TM, Scarabelli T, et al. Cardiovascular Complications of Cancer Therapy. Journal of the American College of Cardiology. 2017;70(20):2552-65. DOI:10.1016/j.jacc.2017. 09.1095.; Matsumura C, Chisaki Y, Sakimoto S, et al. Evaluation of thromboembolic events in cancer patients receiving bevacizumab according to the Japanese Adverse Drug Event Report database. J Oncol Pharm Pract. 2018;24(1):22-7. DOI:10.1177/1078155216679025.; Васюк Ю.А., Гендлин Г.Е., Емелина Е.И. и др. Согласованное мнение российских экспертов по профилактике, диагностике и лечению сердечно-сосудистой токсичности противоопухолевой терапии. Российский Кардиологический Журнал 2021;26(9): 4703. DOI:10.15829/1560-4071-2021-4703.; Navi BB, Reiner AS, Kamel H, et al. Risk of arterial thromboembolism in patients with cancer. J Am Coll Cardiol. 2017;70(8):926-38. DOI:10.1016/j.jacc.2017.06.047.; Lee I, Adimadhyam S, Nutescu EA, et al. Bevacizumab Use and the Risk of Arterial and Venous Thromboembolism in Patients with High-Grade Gliomas: A Nested Case-Control Study. Pharmacotherapy. 2019;39(9):921-8. DOI:10.1002/phar.2310.; https://www.rpcardio.com/jour/article/view/2841

  6. 6
    Academic Journal

    Πηγή: Meditsinskiy sovet = Medical Council; № 22 (2023); 74-79 ; Медицинский Совет; № 22 (2023); 74-79 ; 2658-5790 ; 2079-701X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7929/7085; Shaw AT, Solomon B. Targeting anaplastic lymphoma kinase in lung cancer. Clin Cancer Res. 2011;17(8):2081–2086. https://doi.org/10.1158/1078-0432.CCR-10-1591.; Chevallier M, Borgeaud M, Addeo A, Friedlaender A. Oncogenic driver mutations in non-small cell lung cancer: Past, present and future. World J Clin Oncol. 2021;12(4):217–237. https://doi.org/10.5306/wjco.v12.i4.217.; Pikor LA, Ramnarine VR, Lam S, Lam WL. Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung Cancer. 2013;82(2):179–189. https://doi.org/10.1016/j.lungcan.2013.07.025.; Shaw AT, Kim DW, Nakagawa K, Seto T, Crinó L, Ahn MJ et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368(25):2385–2394. https://doi.org/10.1056/NEJMoa1214886.; Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K, Mekhail T et al.; PROFILE 1014 Investigators. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med. 2014;371(23):2167–2177. https://doi.org/10.1056/NEJMoa1408440.; Schrank Z, Chhabra G, Lin L, Iderzorig T, Osude C, Khan N et al. Current Molecular-Targeted Therapies in NSCLC and Their Mechanism of Resistance. Cancers (Basel). 2018;10(7):224. https://doi.org/10.3390/cancers10070224.; Ahnert RJ, Gray N, Mok T, Gainor J. What It Takes to Improve a First-Generation Inhibitor to a Second- or Third-Generation Small Molecule. Am Soc Clin Oncol Educ Book. 2019:39:196–205. https://doi.org/10.1200/EDBK_242209.; Puig de la Bellacasa R, Karachaliou N, Estrada-Tejedor R, Teixidó J, Costa C, Borrell JI. ALK and ROS1 as a joint target for the treatment of lung cancer: a review. Transl Lung Cancer Res. 2013;2(2):72–86. https://doi.org/10.3978/j.issn.2218-6751.2013.03.1.; Wang W-C, Shiao H-Y, Lee C-C, Fung K-S, Hsieh H-P. Anaplastic lymphoma kinase (ALK) inhibitors: A review of design and discovery. Med Chem Commun. 2014;5(9):1266–1279. https://doi.org/10.1039/C4MD00048J.; Mok T, Camidge DR, Gadgeel SM, Rosell R, Dziadziuszko R, Kim D-W. et al. Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study. Ann Oncol. 2020;31(8):1056–1064. https://doi.org/10.1016/j.annonc.2020.04.478.; Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014;370:1189–1197. https://doi.org/10.1056/NEJMoa1311107.; Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2017;377(9):829–838. https://doi.org/10.1056/NEJMoa1704795.; Shaw AT, Gandhi L, Gadgeel S, Riely GJ, Cetnar J, West H et al. Alectinib in ALK-positive, crizotinib-resistant, non-small-cell lung cancer: A single-group, multicentre, phase 2 trial. Lancet Oncol. 2016;17(2):234–242. https://doi.org/10.1016/S1470-2045(15)00488-X.; Camidge DR, Kim HR, Ahn MJ, Yang JC, Han JY, Lee JS et al. Brigatinib versus Crizotinib in ALK-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2018;379(21):2027–2039. https://doi.org/10.1056/NEJMoa1810171.; Kim D-W, Tiseo M, Ahn M-J, Reckamp KL, Hansen KH, Kim S-W et al. Brigatinib in Patients with Crizotinib-Refractory Anaplastic Lymphoma Kinase-Positive Non-Small-Cell Lung Cancer: A Randomized, Multicenter Phase II Trial. J Clin Oncol. 2017;35(22):2490–2498. https://doi.org/10.1200/JCO.2016.71.5904.; Shaw AT, Bauer TM, Marinis FD, Felip E, Goto Y, Liu G et al. First-Line Lorlatinib or Crizotinib in Advanced ALK-Positive Lung Cancer. N Engl J Med. 2020;383(21):2018–2029. https://doi.org/10.1056/NEJMoa2027187.; Solomon BJ, Kim D-W, Wu Y-L, Nakagawa K, Mekhail T, Felip E. et al. Final Overall Survival Analysis from a Study Comparing First-Line Crizotinib Versus Chemotherapy in ALK-Mutation-Positive Non-Small-Cell Lung Cancer. J Clin Oncol. 2018;36(22):2251–2258. https://doi.org/10.1200/JCO.2017.77.4794.; Soria JC, Tan DSW, Chiari R, Wu YL, Paz-Ares L, Wolf J. et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): A randomised, open-label, phase 3 study. Lancet. 2017;389(10072):917–929. https://doi.org/10.1016/S0140-6736(17)30123-X.; Hida T, Nokihara H, Kondo M, Kim YH, Azuma K, Seto T et al. Alectinib versus crizotinib in patients with ALK-positive non-small-cell lung cancer (J-ALEX): An open-label, randomised phase 3 trial. Lancet. 2017;390(10089):29–39. https://doi.org/10.1016/S0140-6736(17)30565-2.; Nakagawa K, Hida T, Nokihara H, Morise M, Azuma K, Kim YH. et al. Final progression-free survival results from the J-ALEX study of alectinib versus crizotinib in ALK-positive non-small-cell lung cancer. Lung Cancer. 2020;139:195–199. https://doi.org/10.1016/j.lungcan.2019.11.025.; Camidge DR, Kim HR, Ahn M-J, Yang JCH, Han J-Y, Hochmair MJ et al. Brigatinib Versus Crizotinib in Advanced ALK Inhibitor-Naive ALK-Positive Non-Small Cell Lung Cancer: Second Interim Analysis of the Phase III ALTA-1L Trial. J Clin Oncol. 2020;38(31):3592–3603. https://doi.org/10.1200/JCO.20.00505.; Kim DW, Mehra R, Tan DSW, Felip E, Chow LQM, Camidge DR et al. Activity and safety of ceritinib in patients with ALK-rearranged non-small-cell lung cancer (ASCEND-1): Updated results from the multicentre, open-label, phase 1 trial. Lancet Oncol. 2016;17(4):452–463. https://doi.org/10.1016/S1470-2045(15)00614-2.; Crino L, Ahn MJ, de Marinis F, Groen HJ, Wakelee H, Hida T et al. Multicenter Phase II Study of Whole-Body and Intracranial Activity with Ceritinib in Patients With ALK-Rearranged Non-Small-Cell Lung Cancer Previously Treated with Chemotherapy and Crizotinib: Results From ASCEND-2. J Clin Oncol. 2016;34(24):2866–2873. https://doi.org/10.1200/JCO.2015.65.5936.; Ou SH, Ahn JS, de Petris L, Govindan R, Yang JC, Hughes B et al. Alectinib in Crizotinib-Refractory ALK-Rearranged Non-Small-Cell Lung Cancer: A Phase II Global Study. J Clin Oncol. 2016;34(7):661–668.https://doi.org/10.1200/jco.2015.63.9443.; Ahn M, Camidge DR, Tiseo M, Reckamp K, Hansen K, Kim S et al. OA 05.05 Brigatinib in Crizotinib-Refractory ALK+ NSCLC: Updated Efficacy and Safety Results From ALTA, a Randomized Phase 2 Trial. J Thorac Oncol. 2017;12(11):S1755–S1756. https://doi.org/10.1016/j.jtho.2017.09.350.; Solomon BJ, Besse B, Bauer TM, Felip E, Soo RA, Camidge DR et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: Results from a global phase 2 study. Lancet Oncol. 2018;19(12):1654–1667. https://doi.org/10.1016/S1470-2045(18)30649-1.; Shaw AT, Solomon BJ, Besse B, Bauer TM, Lin CC, Soo RA et al. ALK Resistance Mutations and Efficacy of Lorlatinib in Advanced Anaplastic Lymphoma Kinase-Positive Non-Small-Cell Lung Cancer. J Clin Oncol. 2019;37(16):1370–1379. https://doi.org/10.1200/JCO.18.02236.; Hida T, Seto T, Horinouchi H, Maemondo M, Takeda M, Hotta K et al. Phase II study of ceritinib in alectinib-pretreated patients with anaplastic lymphoma kinase-rearranged metastatic non-small-cell lung cancer in Japan: ASCEND-9. Cancer Sci. 2018;109(9):2863–2872. https://doi.org/10.1111/cas.13721.; Lin MM, Pan X, Hou P, Allen S, Baumann P, Hochmair MJ. Treatment duration of brigatinib in patients enrolled in the international expanded access program (EAP). Ann Oncol. 2019;30(Suppl. 2):ii48. https://doi.org/10.1093/annonc/mdz063.006.; Chen J, O’Gorman MT, James LP, Klamerus KJ, Mugundu G, Pithavala YK. Pharmacokinetics of Lorlatinib After Single and Multiple Dosing in Patients with Anaplastic Lymphoma Kinase (ALK)-Positive Non-Small Cell Lung Cancer: Results from a Global Phase I/II Study. Clin Pharmacokinet. 2021;60(10):1313–1324. https://doi.org/10.1007/s40262-021-01015-z.; Horn L, Whisenant JG, Wakelee H, Reckamp KL, Qiao H, Leal TA et al. Monitoring Therapeutic Response and Resistance: Analysis of Circulating Tumor DNA in Patients With ALK+ Lung Cancer. J Thorac Oncol. 2019;14(11):1901–1911. https://doi.org/10.1016/j.jtho.2019.08.003.; Frost N, Christopoulos P, Kauffmann-Guerrero D, Stratmann J, Riedel R, Schaefer M et al. Lorlatinib in pretreated ALK- or ROS1-positive lung cancer and impact of TP53 co-mutations: results from the German early access program. Ther Adv Med Oncol. 2021;13:1758835920980558. https://doi.org/10.1177/1758835920980558.; Okada K, Araki M, Sakashita T, Ma B, Kanada R, Yanagitani N et al. Prediction of ALK mutations mediating ALK-TKIs resistance and drug re-purposing to overcome the resistance. EBioMedicine. 2019;41:105–119. https://doi.org/10.1016/j.ebiom.2019.01.019.; O’Regan L, Barone G, Adib R, Woo CG, Jeong HJ, Richardson EL et al. EML4-ALK V3 oncogenic fusion proteins promote microtubule stabilization and accelerated migration through NEK9 and NEK7. J Cell Sci. 2020;133(9):jcs241505. https://doi.org/10.1242/jcs.241505.; Christopoulos P, Endris V, Bozorgmehr F, Elsayed M, Kirchner M, Ristau J et al. EML4-ALK fusion variant V3 is a high-risk feature conferring accelerated metastatic spread, early treatment failure and worse overall survival in ALK+ non-small cell lung cancer. Int J Cancer. 2018;142(12):2589–2598. https://doi.org/10.1002/ijc.31275.; Noh KW, Lee MS, Lee SE, Song JY, Shin HT, Kim YJ et al. Molecular break-down: A comprehensive view of anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer. J Pathol. 2017;243(3):307–319. https://doi.org/10.1002/path.4950.; Christopoulos P, Kirchner M, Endris V, Stenzinger A, Thomas M. EML4-ALK V3, treatment resistance, and survival: Refining the diagnosis of ALK+ NSCLC. J Thorac Dis. 2018;10(Suppl. 17):1989–1991. https://doi.org/10.21037/jtd.2018.05.61.; Solomon BJ, Bauer TM, Mok TSK, Liu G, Mazieres J, de Marinis F et al. Efficacy and safety of first-line lorlatinib versus crizotinib in patients with advanced, ALK-positive non-small-cell lung cancer: updated analysis of data from the phase 3, randomised, open-label CROWN study. Lancet Respir Med. 2023;11(4):354–366. https://doi.org/10.1016/S2213-2600(22)00437-4.; Bauer TM, Felip E, Solomon BJ, Thurm H, Peltz G, Chioda MD, Shaw AT. Clinical Management of Adverse Events Associated with Lorlatinib. Oncologist. 2019;24(8):1103–1110. https://doi.org/10.1634/theoncologist.2018-0380.; Ou S-HI, Lee ATM, Nagasaka M. From preclinical efficacy to 2022 (36.7 months median follow-up) updated CROWN trial, lorlatinib is the preferred 1st-line treatment of advanced ALK+ NSCLC. Crit Rev Oncol Hematol. 2023;187:104019. https://doi.org/10.1016/j.critrevonc.2023.104019.; Peng Y, Zhao Q, Liao Z, Ma Y, Ma D. Efficacy and safety of first-line treatments for patients with advanced anaplastic lymphoma kinase mutated, non-small cell cancer: A systematic review and network meta-analysis. Cancer. 2023;129(8):1261–1275.

  7. 7
    Academic Journal

    Συνεισφορές: The work was funded in accordance with the state task theme Code: FGWG-2022-0005 "Investigation of mechanisms of T-lymphocyte differentiation and molecular-cellular bases of immune response regulation for the development of new technologies of cellular immuno therapy for oncological, infectious and autoimmune diseases", Работа профинансирована в соответствии с темой государственного задания Исследование механизмов дифференцировки Т-лимфоцитов и молекулярно-клеточных основ регуляции иммунного ответа для разработки новых технологий клеточной иммунотерапии онкологических, инфекционных и аутоиммунных заболеваний, Шифр: FGWG-2022-0005

    Πηγή: Medical Immunology (Russia); Том 25, № 5 (2023); 1253-1258 ; Медицинская иммунология; Том 25, № 5 (2023); 1253-1258 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2816/1750; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2816/11855; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2816/11856; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2816/11857; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2816/11858; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2816/11859; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2816/12239; Chattopadhyay S., Sen G.C. Tyrosine phosphorylation in Toll-like receptor signaling. Cytokine Growth Factor Rev., 2014, Vol. 25, no. 5, pp. 533-541.; Dispenza M.C. The use of Bruton's tyrosine kinase inhibitors to treat allergic disorders. Curr. Treat. Options Allergy, 2021, Vol. 8, no. 3, pp. 261-273.; Fiedler K., Sindrilaru A., Terszowski G., Kokai E., Feyerabend T.B., Bullinger L., Rodewald H.R., Brunner C. Neutrophil development and function critically depend on Bruton tyrosine kinase in a mouse model of X-linked agammaglobulinemia. Blood, 2011, Vol. 117, 1329-1339.; Mhibik M., Wiestner A., Sun C. Harnessing the Effects of BTKi on T cells for effective immunotherapy against CLL. Int. J. Mol. Sci., 2019, Vol. 21, no. 1, 68. doi:10.3390/ijms21010068.; Page T.H., Urbaniak A.M., Espirito Santo A.I., Danks L., Smallie T., Williams L.M., Horwood NJ. Bruton's tyrosine kinase regulates TLR7/8-induced TNF transcription via nuclear factor-кВ recruitment. Biochem. Biophys. Res. Commun., 2018, Vol. 499, no. 2, pp. 260-266.; Pal Singh S., Dammeijer F., Hendriks R.W. Role of Brutons tyrosine kinase in B cells and malignancies. Mol. Cancer, 2018, Vol. 17, no. 1, 57. doi: 10.11/s12943-018-0779-z.; Pleyer C., Wiestner A., Sun C. Immunological changes with kinase inhibitor therapy for chronic lymphocytic leukemia. Leuk. Lymphoma, 2018, Vol. 59, no. 12, pp. 2792-2800.; Prezzo A., Cavaliere F.M., Bilotta C., Pentimalli T.M., Iacobini M., Cesini L., Foa R., Mauro F.R., Quinti I. Ibrutinib-based therapy impaired neutrophils microbicidal activity in patients with chronic lymphocytic leukemia during the early phases of treatment. Leuk. Res., 2019, Vol. 87, 106233. doi:10.1016/j.leukres.2019.106233.; Roschewski M., Lionakis M.S., Sharman J.P., Roswarski J., Goy A., Monticelli M.A., Roshon M., Wrzesinski S.H., Desai J.V., Zarakas M.A., Collen J., Rose K., Hamdy A., Izumi R., Wright G.W., Chung K.K., Baselga J., Staudt L.M., Wilson W.H. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Sci. Immunol., 2020, Vol. 5, no. 48, eabd0110. doi:10.1126/sciimmunol.abd0110.; Smiljkovic D., Blatt K., Stefanzl G., Dorofeeva Y., Skrabs C., Focke-Tejkl M., Sperr W.R., Jaeger U., Valenta R., Valent P. BTK inhibition is a potent approach to block IgE-mediated histamine release in human basophils. Allergy, 2017, Vol. 72, no. 11, pp. 1666-1676.; Thibaud S., Tremblay D., Bhalla S., Zimmerman B., Sigel K., Gabrilove J. Protective role of Bruton tyrosine kinase inhibitors in patients with chronic lymphocytic leukaemia and COVID-19. Br. J. Haematol., 2020, Vol. 190, no. 2, pp. e73-e76.; Volmering S., Block H., Boras M., Lowell C.A., Zarbock A. The neutrophil Btk Signalosome regulates integrin activation during sterile inflammation. Immunity, 2016, Vol. 44, pp. 73-87.; Xia S., Liu X., Cao X., Xu S. T-cell expression of Bruton's tyrosine kinase promotes autoreactive T-cell activation and exacerbates aplastic anemia. Cell. Mol. Immunol., 2020, Vol. 17, no. 10, pp. 1042-1052.; https://www.mimmun.ru/mimmun/article/view/2816

  8. 8
    Academic Journal

    Συγγραφείς: M. E. Cabanillas, S. Takahashi

    Πηγή: Опухоли головы и шеи, Vol 9, Iss 4, Pp 49-61 (2020)

  9. 9
    Academic Journal

    Πηγή: Siberian journal of oncology; Том 20, № 6 (2021); 134-140 ; Сибирский онкологический журнал; Том 20, № 6 (2021); 134-140 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2021-20-6

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1996/939; Бородавина Е.В., Исаев П.А., Шуринов А.Ю., Румянцев П.О., Крылов В.В., Петросян К.М., Каприн А.Д., Иванов С.А., Подвязников С.О., Романов И.С., Мудунов А.М., Слащук К.Ю., Жихорев Р.С., Волконский М.В., Чагова Р.М., Суслова И.Р., Хряпа А.И., Лепшокова А.Х., Фадеева Н.Л., Сафарова А.Р., Калейкина Л.П., Лымарь Е.В., Чернякова Е.М., Снежко О.А., Зиньковская А.Е., Муфазалов Ф.Ф., Кузьмина Е.С., Дружинина Ю.В., Мусин Ш.И., Мухитова М.Р., Хасанова А.И., Сафина С.З., Кириенко С.Л. Эффективность и переносимость ленватиниба при радиойодрезистентном дифференцированном раке щитовидной железы по результатам многоцентрового наблюдательного исследования в Российской Федерации. Опухоли головы и шеи. 2020; 10(1): 65–72.; Amaravadi R., Kimmelman A.C., White E. Recent insights into the function of autophagy in cancer. Genes Dev. 2016; 30(17): 1913–30. doi:10.1101/gad.287524.116.; Yun C.W., Lee S.H. The roles of autophagy in cance. Int J Mol Sci. 2018; 19(11): 3466. doi: 10,3390 / ijms19113466; Gewirtz D.A. The four faces of autophagy: Implications for cancer therapy. Cancer Res. 2014; 74: 647–651. doi:10.1158/0008-5472.CAN-13-2966.; Rabinowitz J.D., White E. Autophagy and metabolism. Science. 2010; 330 (6009): 1344–1348. doi:10.1126/science.1193497.; Galluzzi L., Pietrocola F., Bravo-San Pedro J.M., Amaravadi R.K., Baehrecke E.H., Cecconi F., Codogno P., Debnath J., Gewirtz D.A, Karantza V., Kimmelman A., Kumar S., Levine B., Maiuri M.C., Martin S.J., Penninger J., Piacentini M., Rubinsztein D.C., Simon H.-U., Simonsen A., Thorburn A.M., Velasco G., Ryan K.M., Kroemer G. Autophagy in malignant transformation and cancer progression. EMBO J. 2015; 34(7): 856–880. doi:10.15252/embj.201490784.; Burada F., Nicoli E.R., Ciurea M.E., Uscatu D.C., Ioana M., Gheonea D.I. Autophagy in colorectal cancer: An important switch from physiology to pathology. World J Gastrointest Oncol. 2015; 7(11): 271–284. doi:10.4251/wjgo.v7.i11.271.; Su Z., Yang Z., Xu Y., Chen Y., Yu Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer. 2015; 14: 48. doi:10.1186/s12943-015-0321-5.; Kocaturk N.M., Akkoc Y., Kig C., Bayraktar O., Gozuacik D., Kutlu O. Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci. 2019; 15(134): 116–137. doi:10.1016/j.ejps.2019.04.011.; Tesselaar M.H., Crezee T., Schuurmans I., Gerrits D., Nagarajah J., Boerman O.C., Grunsven I.-van E.-van, Smit J.W.A, Netea-Maier R.T., Plantinga T.S. Digitalislike compounds restore hNIS expression and iodide uptake capacity in anaplastic thyroid cancer. J Nucl Med. 2018; 59(5): 780–786. doi:10.2967/jnumed.117.200675.; Yu Y., Yu X., Fan C., Wang H., Wang R., Feng C., Guan H. Targeting glutaminase-mediated glutamine dependence in papillary thyroid cancer. J Mol Med. 2018; 96(8): 777–790. doi:10.1007 / s00109-018-1659-0.; Wei W., Hardin H., Luo Q.Y. Targeting autophagy in thyroid cancers. Endocr Relat Cancer. 2019; 26(4): 181–194. doi:10.1530/ERC-18-0502.; KimM.J.,WooS.J.,YoonC.H.,LeeJ.S.,AnS.,ChoiY.H.,HwangS.G., Yoon G., Lee S.J. Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. Involvement of autophagy in oncogenic KRas-induced malignant cell transformation. J Biol Chem. 2011; 286(15): 12924–32. doi:10.1074/jbc.M110.138958; Fagin J.A., Wells S.A. Biologic and clinical perspectives on thyroid cancer. New Engl J Med. 2016; 375(23): 1054–1067. doi:10.1056/NEJMc1613118.; Morani F., Titone R., Pagano L., Galetto A., Alabiso O., Aimaretti G., Isidoro C. Autophagy and thyroid carcinogenesis: genetic and epigenetic links. Endocr Relat Cancer. 2013; 21(1): 13–29. doi:10.1530/ERC-13-0271.; Vlahakis A., Graef M., Nunnari J., Powers T. TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy. Proc Natl Acad Sci USA. 2014; 111(29): 10586–10591.doi:10.1073/pnas.1406305111.; Спирина Л.В., Чижевская С.Ю., Кондакова И.В., Тарасенко Н.В. Роль аутофагии в развитии опухолей щитовидной железы, связь с активацией AKT/m-TOR сигнального пути. Клиническая и экспериментальная тиреоидология. 2019; 15(3): 110–117.; Wang H.W., Kang., Zhao Y., Min I., Wyrwas B., Moore M., Teng L., Zarnegar R., Jiang X., Fahey T.J. Targeting autophagy sensitizes BRAFmutant thyroid cancer to vemurafenib. J Clin Endocrinol Metab. 2017; 102(2): 634–643. doi:10.1210/jc.2016-1999.; Jiang Z.F., Shao L.J., Wang W.M., Yan X.B., Liu R.Y. Decreased expression of Beclin-1 and LC3 in human lung cancer. Mol Biol Rep. 2012; 39(1): 259–267. doi:10.1007/s11033-011-0734-1.; Yu J., Ren P., Zhong T., Wang Y., Yan M., Xue B., Li R., Dai C., Liu C., Chen G., Yu X.F. Pseudolaric acid B inhibits proliferation in SW579 human thyroid squamous cell carcinoma. Mol Med Rep. 2015; 12(5): 7195–7202. doi: 10,3892/mmr.2015.4418.; Kim H.M., Kim E.S., Koo J.S. Expression of autophagy-related proteins in different types of thyroid cancer. Int J Mol Sci. 2017; 18(3): 540. doi: 10,3390/ijms18030540.; White E. Autophagy and p53. Cold Spring Harb Perspect Med. 2016; 6(4): a026120. doi:10.1101/cshperspect.a026120.; Gao P., Hao F., Dong X., QiuY. The role of autophagy and Beclin-1 in radiotherapy-induced apoptosis in thyroid carcinoma cells. Int J Clin Exp Pathol. 2019; 12(3): 885–892.; Gundara J.S., Robinson B.G., Sidhu S.B. Evolution of the «autophagamiR». Autophagy. 2011; 7(12): 1553–1554. doi:10.4161/auto.7.12.17762.; Molinaro E., Romei C., Biagini A., Sabini E., Agate L., Mazzeo S., Materazzi G., Sellari-Franceschini S., Ribechini A., Torregrossa L., Basolo F., Vitti P., Elisei R. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol. 2017; 13(11): 644–660. doi:10.1038/nrendo.2017.76.; Catalano M.G., Fortunati N., Pugliese M., Marano F., Ortoleva L., Poli R., Asioli S., Bandino A., Palestini N., Grange C., Bussolati B., Boccuzzi G. Histone deacetylase inhibition modulates E-cadherin expression and suppresses migration and invasion of anaplastic thyroid cancer cells. J Clin Endocrinol Metab. 2012; 97(7): 1150–1159. doi:10.1210/jc.2011-2970.; Füllgrabe J., Klionsky D.J., Histone B.J. Post-translational modifications regulate autophagy flux and outcome. Autophagy. 2013; 9(10): 1621–1623. doi:10.4161/auto.25803.; Liu K., Ren T., Huang Y., Sun K., Bao X., Wang S., Zheng B., Guo W. Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma. Cell Death Dis. 2017; 8(8): 3015. doi:10.1038/cddis.2017.422.; Lin C.I., Whang E.E., Abramson M.A., Jiang X., Price B.D., Donner D.B., Moore Jr. F.D., Ruan D.T. Autophagy: a new target for advanced papillary thyroid cancer therapy. Surgery. 2009; 146(6): 1208–1214. doi:10.1016/j.surg.2009.09.019.; Naoum G.E., Morkos M., Kim B., Arafat W. Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol Cancer. 2018; 17(1): 51. doi:10.1186 / s12943-018-0786-0.; Plantinga T.S., Tesselaar M.H., Morreau H., Corssmit E.P.M., Willemsen B.K., Kusters B., Grunsven A.C.E.-van, Smit J.W.A, NeteaMaierR.T. Autophagy activity is associated with membranous sodium iodide symporter expression and clinical response to radioiodine therapy in non-medullary thyroid cancer. Autophagy. 2016; 12(7): 1195–1205. doi:10.1080/15548627.2016.1174802.; Рябая О.О., Егорова А.В., Степанова Е.В. Роль аутофагии в механизме гибели опухолевых клеток. Успехи современной биологии. 2015; 135(2): 177–188.; Wang W., Kang H., Zhao Y., Min I., Wyrwas B., Moore M., Teng L., Zarnegar R., Jiang X., Fahey T.J. Targeting autophagy sensitizes BRAFmutant thyroid cancer to vemurafenib. J Clin Endocrinol Metab. 2017; 102(2): 634–643. doi:10.1210/jc.2016-1999.; Meng X., Wang H., Zhao J.,Hu L., Zhi J., Wei S., RuanX., Hou X., Li D., Zhang J., Yang W., Qian B., Wu Y., Zhang Y., Meng Z., Guan L., Zhang H., Zheng X., Gao M. Apatinib inhibits cell proliferation and induces autophagy in human papillary thyroid carcinoma via the PI3K/Akt/mTOR signaling pathway. Front Oncol. 2020; 10(3): 217. doi:10.3389/fonc.2020.00217.; https://www.siboncoj.ru/jour/article/view/1996

  10. 10
    Academic Journal

    Συνεισφορές: The article was published with the financial support of Eisai Co., Ltd., Данная публикация подготовлена при финансовой поддержке компании «Эйсай».

    Πηγή: Head and Neck Tumors (HNT); Том 11, № 4 (2021); 119-130 ; Опухоли головы и шеи; Том 11, № 4 (2021); 119-130 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2017-0-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/724/510; Валдина Е.А. Заболевания щитовидной железы: Руководство. СПб.: Питер, 2006. 368 с.; Schlumberger M., Leboulleux S. Current practice in patients with differentiated thyroid cancer. Nat Rev Endocrin 2021;17(3):176–88. DOI:10.1038/s41574-020-00448-z.; Schmidbauer B., Menhart K., Hellwig D., Grosse J. Differentiated thyroid cancer treatment: state of the art. Int J Mol Sci 2017;18(6):1292. DOI:10.3390/ijms18061292.; Клинические рекомендации: дифференцированный рак щитовидной железы (утв. Минздравом России, 2020). https://legalacts.ru/doc/klinicheskie-rekomendatsii-differentsirovannyi-rak-shchitovidnoi-zhelezy-utv-minzdravom-rossii/.; Keston A.S., Ball R.P., Frantz V.K., Palmer W.W. Storage of radioactive iodine in a metastasis from thyroid carcinoma. Science 1942;95(2466):362–95.; Румянцев П.О., Коренев С.В. История появления терапии радиоактивным йодом. Клиническая и экспериментальная тиреоидология 2015;11(4):51–5.; Leiter L., Seidlin S.M., Marinelli L.D., Baumann E.J. Adenocarcinoma of the thyroid with hyperthyroidism and functional metastases. J Clin Endocrinol Metab 1947;6(3):247.; Seidlin S.M., Rossman I., Oshry E., Siegel E. Radioiodine therapy of metastases from carcinoma of the thyroid: a six-year progress report. J Clin Endocrinol Metab 1949;9(11). DOI:10.1210/jcem-9-11-1122.; Durante C., Haddy N., Baudin E. et al. Long-term outcome of 444 patients with distant metastases from papillary andfollicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006;91(8):2892–9. DOI:10.1210/jc.2005-2838.; Spitzweg C., Bible K.C., Hofbauer L.C., Morris J.C. Advanced radioiodine-refractory differentiated thyroid cancer: the sodium iodide symporter and other emerging therapeutic targets. Lancet Diabetes Endocrinol 2014;2(10):830–42. DOI:10.1016/S2213-8587(14)70051-8.; Haugen B.R., Alexander E.K., Bible K.C. et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26(1):1–333. DOI:10.1089/thy.2015.0020.; Mustafa M., Kuwert T., Weber K. et al. Regional lymph node involvement in T1 papillary thyroid carcinoma: a bicentric prospective SPECT/CT study. Eur J Nucl Med Mol Imaging 2010;37(8):1462–6. DOI:10.1007/s00259-010-1408-2.; Chen L., Luo Q., Shen Y. et al. Incremental value of131 I SPECT/CT in the management of patients with differentiated thyroid carcinoma. J Nucl Med 2008;49(12):1952–7. DOI:10.2967/jnumed.108.052399.; Schlumberger M., Brose M., Elisei R. et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol 2014;2(5):356–8. DOI:10.1016/S2213-8587(13)70215-8.; Deandreis D., al Ghuzlan A., Leboulleux S. et al. Do histological, immunohistochemical, and metabolic (radioiodine and fluorodeoxyglucose uptakes) patterns of metastatic thyroid cancer correlate with patient outcome? Endocr Relat Cancer 2011;18(1):159–69. DOI:10.1677/ERC-10-0233.; Hirsch D., Levy S., Tsvetov G. et al. Long-term outcomes and prognostic factors in patients with differentiated thyroid cancer and distant metastases. Endocr Pract 2017;23(10):1193–200. DOI:10.4158/EP171924.OR.; Румянцев П.О., Фомин Д.К., Румянцева У.В. Критерии резистентности высокодифференцированного рака щитовидной железы к терапии радиоактивным йодом. Опухоли головы и шеи 2014;(3):4–9. DOI:10.17650/2222-1468-2014-0-3-4-9.; Болотина Л.В., Владимирова Л.Ю., Деньгина Н.В. и др. Практические рекомендации по лечению злокачественных опухолей головы и шеи. Злокачественные опухоли 2020;10(3s2–1): 93–108. DOI:10.18027/2224-5057-2020-10-3s2-06.; Berdelou A., Lamartina L., Klain M. et al. Treatment of refractory thyroid cancer. Endocr Relat Cancer 2018;25(4):R209–23. DOI:10.1530/ERC-17-0542.; Tuttle R.M., Brose M.S., Grande E. et al. Novel concepts for initiating multitargeted kinase inhibitors in radioactive iodine refractory differentiated thyroid cancer. Best Practi Res Clin Endocrinol Metab 2017;31(3):295–305. DOI:10.1016/j.beem.2017.04.014.; Семенова А.И. Лекарственное лечение диссеминированного рака щитовидной железы. Практическая онкология 2007;8(1):46–51.; Кочетков Р.Ю., Кривчик А.А. Химиотерапия недифференцированного рака щитовидной железы. Медицинские новости 1997;(1):3–9.; Viskonti J.L., Silverberg A.B., Wehmeier K.R. Chemotherapy of endocrine tumors. In: The chemotherapy source book. 3rd ed. Ed. By M.C. Perry. Philadelphia: Lippincott, Williams&Wilkins, 2001. Pp. 698–707.; Brose M.S., Nutting C.M., Jarzab B. et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 2014;384(9940): 319–28. DOI:10.1016/S0140-6736(14)60421-9.; Valerio L., Pieruzzi L., Giani C. et al. Targeted therapy in thyroid cancer: state of the art. Clin Oncol. 2017;29(5):316–24. DOI:10.1016/j.clon.2017.02.009.; Bastholt L., Kreissl M.C., Führer D. et al. Effect of an outreach programme on vandetanib safety in medullary thyroid cancer. Eur Thyroid J 2016;5(3):187–94. DOI:10.1159/000448919.; Wells S.A., Robinson B.G., Gagel R.F. et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 2012;30(2):134–41. DOI:10.1200/JCO.2011.35.5040.; Elisei R., Schlumberger M.J., Müller S.P. et al. Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol 2013;31(29):3639–46. DOI:10.1200/JCO.2012.48.4659.; FDA approves cabozantinib for differentiated thyroid cancer. Available at: https://www.fda.gov/drugs/resourcesinformation-approved-drugs/fdaapproves-cabozantinib-differentiatedthyroid-cancer.; Brose M.S., Robinson B., Sherman S.I. et al. Cabozantinib for radioiodine-refractory differentiated thyroid cancer (COSMIC-311): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2021;22(8):1126–38. DOI:10.1016/S1470-2045(21)00332-6.; Kreissl M.C., Janssen M.J.R., Nagarajah J. Current treatment strategies in metastasized differentiated thyroid cancer. J Nucl Med 2019;60(1):9–15. DOI:10.2967/jnumed.117.190819.; AstraZeneca. Selumetinib granted Orphan Drug Designation in the US for adjuvant treatment of differentiated thyroid cancer [Internet]. Media release/ 2016. Available at: https://www.astrazeneca.com/media-centre/press-releases/2016/selumetinib-granted-orphan-drug-designation-in-the-US-for-adjuvant-treatment-of-differentiated-thyroid-cancer-12052016.html#.; Comparing complete remission after treatment with selumetinib/placebo in patient with differentiated thyroid cancer (ASTRA). ClinicalTrials.gov Identifier: NCT01843062. Available at: https://clinicaltrials.gov/ct2/show/NCT01843062.; Markham A., Keam S.J. Selumetinib: first approval. Drugs 2020;80(9):931–7. DOI:10.1007/s40265-020-01331-x.; Shah M.H., Wei L., Wirth L.J. et al. Results of randomized phase II trial of dabrafenib versus dabrafenib plus trametinib in BRAF-mutated papillary thyroid carcinoma. J Clin Oncol 2017;35(15_suppl):6022. DOI:10.1200/JCO.2017.35.15_suppl.6022.; Lee C.-S., Miao E., Das K., Seetharamu N. Clinical efficacy with dabrafenib and trametinib in a T599_V600insT poorly differentiated metastatic thyroid carcinoma. BMJ Case Rep 2021;14(8):e243264. DOI:10.1136/bcr-2021-243264.; Leboulleux S., do Cao C., Zerdoud S. et al. A redifferentiation phase II trial with trametinib and dabrafenib followed by radioactive iodine administration for metastatic radioactive iodine refractory differentiated thyroid cancer patients with a BRAFV600E mutation (NCT 03244956). J Endocrine Soc 2021;5(Suppl. 1):A876. DOI:10.1210/jendso/bvab048.1789.; Bible K.C., Menefee M.E., Lin C.-C. (Josh) et al. An international phase 2 study of pazopanib in progressive and metastatic thyroglobulin antibody negative radioactive iodine refractory differentiated thyroid cancer. Thyroid 2020;30(9):1254–62. DOI:10.1089/thy.2019.0269.; Румянцев П.О. Рефрактерность высокодифференцированного рака щитовидной железы к лечению радиоактивным йодом. Опухоли головы и шеи 2013;(3):11–5. DOI:10.17650/2222-14682013-0-3-11-15.; Short S.C., Suovuori A., Cook G. et al. A phase II study using retinoids as redifferentiation agents to increase iodine uptake in metastatic thyroid cancer. Clin Oncol 2004;16(8):569–74. DOI:10.1016/j.clon.2004.06.018.; Schlumberger M., Tahara M., Wirth L.J. et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med2015;372(7):1868. DOI:10.1056/NEJMc1503150.; Gianoukakis A.G., Dutcus C.E., Batty N. et al. Prolonged duration of response in lenvatinib responders with thyroid cancer. Endocr Rel Cancer 2018;25(6):699–704. DOI:10.1530/ERC-18-0049.; Tahara M., Brose M.S., Wirth L.J. et al. Impact of dose interruption on the efficacy of lenvatinib in a phase 3 study in patients with radioiodine-refractory differentiated thyroid cancer. Eur J Cancer 2019;106:61–8. DOI:10.1016/j.ejca.2018.10.002.; Brose M.S., Worden F.P., Newbold K.L. et al. Effect of age on the efficacy and safety of lenvatinib in radioiodinerefractory differentiated thyroid cancer in the phase III SELECT trial. J Clin Oncol 2017;35(23):2692–9. DOI:10.1200/JCO.2016.71.6472.; Tahara M., Kiyota N., Hoff A.O. et al. Impact of lung metastases on overall survival in the phase 3 SELECT study of lenvatinib in patients with radioiodine-refractory differentiated thyroid cancer. Eur J Cancer 2021;147:51–7. DOI:10.1016/j.ejca.2020.12.032.; Бородавина Е.В., Исаев П.А., Шуринов А.Ю. и др. Эффективность и переносимость ленватиниба при радиойодрезистентном дифференцированном раке щитовидной железы по результатам многоцентрового наблюдательного исследования в Российской Федерации. Опухоли головы и шеи 2020;10(1):65–72. DOI:10.17650/2222-1468-2020-10-1-65-72.; Андреев Д.А., Полякова К.И., Завьялов А.А. и др. Основные направления анализа экономических затрат при оказании онкологической помощи населению. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология 2020;12(4):310–7. DOI:10.17749/2070-4909.2019.12.4.310-317.; Блинов Д.В., Акарачкова Е.С., Орлова А.С. и др. Новая концепция разработки клинических рекомендаций в России. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2019;12(2):125–44. DOI:10.17749/2070-4909.2019.12.2.125-144.; Мусина Н.З., Омельяновский В.В., Гостищев Р.В. и др. Концепция ценностно-ориентированного здравоохранения. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2021;13(4):438–51. DOI:10.17749/2070-4909/farmakoekonomika.2020.042.; Лемешко В.А., Мусина Н.З., Омельяновский В.В. Определение терапевтической ценности противоопухолевых лекарственных препаратов. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология 2020;13(3):262–9. DOI:10.17749/2070-4909/farmakoekonomika.2020.056.; Омельяновский В.В., Максимкина Е.А., Ивахненко О.И. и др. Совершенствование системы формирования перечней лекарственных препаратов для медицинского применения: анализ изменений Постановления Правительства РФ № 871. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология 2020;13(2):113–23. DOI: 10/17749/2070-4909/farmakoekonomika.2020.032.; Фролов М.Ю., Рогов В.А. Фармакоэкономическое обоснование применения препарата Ленвима ® (ленватиниб) при прогрессирующем дифференцированном раке щитовидной железы, рефрактерном к радиоактивному йоду, в Российской Федерации. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2016;9(1):3–10. DOI:10.17749/20704909.2017.10.1.003-010.; Фролов М.Ю., Рогов В.А. Оценка лекарственной терапии прогрессирующего дифференцированного рака щитовидной железы, рефрактерного к радиоактивному йоду, у пациентов, проживающих в Российской Федерации: фармакоэкономические аспекты. ФАРМАКОЭКОНОМИКА Современная фармакоэкономика и фармакоэпидемиология. 2017;10(1):3–10. DOI:10.17749/2070-4909.2017.10.1.003-010.; https://ogsh.abvpress.ru/jour/article/view/724

  11. 11
    Academic Journal

    Συνεισφορές: The article was published with the financial support of Eisai Co., Ltd., Данная публикация подготовлена при финансовой поддержке компании «Эйсай».

    Πηγή: Head and Neck Tumors (HNT); Том 12, № 2 (2022); 63-70 ; Опухоли головы и шеи; Том 12, № 2 (2022); 63-70 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2022-12-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/778/532; Состояние онкологической помощи населению России в 2020 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой М.: МНИОИ им. П.А. Герцена - филиал ФГБУ «Национальный медицинский центр радиологии» Минздрава России, 2021. 239 с. Доступно по: https://oncology-association.ru/wp-content/uploads/2021/10/pomoshh-2020-el.-versiya.pdf.; Tuttle R., Ahuja S., Avram A. et al. Controversies, consensus, and collaboration in the use of 131I therapy in differentiated thyroid cancer: a Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid 2019;29(4):461-70. DOI:10.1089/thy.2018.0597.; Каприн А.Д., Мардынский Ю.С. Терапевтическая радиология. М.: ГЭОТАР-Медиа, 2018. С. 640-647.; Шуринов А.Ю., Крыло В.В., Бородавина Е.В. Радиойодаблация при раке щитовидной железы. Исторические и современные аспекты. Обзор литературы. Онкологический журнал: лучевая диагностика, лучевая терапия 2021;4(4):9-19. DOI:10.37174/2587-7593-2021-4-4-9-19. DOI:10.37174/2587-7593-2021-4-4-9-19.; Румянцев П.О., Фомин Д.К., Румянцева У.В. Критерии радиойодрезистентности высокодифференцированного рака щитовидной железы к терапии радиоактивным йодом. Опухоли головы и шеи 2014;(3):4-9. DOI:10.17650/2222-1468-2014-0-3-4-9.; Schlumberger M., Brose M., Elisei R. et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol 2014;2(5):356-8. DOI:10.1016/S2213-8587(13)70215-8.; NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Thyroid Carcinoma Version 2.2022. May 5, 2022. Available at: https://www.nccn.org/professionals/physician_gls/pdf/thyroid.pdf.; Клинические рекомендации: дифференцированный рак щитовидной железы (утв. Минздравом России, 2020). Доступно по: https://legalacts.ru/doc/klinicheskie-rekomendatsii-differen-tsirovannyi-rak-shchitovidnoi-zhelezy-utv-minzdravom-rossii/.; Eisenhauer E.A., Therasse P., Bogaerts J. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45(2):228-47. DOI:10.1016/j.ejca.2008.10.026.; Инструкция по медицинскому применению препарата ленватиниб. Регистрационный номер ЛП-003398 (с изменениями от 26.02.2019). Доступно по: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=114f1065-4daa-4dc4-9d0f-0ee1ee14377e&t=; IBM SPSS Statistics. Available at: http://www.predictive.ru/software/statistics.htm.; StatSoft. Available at: http://statsoft.ru.; Бородавина Е.В., Исаев П.А., Шуринов А.Ю. и др. Эффективность и переносимость ленватиниба при радиойодрезистентном дифференцированном раке щитовидной железы по результатам многоцентрового наблюдательного исследования в Российской Федерации. Опухоли головы и шеи 2020;10(1):65-72. DOI:10.17650/2222-14682020-10-1-65-72.; Schlumberger M., Tahara M., Wirth L.J. et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 2015;372(7):621-30. DOI:10.1056/NEJMoa1406470.; Nishino M., Jagannathan J.P., Ramaiya N.H., Van den Abbeele A.D. Revised RECIST guideline version 1.1: What oncologists want to know and what radiologists need to know. AJR Am J Roentgenol 2010;195(2):281-9. DOI:10.2214/AJR.09.4110.; https://ogsh.abvpress.ru/jour/article/view/778

  12. 12
    Academic Journal

    Πηγή: Russian Journal of Pediatric Hematology and Oncology; Том 6, № 4 (2019); 62-68 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 6, № 4 (2019); 62-68 ; 2413-5496 ; 2311-1267 ; 10.21682/2311-1267-2019-6-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/555/529; Penault-Llorca F., Rudzinski E.R., Sepulveda A.R. Testing algorithm for identification of patients with TRK fusion cancer. J Clin Pathol 2019;72(7):460-7. doi:10.1136/jclinpath-2018-205679.; Amatu A., Sartore-Bianchi A., Siena S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 2016;1(2):e000023. doi:10.1136/esmoopen-2015-000023.; Pulciani S., Santos E., Lauver A.V., Long L.K., Aaronson S.A., Barbacid M. Oncogenes in solid human tumours. Nature 1982;300(5892):539-42. doi:10.1038/300539a0.; Weier H.U., Rhein A.P., Shadravan F., Collins C., Polikoff D. Rapid physical mapping of the human trk protooncogene (NTRK1) to human chromosome 1q21-q22 by P1 clone selection, fluorescence in situ hybridization (fish), and computer-assisted microscopy. Genomics 1995;26:390-3. doi:10.1016/0888-7543(95)80226-c.; Nakagawara A., Liu X. G., Ikegaki N., White P.S., Yamashiro D.J., Nycum L.M., Biegel J.A., Brodeur G.M. Cloning and chromosomal localization of the human TRK-B tyrosine kinase receptor gene (NTRK2). Genomics 1995;25:538-46. doi:10.1016/0888-7543(95)80055-q.; Yeo G.S., Connie Hung C.C., Rochford J., Keogh J., Gray J., Sivaramakrishnan S., O’Rahilly S., Farooqi I.S. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat Neurosci 2004;7:1187-9. doi:10.1038/nn1336.; Cocco E., Scaltriti M., Drilon A. NTRK fusion-positive cancers and Trk inhibitor therapy. Nat Rev Clin Oncol 2018;15:731-47. doi:10.1038/s41571-018-0113-0.; Vaishnavi A., Le A.T., Doebele R.C. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov 2015;5(1):25-34. doi:10.1158/2159-8290.CD-14-0765.; Stransky N., Cerami E., Schalm S., Kim J.L., Lengauer C. The landscape of kinase fusions in cancer. Nat Commun 2014;5:4846. doi:10.1038/ncomms5846.; Chetty R. Neurotrophic tropomyosin or tyrosine receptor kinase (NTRK) genes. J Clin Pathol 2019;72(3):187-90. doi:10.1136/jclinpath-2018-205672.; Hsiao S.J., Zehir A., Sireci A.N., Aisner D.L. Detection of Tumor NTRK Gene Fusions to Identify Patients Who May Benefit from Tyrosine Kinase (TRK) Inhibitor Therapy. J Mol Diagn 2019;21(4):553-71. doi: 10.m16/j.jmoldx.2019.03.008.; Solomon J.P., Hechtman J.F. Detection of NTRK Fusions: Merits and Limitations of Current Diagnostic Platforms. Cancer Res 2019;79(13):3163-8. doi:10.1158/0008-5472.CAN-19-0372.; Gatalica Z., Xiu J., Swensen J., Vranic S. Molecular characterization of cancers with NTRK gene fusions. Mod Pathol 2019;32(1):147-53. doi:10.1038/s41379-018-0118-3.; Hung Y.P., Fletcher C.D.M., Hornick J.L. Evaluation of pan-TRK immunohistochemistry in infantile fibrosarcoma, lipofibromatosis-like neural tumour and histological mimics. Histopathology 2018;73(4):634-44. doi:10.1111/his.13666.; Chiang S., Cotzia P., Hyman D.M., Drilon A., Tap W.D., Zhang L., Hechtman J.F., Frosina D., Jungbluth A.A., Murali R., Park K.J., Soslow R.A., Oliva E., Iafrate A.J., Benayed R., Ladanyi M., Antonescu C.R. NTRK Fusions Define a Novel Uterine Sarcoma Subtype With Features of Fibrosarcoma. Am J Surg Pathol 2018;42(6):791-8. doi:10.1097/PAS.0000000000001055.; Hechtman J.F., Benayed R., Hyman D.M., Drilon A., Zehir A., Frosina D., Arcila M.E., Dogan S., Klimstra D.S., Ladanyi M., Jungbluth A.A. Pan-Trk Immunohistochemistry Is an Efficient and Reliable Screen for the Detection of NTRK Fusions. Am J Surg Pathol 2017;41(11):1547-51. doi: 10.m97/PAS.0000000000000911.; Roche. Japan becomes the first country to approve Roche’s personalized medicine Rozlytrek [media release]. 2019. https://www.roche.com/media/releases/med-cor-2019-06-18.htm.; Drilon A., Siena S., Ou S.I., Patel M., Ahn M.J., Lee J., Bauer T.M., Farago A.F., Wheler J.J., Liu S.V., Doebele R., Giannetta L., Cerea G., Marrapese G., Schirru M., Amatu A., Bencardino K., Palmeri L., Sartore-Bianchi A., Vanzulli A., Cresta S., Damian S., Duca M., Ardini E., Li G., Christiansen J., Kowalski K., Johnson A.D., Patel R., Luo D., Chow-Maneval E., Hornby Z., Multani P.S., Shaw A.T., De Braud F.G. Safety and Antitumor Activity of the Multitargeted Pan-TRK, ROS1, and ALK Inhibitor Entrectinib: Combined Results from Two Phase I Trials (ALKA-372-001 and STARTRK-1). Cancer Discov 2017;7(4):400-9. doi:10.1158/2159-8290.CD-16-1237.; Doebele R.C., Drilon A., Paz-Ares L., Siena S., Shaw A.T., Farago A.F., Blakely C.M., Seto T., Cho B.C., Tosi D., Besse B., Chawla S.P., Bazhenova L., Krauss J.C., Chae Y.K., Barve M., Garrido-Laguna I., Liu S.V., Conkling P., John T., Fakih M., Sigal D., Loong H.H., Buchschacher G.L. Jr., Garrido P., Nieva J., Steuer C., Overbeck T.R., Bowles D.W., Fox E., Riehl T., Chow-Maneval E., Simmons B., Cui N., Johnson A., Eng S., Wilson T.R., Demetri G.D.; trial investigators. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol 2019;pii:S1470-2045(19)30691-6. doi:10.1016/S1470-2045(19)30691-6.; Robinson G.W., Gajjar A.J., Gauvain K.M., Basu E.M., Macy M.E., Maese L.D., Sabnis A.J., Foster J.H., Shusterman S., Yoon J., Weiss B.D., Abdelbaki M., Farid-Kapadia M., Meneses-Lorente G., Cardenas A., Hutchinson K., Bergthold G., Maneval E.C., Fox E., Desai A.V. Phase 1/1b trial to assess the activity of entrectinib in children and adolescents with recurrent or refractory solid tumors including central nervous system (CNS) tumors. J Clin Oncol 2019;37(15 Suppl.):abstr. 10009. doi:10.1200/JCO.2019.37.15_suppl.10009.; Desai A.V., Brodeur G.M., Foster J., Berg S.L., Basu E.M., Shusterman S., Sabnis A.J., Macy M., Yoon J., Gauvain K., Esquibel V., Maneval E.C., Multani P.S., Fox E. Phase 1 study of entrectinib (RXDX-101), a TRK, ROS1, and ALK inhibitor, in children, adolescents, and young adults with recurrent or refractory solid tumors. J Clin Oncol 2018;36(15 Suppl.):abstr. 10536. doi:10.1200/JCO.2018.36.15_suppl.10536.; Al-Salama Z.T., Keam S.J. Entrectinib: First Global Approval. Drugs 2019;79(13):1477-83. doi:10.1007/s40265-019-01177-y.; Doebele R., Ahn M., Siena S., Drilon A., Krebs M., Lin C., De Braud F., John T., Tan D., Seto T., Dziadziuszko R., Arkenau H., Barlesi F., Rolfo C., Wolf J., Chow-Maneval E., Multani P., Cui N., Riehl T., Cho B.C. Efficacy and safety of entrectinib in locally advanced or metastatic ROS1 fusion-positive non-small cell lung cancer (NSCLC). J Thorac Oncol 2018;13(10 Suppl.):S321-S322;abstr. OA02.01 and presentation. doi: https://doi.org/10.1016/j.jtho.2018.08.239.; https://journal.nodgo.org/jour/article/view/555

  13. 13
    Academic Journal

    Πηγή: Head and Neck Tumors (HNT); Том 8, № 4 (2018); 21-25 ; Опухоли головы и шеи; Том 8, № 4 (2018); 21-25 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2018-8-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/370/352; Wells S.A. Jr, Asa S.L., Dralle H. et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015;25(6):567—610. DOI:10.1089/thy.2014.0335. PMID: 25810047.; Sippel R.S., Kunnimalaiyaan M., Chen H. Current management of medullary thyroid cancer. Oncologist 2008;13 (5):539—47. DOI:10.1634/theoncologist.2007-0239. PMID: 18515739.; Румянцев П.О., Ильин А.А., Саенко В.А. Рак щитовидной железы: современные подходы к диагностике и лечению. М.: Гэотар-Медиа, 2009. 448 с.; Roman S., Lin R., Sosa J.A. Prognosis of medullary thyroid carcinoma: demographic, clinical, and pathologic predictors of survival in 1252 cases. Cancer 2006;107(9):2134—42. DOI:10.1002/cncr.22244. PMID: 17019736.; National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology. Thyroid carcinoma. Version 1.2018. Available at: https://www.nccn.org/professionals/physician_gls/pdf/thyroid.pdf.; Valerio L., Pieruzzi L., Giani C. et al. Targeted therapy in thyroid cancer: state of the art. Clin Oncol (R Coll Radiol) 2017;29(5):316—24. DOI:10.1016/j.clon.2017.02.009. PMID: 28318881.; Wells S.A. Jr, Robinson B.G., Gagel R.F. et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 2012;30(2):134—41. DOI:10.1200/JCO.2011.35.5040. PMID: 22025146.; Maciel L.M. Z., Magalhaes PK. R. Medullary thyroid carcinoma — adverse events during systemic treatment: risk-benefit ratio. Arch Endocrinol Metab 2017;61(4):398—402. DOI:10.1590/2359-3997000000267. PMID: 28658345.; https://ogsh.abvpress.ru/jour/article/view/370

  14. 14
    Academic Journal

    Πηγή: Meditsinskiy sovet = Medical Council; № 19 (2019); 51-56 ; Медицинский Совет; № 19 (2019); 51-56 ; 2658-5790 ; 2079-701X ; 10.21518/2079-701X-2019-19

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/5146/4673; Tjulandin S., Imyanitov E., Moiseyenko V., Ponomarenko D., Gurina L., Koroleva I., Karaseva V. Prospective cohort study of clinical characteristics and management patterns for patients with non-small-cell lung cancer in the Russian Federation: EPICLIN-Lung. Curr Med Res Opin. 2015;31(6):1117-27. doi:10.1185/03007995.2015.1036015.; Лактионов К. К., Артамонова Е. В., Бредер В. В., Горбунова В. А., Моисеенко Ф. В., Реутова Е. В. и соавт. Практические рекомендации по лекарственному лечению немелкоклеточного рака легкого. Злокачественные опухоли: Практические рекомендации RUSSCO #3s2. 2018;8(3s2):30–46. doi:10.18027/2224–5057–2018–8–3s2–30–46.; Marshall J. Clinical implications of the mechanism of epidermal growth factor receptor inhibitors. Cancer. 2006;107(6):1207-1218. doi:10.1002/cncr.22133.; Lee C.K., Davies L., Wu Y.L., Mitsudomi T. Gefitinib or Erlotinib vs Chemotherapy for EGFR Mutation-Positive Lung Cancer: Individual Patient Data Meta-Analysis of Overall Survival. J Natl Cancer Inst. 2017;109(6). doi:10.1093/jnci/djw279.; Hirsh V. Managing treatment-related adverse events associated with EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer. Curr Oncol. 2011;18(3):126-138. doi:10.3747/co.v18i3.877.; Yang J.C., Wu Y.L., Schuler M., et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUXLung 3 and LUX-Lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015;16(2):141–151. doi:10.1016/S1470-2045(14)71173-8.; Urata Y., Katakami N., Morita S, et al. Randomized phase III study compar.ing gefitinib with erlotinib in patients with previously treated advanced lung adenocarcinoma: WJOG 5108L. J Clin Oncol. 2016;34(27):3248–3257. doi:10.1200/JCO.2015.63.4154.; Yang J.J., Zhou Q., Yan H.H., et al. A phase III randomised controlled trial of erlotinib vs gefitinib in advanced non-small cell lung cancer with EGFR mutations. Br J Cancer. 2017;116(5):568–574. doi:10.1038/bjc.2016.456.; Paz-Ares L., Tan E.H., O’Byrne K., et al. Afatinib versus gefitinib in patients with EGFR mutationpositive advanced non-small-cell lung cancer: overall survival data from the phase IIb LUX-Lung 7 trial. Ann Oncol. 2017;28(2):270–277. doi:10.1093/annonc/mdw611.; Park K., Tan E.H., O’Byrne K., et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, openlabel, randomised controlled trial. Lancet Oncol. 2016;17(5):577–589. doi:10.1016/S1470-2045(16)30033-X.; Wu Y.L., Cheng Y., Zhou X., et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive nonsmall-cell lung cancer (ARCHER 1050): a randomised,open-label, phase 3 trial. Lancet Oncol 2017;18(11):1454–1466. doi:10.1016/S1470-2045(17)30608-3.; Mok T.S., Cheng Y., Zhou X. et al. Improvement in Overall Survival in a Randomized Study That Compared Dacomitinib With Gefitinib in Patients With Advanced Non–Small-Cell Lung Cancer and EGFR-Activating Mutations. J Clin Oncol. 2018;36(22):2244-2250. doi:10.1200/JCO.2018.78.7994.; Arcila M.E., Oxnard G.R., Nafa K., et al. Rebiopsy of lung cancer patients with acquired resistance to EGFR inhibitors and enhanced detection of the T790M mutation using a locked nucleic acid-based assay. Clin Cancer Res. 2011;17(5):1169-1180. doi:10.1158/1078-0432.CCR-10-2277.; Pao W., Miller V.A., Politi K.A., et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2(3):e73. doi: 0.1371/journal.pmed.0020073.; Sequist L.V., Waltman B.A., Dias-Santagata D., et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3(75):75ra26.19. doi:10.1126/scitranslmed.3002003.; Yang J.C., Ahn M.J., Kim D.W., et al. Osimertinib in pretreated T790M-positive advanced non-smallcell lung cancer: AURA study phase II extension component. J Clin Oncol. 2017;35(12):1288–1296. doi:10.1200/JCO.2016.70.3223.; Jenkins S., Chih-Hsin Yang J., Jänne P.A. et al. EGFR Mutation Analysis for Prospective Patient Selection in Two Phase II Registration Studies of Osimertinib. Journal of Thoracic Oncology. 2017;12(8):1247-1256. doi:10.1016/j.jtho.2017.05.002.; Janne P.A., Yang J.C., Kim D.W., et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med. 2015;372(18):1689–1699. doi:10.1056/NEJMoa1411817.; Mok T.S., Wu Y.L., Ahn M.J., et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017;376(7):629–640. doi:10.1056/NEJMoa1612674.; Huang W.L., Chen Y.L., Yang S.C. et al. Liquid biopsy genotyping in lung cancer: ready for clinical utility? Oncotarget. 2017;8(11):18590-18608. doi:10.18632/oncotarget.14613.; Oxnard G.R., Thress K.S., Alden R.S. et al. Association between plasma genotyping and outcomes of treatment with osimertinib (AZD9291) in advanced non-small-cell lung cancer. J Clin Oncol. 2016;34(28):3375-3382. doi:10.1200/JCO.2016.66.7162.; Ahn M., Han J., Tsai C. et al. Detection of EGFR mutations from plasma ctDNA in the osimertinib Phase III trial (AURA3): comparison of three plasma assays. Presented at: IASLC 18th World Conference on Lung Cancer (WCLC). Yokohama, Japan, October 15–18, 2017. Available at: https://wclc2019.iaslc.org › WCLC2019-Abstract-Book_web-friendly.; Yu H.A., Arcila M.E., Rekhtman N. et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19(8):2240-2247. doi:10.1158/1078-0432.CCR-12-2246.; Soria J.C., Ohe Y., Vansteenkiste J., et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. N Engl J Med. 2018;378(2):113-125. doi:10.1056/NEJMoa1713137.; Thress K.S., Paweletz C.P., Felip E., et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med. 2015;21(6):560–562. doi:10.1038/nm.3854; Niederst M.J., Hu H., Mulvey H.E. et al. The allelic context of the C797S mutation acquired upon treatment with third-generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies. Clin Cancer Res. 2015;21(17):3924-33. doi:10.1158/1078-0432.CCR-15-0560.; Wang Z., Yang J.J., Huang J. et al. Lung adenocarcinoma harboring EGFR T790M and in trans C797S responds to combination therapy of first- and third-generation EGFR TKIs and shifts allelic configuration at resistance. J Thorac Oncol. 2017;12(11):1723-1727. doi:10.1016/j.jtho.2017.06.017.; Ortiz-Cuaran S, Scheffler M, Plenker D et al. Heterogeneous mechanisms of primary and acquired resistance to third-generation EGFR inhibitors. Clin Cancer Res. 2016;22(19):4837-4847. doi:10.1158/1078-0432.CCR-15-1915.; Santarpia M., Liguori A., Karachaliou N. et al. Osimertinib in the treatment of non-smallcell lung cancer: design, development and place in therapy. Lung Cancer (Auckl). 2017;8:109–125. doi: Santarpia M., Liguori A., Karachaliou N. et al. Osimertinib in the treatment of non-small-cell lung cancer: design, development and place in therapy. Lung Cancer (Auckl). 2017;8:109–125. doi:10.2147/LCTT.S119644.; Hochmair M.J., Morabito A., Hao D. et al. Sequential afatinib and osimertinib in patients with EGFR mutation-positive non-small-cell lung cancer: updated analysis of the observational GioTag study. Future Oncol. 2019;15(25):2905-2914. doi:10.2217/fon-2018-0711.; Hendriks L.E., Smit E.F., Vosse B.A. et al. EGFR mutated non-small cell lung cancer patients: more prone to development of bone and brain metastases? Lung Cancer. 2014;84(1):86–91. doi:10.1016/j.lungcan.2014.01.006.; Iuchi T., Shingyoji M., Sakaida T., Hatano K., Nagano O., Itakura M., et al. Phase II trial of gefitinib alone without radiation therapy for Japanese patients with brain metastases from EGFR-mutant lung adenocarcinoma. Lung Cancer. 2013;82(2):282-287. doi:10.1016/j.lungcan.2013.08.016.; Park S.J., Kim H.T., Lee D.H. et al. Efficacy of epidermal growth factor receptor tyrosine kinase inhibitors for brain metastasis in non-small cell lung cancer patients harboring either exon 19 or 21 mutation. Lung Cancer. 2012;77(3):556–560. doi:10.1016/j.lungcan.2012.05.092; Yang J.C.H., Wu Y.-L., Hirsh V. et al. 143PD Competing central nervous system or systemic progression analysis for patients with EGFR mutation-positive NSCLC receiving afatinib in LUX-Lung 3, 6, and 7. Journal of Thoracic Oncology. 2018;13(4):S84-S85. doi:10.1016/S1556-0864(18)30417-9.

  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Πηγή: Russian Journal of Pediatric Hematology and Oncology; Том 4, № 3 (2017); 64-66 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 4, № 3 (2017); 64-66 ; 2413-5496 ; 2311-1267 ; 10.17650/2311-1267-2017-4-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/317/316; Krumbholz M., Karl M., Tauer J.T. et al. Genomic BCR-ABL1 breakpoints in pediatric chronic myeloid leukemia. Genes Chromosomes Cancer 2012;51(11):1045–53. doi:10.1002/gcc.21989.; Karalexi M.A., Baka M., Ryzhov A. et al. Survival trends in childhood chronic myeloid leukaemia in Southern-Eastern Europe and the United States of America. Eur J Cancer 2016;67:183–90. doi:10.1016/j. ejca.2016.08.011.; Hanfstein B., Lauseker M., Hehlmann R. et al.; SAKK and the German CML Study Group. Distinct characteristics of e13a2 versus e14a2 BCR-ABL1 driven chronic myeloid leukemia under first-line therapy with imatinib. Haematologica 2014;99(9):1441–7. doi:10.3324/haematol.2013.096537.; Hijiya N., Schultz K.R., Metzler M., Millot F., Suttorp M. Pediatric chronic myeloid leukemia is a unique disease that requires a different approach. Blood 2016;127(4):392–9. doi:10.1182/blood-2015-06-648667.; Румянцев А.Г., Масчан А.А., Жуковская Е.В. и др. Детская гематология. Сборник клинических рекомендаций. М.: ГЭОТАР-Медиа, 2015. [Rumyantsev A.G., Maschan A.A., Zhukovskaya E.V. Pediatric Hematology. Collection of clinical guidelines. M.: GEOTAR-Media, 2015. (In Russ.)].; Tanizawa A. Optimal management for pediatric chronic myeloid leukemia. Pediatr Int 2016;58(3):171–9. doi:10.1111/ped.12876.; Zhang G.F., Zhou M., Bao X.B. et al. Imatinib Mesylate Versus Allogeneic Hematopoietic Stem Cell Transplantation for Patients with Chronic Myelogenous Leukemia. Asian Pac J Cancer Prev 2016;17(9):4477– 81. PMID: 27797264.; https://journal.nodgo.org/jour/article/view/317

  19. 19
    Academic Journal

    Πηγή: Science, education, society: trends and prospects; 67-69 ; Наука, образование, общество: тенденции и перспективы развития; 67-69

    Περιγραφή αρχείου: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-6040397-0-0; https://interactive-plus.ru/e-articles/442/Action442-466586.pdf; Гарин А.М. Справочное руководство по лекарственной терапии солидных опухолей / А.М. Гарин, И.С. Базин. – М.: МАКС Пресс, 2010. – 368 с.; Гарин А.М. Десять наиболее распространенных злокачественных опухолей: Монография / А.М. Гарин, И.С. Базин. – М.: МАКС Пресс, 2010. – 2-е изд. – 284 с.; Моисеенко В.М. Фокус на рак легкого / В.М. Моисеенко // Профессиональное общество онкологов-химиотерапевтов (RUSSCO): Официальная газета общества. – 2012. – Вып. 5. – С. 1–3.; Суходолец С.Н. Организация специализированной онкологической помощи населению Оренбургской области в 2015 г. / С.Н. Суходолец, А.В. Климушкин // Актуальные вопросы клинической онкологии: Материалы научно-практической конференции онкологов и врачей общей сети, посвященной 70-летию онкологической службы Оренбургской области. – Оренбург: Издательский центр ОГАУ, 2016. – 236 с.; Mok TS et al. N Engl J Med. – 2009. – 361: 947–957.; Тюлядин С.В. Совершенствование молекулярно-генетической диагностики в Российской Федерации / С.В. Тюлядин // Российское общество клинической онкологии (RUSSCO): Практическое руководство для врачей. – С. 4–20.

  20. 20