Showing 1 - 19 results of 19 for search '"ингибиторы натрий-глюкозного котранспортера 2-го типа"', query time: 0.78s Refine Results
  1. 1
  2. 2
    Academic Journal

    Contributors: The authors declare no funding for this study., Авторы заявляют об отсутствии финансирования.

    Source: The Russian Archives of Internal Medicine; Том 15, № 5 (2025); 325-335 ; Архивъ внутренней медицины; Том 15, № 5 (2025); 325-335 ; 2411-6564 ; 2226-6704

    File Description: application/pdf

    Relation: https://www.medarhive.ru/jour/article/view/2077/1443; Schena F.P., Nistor I. Epidemiology of IgA Nephropathy: A Global Perspective. Semin. Nephrol. 2018; 38(5):435-42. doi:10.1016/j.semnephrol.2018.05.013.; Pitcher D., Braddon F., Hendry B. et al. Long-term outcomes in IgA nephropathy. Clin. J. Am. Soc. Nephrol. 2023; 18:727-38. https://doi.org/10.2215/CJN.0000000000000135.; Moriyama T., Tanaka K., Iwasaki C. et al. Prognosis in IgA nephropathy: 30-year analysis of 1,012 patients at a single center in Japan. PLoS One. 2014; 9:e91756. doi:10.1371/journal.pone.0091756; Добронравов В.А., Мужецкая Т.О., Лин Д.И. и др. Иммуноглобулин А-нефропатия в российской популяции: клинико-морфологическая презентация и отдаленный прогноз. Нефрология. 2019; 23(6):45-60. doi:10.36485/1561-6274-2019-23-6-45-60.; Батюшин М.М., Бобкова И.Н., Ватазин А.В. и др. Гломерулярные болезни: иммуноглобулин А-нефропатия. Клинические рекомендации. 2021. [Электронный ресурс]. URL: https://rusnephrology.org/wp-content/uploads/2021/04/iga_060421-1.pdf. (дата обращения: 29.01.2025).; Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021; 100(4S):1-276.; Ballardie FW, Roberts IS. Controlled prospective trial of prednisolone and cytotoxics in progressive IgA nephropathy. J Am Soc Nephrol 2002;13(1):142-8.; Wheeler D.C., Toto R.D., Stefánsson B.V., et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 2021; 100(1): 215-24. doi:10.1016/j.kint.2021.03.033.; Herrington W.G., Staplin N., Wanner C., et al., EMPA-KIDNEY Collaborative Group. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2022 Nov 4. doi:10.1056/NEJMoa2204233.; McGrogan A., Franssen C.F., de Vries C.S. The incidence of primary glomerulonephritis worldwide: a systematic review of the literature. Nephrol Dial Transplant. 2011; 26:414-430. doi:10.1093/ndt/gfq665/; Yeo S.C., Goh S.M., Barratt J. Is immunoglobulin A nephropathy different in different ethnic populations? Nephrology (Carlton). 2019; 24(9):885-895. doi:10.1111/nep.13592.; Lai, K.N., Tang, S.C.W., Schena, F.P., et. al. IgA nephropathy. Nature Reviews Disease Primers. 2016; 2:16001. doi:10.1038/nrdp.2016.1.; Зубкин М.Л., Солдатов Д.А., Фролова Н.Ф. и др. Современные представления о патогенезе IgA-нефропатии. Нефрология и диализ. 2024; 26(1):35-54. doi:10.28996/2618-9801-2024-1-35-54.; Sallustio F., Curci C., Chaoul N. et al. High levels of gut-homing immunoglobulin A+ B lymphocytes support the pathogenic role of intestinal mucosal hyperresponsiveness in immunoglobulin A nephropathy patients. Nephrol Dial Transplant. 2021; 36(3):452-464. doi:10.1093/ndt/gfaa264.; He J.W., Zhou X.J., Hou P. et al. Potential Roles of Oral Microbiota in the Pathogenesis of Immunoglobin A Nephropathy. Front Cell Infect Microbiol. 2021; 11:652837. doi:10.3389/fcimb.2021.652837.; Zhao J., Bai M., Yang X. et al. Alleviation of refractory IgA nephropathy by intensive fecal microbiota transplantation: the first case reports. Renal. Failure. 2021; 43(1):928-933. doi:10.1080/0886022X.2021.1936038.; Gesualdo L., Di Leo V., Coppo R. The mucosal immune system and IgA nephropathy. Semin Immunopathol. 2021; 43(5):657-668. doi:10.1007/s00281-021-00871-y.; Rehnberg J., Symreng A., Ludvigsson J.F. et al. Infl amatory Bowel Disease Is More Common in Patients with IgA Nephropathy and Predicts Progression of ESKD: A Swedish Population-Based Cohort Study. J Am Soc Nephrol. 2021; 32(2):411-423. doi:10.1681/ASN.2020060848.; Kovács T., Kun L., Schmelczer M. et al. Do intestinal hyperpermeability and the related food antigens play a role in the progression of IgA nephropathy? I. Study of intestinal permeability. Am J Nephrol. 1996; 16(6):500-505. doi:10.1159/000169050.; Serena G., D’Avino P., Fasano A. Celiac Disease and Non-celiac Wheat Sensitivity: State of Art of Non-dietary Therapies. Front Nutr. 2020; 7:152. doi:10.3389/fnut.2020.00152.; Slavin S.F. IgA Nephropathy as the Initial Presentation of Celiac Disease in an Adolescent. Pediatrics. 2021; 148(4):e2021051332. doi:10.1542/peds.2021-051332.; Бобкова И.Н., Ватазин А.В., Ветчинникова О.Н. и др. Хроническая болезнь почек (ХБП). Клинические рекомендации. 2024. [Электронный ресурс]. URL: https://rusnephrology.org/wpcontent/uploads/2020/12/CKD_final.pdf. (дата обращения: 29.01.2025).; Шилов Е.М., Бобкова И.Н., Колина И.Б. и др. Клинические рекомендации по диагностике и лечению IgA-нефропатии. Нефрология. 2015; 19(6): 83-92.; Wu J., Hu Z., Wang Y. et al. Severe glomerular C3 deposition indicates severe renal lesions and a poor prognosis in patients with immunoglobulin A nephropathy. Histopathology. 2021; 78(6):882-895. doi:10.1111/his.14318.; Khairwa A. Indian scenario of IgA nephropathy: a systematic review and meta-analysis. Afr. Health Sci. 2021; 21(1):159-165. doi:10.4314/ahs.v21i1.21-54.; Gleeson P.J., O’Shaughnessy M.M., Barratt J. IgA nephropathy in adults—treatment standard, Nephrology Dialysis Transplantation. 2023; 38(11):2464-2473. doi:10.1093/ndt/gfad146.; Trimarchi H., Barratt J., Cattran D.C. et al. IgAN Classification Working Group of the International IgA Nephropathy Network and the Renal Pathology Society; Conference Participants. Oxford Classification of IgA nephropathy 2016: an update from the IgA Nephropathy Classification Working Group. Kidney Int. 2017; 91(5):1014-1021. doi:10.1016/j.kint.2017.02.003.; Gharavi A.G., Yan Y., Scolari F. et al. IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22-23. Nat. Genet. 2000; 26(3):354-357. doi:10.1038/81677.; Wakai K., Kawamura T., Endoh M. et al. A scoring system to predict renal outcome in IgA nephropathy: from a nationwide prospective study. Nephrol. Dial. Transplant. 2006; 21:2800-2808. doi:10.1093/ndt/gfl342.; International IgAN Prediction Tool at biopsy — Adults calculator. 2019. [Электронный ресурс]. URL: https://qxmd.com/calculate/calculator_499/international-igan-prediction-tool-adults. (дата обращения: 29.01.2025).; Bartosik L.P., Lajoie G., Sugar L. et al. Predicting progression in IgA nephropathy. Am. J. Kidney Dis. 2001; 38:728-735. doi:10.1053/ajkd.2001.27689.; Moroni G., Longhi S., Quaglini S. et al. The long-term outcome of renal transplantation of IgA nephropathy and the impact of recurrence on graft survival. Nephrol. Dial. Transplant. 2013; 28:1305-1314. doi:10.1093/ndt/gfs472.; Rovin B.H., Adler S.G., Barratt J. et al. Executive summary of the KDIGO 2021 Guideline for the management of glomerular diseases. Kidney Int. 2021; 100:753-779. doi:10.1016/j.kint.2021.05.015.; Patrick J. Gleeson, Michelle M. O’Shaughnessy, Jonathan Barratt. IgA nephropathy in adults — treatment standard. Nephrol. Dial. Transplant. 2023; 38:2464-2473. doi:10.1093/ndt/gfad146.; Praga M., Gutiérrez E., González E. et al. Treatment of IgA nephropathy with ACE inhibitors: a randomized and controlled trial. J. Am. Soc. Nephrol. 2003; 14(6):1578-1583. doi:10.1097/01.asn.0000068460.37369.dc.; Zhao Y., Fan H., Bao B.Y. Efficacy and Safety of Renin-Angiotensin Aldosterone System Inhibitor in Patients with IgA Nephropathy: A Meta-Analysis of Randomized Controlled Trials. Iran J. Public Health. 2019; 48(9):1577-1588. doi:10.18502/ijph.v48i9.3014.; Сигитова О.Н. Лечение артериальной гипертензии у пациентов с хронической болезнью почек с позиции Европейских рекомендаций 2023 г. Казанский медицинский журнал. 2024; 105(4):607-621. doi:10.17816/KMJ626252.; Heerspink H.J.L., Stefansson B.V., Correa-Rotter R. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 2020; 383:1436-1446. doi:10.1056/NEJMoa2024816.; Heather N. Reich and Jürgen Floege. Cl. J. Am. Soc. Nephrol. 2022; 17(8): 1243-1246. doi:10.2215/CJN.02710322.; The E-KCG, Herrington W.G., Staplin N. et al. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 2023; 388:117-127. doi:10.1056/NEJMoa2204233.; EMPA-KIDNEY Collaborative Group. Design, recruitment, and baseline characteristics of the EMPA-KIDNEY trial. Nephrol. Dial. Transplant. 2022; 37:1317-1329. doi:10.1093/ndt/gfac040.; Braunwald E. Gliflozins in the management of cardiovascular disease. N. Engl. J. Med. 2022; 386:2024-2034. doi:10.1056/NEJMra2115011.; Donadio J.V., Grande J.P., Bergstralh E.J. et al. The long-term outcome of patients with IgA nephropathy treated with fish oil in a controlled trial. Mayo Nephrology Collaborative Group. J. Am. Soc. Nephrol. 1999; 10(8):1772-1777. doi:10.1681/ASN.V1081772.; Hogg R.J., Lee J., Nardelli N. et al. Clinical trial to evaluate omega-3 fatty acids and alternate day prednisone in patients with IgA nephropathy: report from the Southwest Pediatric Nephrology Study Group. Clin. J. Am. Soc. Nephrol. 2006; 1(3):467-474. doi:10.2215/CJN.01020905.; Strippoli G.F., Manno C., Schena F.P. An “evidence-based” survey of therapeutic options for IgA nephropathy: assessment and criticism. Am. J. Kidney Dis. 2003;41(6):1129–39. doi:10.1016/s0272-6386(03)00344-5.; Rehnberg J., Symreng A., Ludvigsson J.F. et al. Inflammatory Bowel Disease Is More Common in Patients with IgA Nephropathy and Predicts Progression of ESKD: A Swedish PopulationBased Cohort Study. J. Am. Soc. Nephrol. 2021; 32(2):411-423. doi:10.1681/ASN.2020060848.; Yang D., He L., Peng X. et al. The efficacy of tonsillectomy on clinical remission and relapse in patients with IgA nephropathy: a randomized controlled trial. Ren. Fail. 2016; 38:242-248. doi:10.3109/0886022X.2015.1128251.; Pozzi C., Bolasco P.G., Fogazzi G.B. et al. Corticosteroids in IgA nephropathy: a randomised controlled trial. Lancet. 1999; 353:883-887. doi:10.1016/S0140-6736(98)03563-6.; Lv J., Zhang H., Wong M.G. et al. Effect of oral methylprednisolone on clinical outcomes in patients with IgA nephropathy: the TESTING randomized clinical trial. JAMA. 2017; 318:432-442. doi:10.1001/jama.2017.9362.; Lv J., Wong M.G., Hladunewich M.A. et al. Effect of oral methylprednisolone on decline in kidney function or kidney failure in patients with IgA nephropathy: the TESTING randomized clinical trial. JAMA. 2022; 327:1888-1898. doi:10.1001/jama.2022.5368.; Rauen T., Eitner F., Fitzner C. et al. Intensive supportive care plus immunosuppression in IgA nephropathy. N. Engl. J. Med. 2015; 373:2225-2236. doi:10.1056/NEJMoa1415463.; Rauen T., Wied S., Fitzner C. et al. After ten years of follow-up, no difference between supportive care plus immunosuppression and supportive care alone in IgA nephropathy. Kidney Int. 2020; 98:1044-1052. doi:10.1016/j.kint.2020.04.046.; Lv J., Zhang H., Chen Y. et al. Combination therapy of prednisone and ACE inhibitor versus ACE-inhibitor therapy alone in patients with IgA nephropathy: a randomized controlled trial. Am. J. Kidney Dis. 2009; 53:26-32. doi:10.1053/j.ajkd.2008.07.029.; Han S., Yao T., Lu Y. et al. Efficacy and Safety of Immunosuppressive Monotherapy Agents for IgA Nephropathy: A Network Meta-Analysis. Front. Pharmacol. 2021; 11:539545. doi:10.3389/fphar.2020.539545.; Мельниченко Г.А., Белая Ж.Е., Рожинская Л.Я. и др. Федеральные клинические рекомендации по диагностике, лечению и профилактике остеопороза. Проблемы эндокринологии. 2017; 63(6):392-426. doi:10.14341/probl2017636392-426.; Barratt J., Lafayette R., Kristensen J. et al. NefIgArd Trial Investigators. Results from part A of the multi-center, doubleblind, randomized, placebo-controlled NefIgArd trial, which evaluated targeted-release formulation of budesonide for the treatment of primary immunoglobulin A nephropathy. Kidney Int. 2023; 103(2):391-402. doi:10.1016/j.kint.2022.09.017.; Ma F., Yang X., Zhou M. et al. Treatment for IgA nephropathy with stage 3 or 4 chronic kidney disease: low-dose corticosteroids combined with oral cyclophosphamide. J. Nephrol. 2020; 33(6):1241-1250. doi:10.1007/s40620-020-00752-x.; Liu L.J., Yang Y.Z., Shi S.F. et al. Effects of Hydroxychloroquine on Proteinuria in IgA Nephropathy: A Randomized Controlled Trial. Am. J. Kidney Dis. 2019; 74(1):15-22. doi:10.1053/j.ajkd.2019.01.026.; Hou F.F., Xie D., Wang J. et al. Effectiveness of mycophenolate mofetil among patients with progressive IgA nephropathy: a randomized clinical trial. JAMA Netw. Open. 2023; 6(2):e2254054. doi:10.1001/jamanetworkopen.2022.54054.; Hernández-Rodríguez J., Carbonell C., Mirón-Canelo J.A. et al. Rituximab treatment for IgA vasculitis: A systematic review. Autoimmun. Rev. 2020; 19(4):102490. doi:10.1016/j.autrev.2020.102490.; Gleeson P.J., O’Shaughnessy M.M. and Barratt J. IgA nephropathy in adults—treatment standard. Nephrol Dial Transplant, 2023, 38, 2464–2473 https://doi.org/10.1093/ndt/gfad146 Downloaded from https://academic.oup.com/ndt/article/38/11/2464/7221084 by guest on 25 December 2024; https://www.medarhive.ru/jour/article/view/2077

  3. 3
    Academic Journal

    Source: Meditsinskiy sovet = Medical Council; № 23 (2024); 137-143 ; Медицинский Совет; № 23 (2024); 137-143 ; 2658-5790 ; 2079-701X

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8839/7748; Cao L, An Y, Liu H, Jiang J, Liu W, Zhou Y et al. Global epidemiology of type 2 diabetes in patients with NAFLD or MAFLD: a systematic review and meta-analysis. BMC Med. 2024;22(1):101. https://doi.org/10.1186/s12916-024-03315-0.; Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021;397(10290):2212–2224. https://doi.org/10.1016/S0140-6736(20)32511-3.; Targher G, Corey KE, Byrne CD, Roden M. The complex link between NAFLD and type 2 diabetes mellitus – mechanisms and treatments. Nat Rev Gastroenterol Hepatol. 2021;18(9):599–612. https://doi.org/10.1038/s41575-021-00448-y.; Sakurai Y, Kubota N, Yamauchi T, Kadowaki T. Role of Insulin Resistance in MAFLD. Int J Mol Sci. 2021;22(8):4156. https://doi.org/10.3390/ijms22084156.; Fan JG, Xu XY, Yang RX, Nan YM, Wei L, Jia JD et al. Guideline for the Prevention and Treatment of Metabolic Dysfunction-associated Fatty Liver Disease (Version 2024). J Clin Transl Hepatol. 2024;12(11):955–974. https://doi.org/10.14218/JCTH.2024.00311.; Zeng M, Chen L, Li Y, Mi Y, Xu L. Problems and Challenges Associated with Renaming Non-alcoholic Fatty Liver Disease to Metabolic Associated Fatty Liver Disease. Medicine. 2023;3(3):105–113. https://doi.org/10.1097/ID9.0000000000000085.; Zhang Y, Yan Q, Gong L, Xu H, Liu B, Fang X et al. C-terminal truncated HBx initiates hepatocarcinogenesis by downregulating TXNIP and reprogramming glucose metabolism. Oncogene. 2021;40(6):1147–1161. https://doi.org/10.1038/s41388-020-01593-5.; Tauil RB, Golono PT, de Lima EP, de Alvares Goulart R, Guiguer EL, Bechara MD et al. Metabolic-Associated Fatty Liver Disease: The Influence of Oxidative Stress, Inflammation, Mitochondrial Dysfunctions, and the Role of Polyphenols. Pharmaceuticals. 2024;17(10):1354. https://doi.org/10.3390/ph17101354.; Xu HL, Wan SR, An Y, Wu Q, Xing YH, Deng CH et al. Targeting cell death in NAFLD: mechanisms and targeted therapies. Cell Death Discov. 2024;10(1):399. https://doi.org/10.1038/s41420-024-02168-z.; Rheinheimer J, de Souza BM, Cardoso NS, Bauer AC, Crispim D. Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review. Metabolism. 2017;74:1–9. https://doi.org/10.1016/j.metabol.2017.06.002.; Cho S, Ying F, Sweeney G. Sterile inflammation and the NLRP3 inflammasome in cardiometabolic disease. Biomed J. 2023;46(5):100624. https://doi.org/10.1016/j.bj.2023.100624.; Park HS, Song JW, Park JH, Lim BK, Moon OS, Son HY et al. TXNIP/VDUP1 attenuates steatohepatitis via autophagy and fatty acid oxidation. Autophagy. 2021;17(9):2549–2564. https://doi.org/10.1080/15548627.2020.1834711.; Tokushige K, Ikejima K, Ono M, Eguchi Y, Kamada Y, Itoh Y et al. Evidencebased clinical practice guidelines for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis 2020. J Gastroenterol. 2021;56(11):951–963. https://doi.org/10.1007/s00535-021-01796-x.; Boursier J, Hagström H, Ekstedt M, Moreau C, Bonacci M, Cure S et al. Noninvasive tests accurately stratify patients with NAFLD based on their risk of liver-related events. J Hepatol. 2022;76(5):1013–1020. https://doi.org/10.1016/j.jhep.2021.12.031.; Masoodi M, Gastaldelli A, Hyötyläinen T, Arretxe E, Alonso C, Gaggini M et al. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nat Rev Gastroenterol Hepatol. 2021;18(12):835–856. https://doi.org/10.1038/s41575-021-00502-9.; Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 2019;71(4):793–801. https://doi.org/10.1016/j.jhep.2019.06.021.; Castera L, Laouenan C, Vallet-Pichard A, Vidal-Trécan T, Manchon P, Paradis V et al.; QUID-NASH investigators. High Prevalence of NASH and Advanced Fibrosis in Type 2 Diabetes: A Prospective Study of 330 Outpatients Undergoing Liver Biopsies for Elevated ALT, Using a Low Threshold. Diabetes Care. 2023;46(7):1354–1362. https://doi.org/10.2337/dc22-2048.; Guo Q, Xin M, Lu Q, Feng D, Yang V, Peng LF et al. A novel NEDD4L-TXNIPCHOP axis in the pathogenesis of nonalcoholic steatohepatitis. Theranostics. 2023;13(7):2210–2225. https://doi.org/10.7150/thno.81192.; Filios SR, Xu G, Chen J, Hong K, Jing G, Shalev A. MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis. J Biol Chem. 2014;289(52):36275–36283. https://doi.org/10.1074/jbc.m114.592360.; Sullivan WJ, Mullen PJ, Schmid EW, Flores A, Momcilovic M, Sharpley MS et al. Extracellular Matrix Remodeling Regulates Glucose Metabolism through TXNIP Destabilization. Cell. 2018;175:117–132.e21. https://doi.org/10.1016/j.cell.2018.08.017.; Dalle S, Abderrahmani A, Renard E. Pharmacological inhibitors of β-cell dysfunction and death as therapeutics for diabetes. Front Endocrinol. 2023;14:1076343. https://doi.org/10.3389/fendo.2023.1076343.; Dagnell M, Schmidt EE, Arner ESJ. The A to Z of modulated cell patterning by mammalian thioredoxin reductases. Free Radic Biol Med. 2018;115:484–496. https://doi.org/10.1016/j.freeradbiomed.2017.12.029.; Choi EH, Park SJ. TXNIP: A key protein in the cellular stress response pathway and a potential therapeutic target. Exp Mol Med. 2023;55(7):1348–1356. https://doi.org/10.1038/s12276-023-01019-8.; Li A, Guan L, Su W, Zhao N, Song X, Wang J et al. TXNIP inhibition in the treatment of type 2 diabetes mellitus: design, synthesis, and biological evaluation of quinazoline derivatives. J Enzyme Inhib Med Chem. 2023;38(1):2166937. https://doi.org/10.1080/14756366.2023.2166937.; Zhao W, Pu M, Shen S, Yin F. Geniposide improves insulin resistance through AMPK-mediated Txnip protein degradation in 3T3-L1 adipocytes. Acta Biochim Biophys Sin. 2021;53(2):160–169. https://doi.org/10.1093/abbs/gmaa157.; Frankowski R, Kobierecki M, Wittczak A, Różycka-Kosmalska M, Pietras T, Sipowicz K, Kosmalski M. Type 2 Diabetes Mellitus, Non-Alcoholic Fatty Liver Disease, and Metabolic Repercussions: The Vicious Cycle and Its Interplay with Inflammation. Int J Mol Sci. 2023;24(11):9677. https://doi.org/10.3390/ijms24119677.; Chan KE, Koh TJL, Tang ASP, Quek J, Yong JN, Tay P, et al. Global Prevalence and Clinical Characteristics of Metabolic-associated Fatty Liver Disease: A MetaAnalysis and Systematic Review of 10 739 607 Individuals. J Clin Endocrinol Metab. 2022;107(9):2691–2700. https://doi.org/10.1210/clinem/dgac321.; Chen F, Xing Y, Chen Z, Chen X, Li J, Gong S, Luo F, Cai Q. Competitive adsorption of microRNA-532-3p by circular RNA SOD2 activates Thioredoxin Interacting Protein/NLR family pyrin domain containing 3 pathway and promotes pyroptosis of non-alcoholic fatty hepatocytes. Eur J Med Res. 2024;29(1):250. https://doi.org/10.1186/s40001-024-01817-4.; He K, Zhu X, Liu Y, Miao C, Wang T, Li P et al. Inhibition of NLRP3 inflammasome by thioredoxin-interacting protein in mouse Kupffer cells as a regulatory mechanism for non-alcoholic fatty liver disease development. Oncotarget. 2017;8(23):37657–37672. https://doi.org/10.18632/oncotarget.17489.; Dagdeviren S, Lee RT, Wu N. Physiological and Pathophysiological Roles of Thioredoxin Interacting Protein: A Perspective on Redox Inflammation and Metabolism. Antioxid Redox Signal. 2023;38(4-6):442–460. https://doi.org/10.1089/ars.2022.0022.

  4. 4
  5. 5
    Academic Journal

    Source: Meditsinskiy sovet = Medical Council; № 15 (2022); 83-89 ; Медицинский Совет; № 15 (2022); 83-89 ; 2658-5790 ; 2079-701X

    File Description: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/7075/6349; Маевская М.В., Котовская Ю.В., Ивашкин В.Т., Ткачева О.Н., Трошина Е.А., Шестакова М.В. и др. Национальный Консенсус для врачей по ведению взрослых пациентов с неалкогольной жировой болезнью печени и ее основными коморбидными состояниями. Терапевтический архив. 2022;(2):216–253. https://doi.org/10.26442/00403660.2022.02.201363. Maevskaya M.V., Kotovskaya Yu.V., Ivashkin V.T., Tkacheva O.N., Troshina E.A., Shestakova M.V. et al. National consensus for physicians on the management of adult patients with non-alcoholic fatty liver disease and its major comorbid conditions. Terapevticheskii Arkhiv. 2022;(2):216–253. (In Russ.) https://doi.org/10.26442/00403660.2022.02.201363.; Jichitu A., Bungau S., Stanescu A.M.A., Vesa C.M., Toma M.M., Bustea C. et al. Non-Alcoholic Fatty Liver Disease and Cardiovascular Comorbidities: Pathophysiological Links, Diagnosis, and Therapeutic Management. Diagnostics (Basel). 2021;11(4):689. https://doi.org/10.3390/diagnostics11040689.; Li X., Jiao Y., Xing Y., Gao P. Diabetes Mellitus and Risk of Hepatic Fibrosis/ Cirrhosis. Biomed Res Int. 2019;2019:5308308. https://doi.org/0.1155/2019/5308308.; Nakahara T., Hyogo H., Yoneda M., Sumida Y., Eguchi Y., Fujii H. et al. Type 2 diabetes mellitus is associated with the fibrosis severity in patients with nonalcoholic fatty liver disease in a large retrospective cohort of Japanese patients. J Gastroenterol. 2014;49(11):1477–1484. https://doi.org/10.1007/s00535-013-0911-1.; Trombetta M., Spiazzi G., Zoppini G., Muggeo M. Review article: Type 2 diabetes and chronic liver disease in the Verona diabetes study. Aliment Pharmacol Ther. 2005;22(2 Suppl.):24–27. https://doi.org/10.1111/j.1365-2036.2005.02590.x.; Mantovani A., Scorletti E., Mosca A., Alisi A., Byrne C.D., Targher G. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism. 2020;111S:154170. https://doi.org/10.1016/j.metabol.2020.154170.; Targher G., Lonardo A., Byrne C.D. Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nat Rev Endocrinol. 2018;14(2):99–114. https://doi.org/10.1038/nrendo.2017.173.; Machado M., Marques-Vidal P., Cortez-Pinto H. Hepatic histology in obese patients undergoing bariatric surgery. J Hepatol. 2006;45(4):600–606. https://doi.org/10.1016/j.jhep.2006.06.013.; Younossi Z.M., Golabi P., de Avila L., Paik J.M., Srishord M., Fukui N. et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 2019;71(4):793–801. https://doi.org/10.1016/j.jhep.2019.06.021.; Masarone M., Rosato V., Aglitti A., Bucci T., Caruso R., Salvatore T. et al. Liver biopsy in type 2 diabetes mellitus: Steatohepatitis represents the sole feature of liver damage. PLoS ONE. 2017;12(6):e0178473. https://doi.org/10.1371/journal.pone.0178473.; Taylor R. Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. Diabetologia. 2008;51(10):1781–1789. https://doi.org/10.1007/s00125-008-1116-7.; Defronzo R.A. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–795. https://doi.org/10.2337/db09-9028.; Buzzetti E., Pinzani M., Tsochatzis E.A. The multiple-hit pathogenesis of nonalcoholic fatty liver disease (NAFLD). Metabolism. 2016;65(8):1038–1048. https://doi.org/10.1016/j.metabol.2015.12.012.; Eslam M., Sanyal A.J., George J. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology. 2020;158(7):1999–2014.e1. https://doi.org/10.1053/j.gastro.2019.11.312.; Younossi Z.M., Corey K.E., Lim J.K. AGA Clinical Practice Update on Lifestyle Modification Using Diet and Exercise to Achieve Weight Loss in the Management of Nonalcoholic Fatty Liver Disease: Expert Review. Gastroenterology. 2021;160(3):912–918. https://doi.org/10.1053/j.gastro.2020.11.051.; Finer N. Weight loss interventions and nonalcoholic fatty liver disease: Optimizing liver outcomes. Diabetes Obes Metab. 2022;24(Suppl. 2):44–54. https://doi.org/10.1111/dom.14569.; Петунина Н.А., Тельнова М.Э., Кузина И.А. Влияние ипраглифлозина на компоненты метаболического синдрома и неалкогольную жировую болезнь печени. Медицинский совет. 2021;(12):305–310. https://doi.org/10.21518/2079-701X-2021-12-305-310. Petunina N.A., Telnova M.E., Kuzina I.A. Effect of ipragliflozin on components of the metabolic syndrome and non-alcoholic fatty liver disease. Meditsinskiy Sovet. 2021;(12):305–310. (In Russ.) https://doi.org/10.21518/2079-701X-2021-12-305-310.; Моргунов Л.Ю., Мамедгусейнов Х.С. Новые возможности коррекции сахарного диабета 2-го типа у пациентов с заболеваниями печени. Лечащий врач. 2021;(12):26–32. https://doi.org/10.51793/OS.2021.24.12.004. Morgunov L.Yu., Mamedguseynov Kh.S. New opportunities for the correction of type 2 diabetes mellitus in patients with liver diseases. Lechaschi Vrach. 2021;(12):26–32. (In Russ.) https://doi.org/10.51793/OS.2021.24.12.004.; Vallon V., Thomson S.C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol. 2020;16(6):317–336. https://doi.org/10.1038/s41581-020-0256-y.; Simes B.C., MacGregor G.G. Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors: A Clinician’s Guide. Diabetes Metab Syndr Obes. 2019;12:2125–2136. https://doi.org/10.2147/DMSO.S212003.; Yu A.S., Hirayama B.A., Timbol G., Liu J., Basarah E., Kepe V. et al. Functional expression of SGLTs in rat brain. Am J Physiol Cell Physiol. 2010;299(6):C1277–1284. https://doi.org/10.1152/ajpcell.00296.2010.; Fonseca-Correa J.I., Correa-Rotter R. Sodium-Glucose Cotransporter 2 Inhibitors Mechanisms of Action: A Review. Front Med (Lausanne). 2021;8:777861. https://doi.org/10.3389/fmed.2021.777861.; Yanai H., Hakoshima M., Adachi H., Katsuyama H. Multi-Organ Protective Effects of Sodium Glucose Cotransporter 2 Inhibitors. Int J Mol Sci. 2021;22(9):4416. https://doi.org/10.3390/ijms22094416.; Амосова М.В., Фадеев В.В. Эмпаглифлозин – новые показания к применению – поворотный момент в лечении сахарного диабета 2-го типа. Медицинский совет. 2017;(3):38–43. https://doi.org/10.21518/2079-701X-2017-3-38-43. Amosova M.V., Fadeev V.V. Empagliflozin – new indications for use – a turning point in the treatment of type 2 diabetes mellitus. Meditsinskiy Sovet. 2017;(3):38–43. (In Russ.) https://doi.org/10.21518/2079-701X-2017-3-38-43.; Дедов И.И., Шестакова М.В., Майоров А.Ю. (ред.). Алгоритмы специализированной медицинской помощи больным сахарным диабетом: клинические рекомендации. М.; 2021. 222 с. Режим доступа: https://webmed.irkutsk.ru/doc/pdf/algosd.pdf. Dedov I.I., Shestakova M.V., Maiorov A.Yu. (eds.). Algorithms of specialized medical care for patients with diabetes mellitus: clinical recommendations. Мoscow; 2021. 228 p. (In Russ.) Available at: https://webmed.irkutsk.ru/doc/pdf/algosd.pdf.; Komiya C., Tsuchiya K., Shiba K., Miyachi Y., Furuke S., Shimazu N. et al. Ipragliflozin Improves Hepatic Steatosis in Obese Mice and Liver Dysfunction in Type 2 Diabetic Patients Irrespective of Body Weight Reduction. PLoS ONE. 2016;11(3):e0151511. https://doi.org/10.1371/journal.pone.0151511.; Petito-da-Silva T. I., Souza-Mello V., Barbosa-da-Silva S. Empaglifozin mitigates NAFLD in high-fat-fed mice by alleviating insulin resistance, lipogenesis and ER stress. Mol Cell Endocrinol. 2019;498:110539. https://doi.org/10.1016/j.mce.2019.110539.; Androutsakos T., Nasiri-Ansari N., Bakasis A.D., Kyrou I., Efstathopoulos E., Kassi E. SGLT-2 Inhibitors in NAFLD: Expanding Their Role beyond Diabetes and Cardioprotection. Int J Mol Sci. 2022;23(6):3107. https://doi.org/10.3390/ijms23063107.; Hüttl M., Markova I., Miklankova D., Zapletalova I., Poruba M., Haluzik M. et al. In a Prediabetic Model, Empagliflozin Improves Hepatic Lipid Metabolism Independently of Obesity and before Onset of Hyperglycemia. Int J Mol Sci. 2021;22(21):11513. https://doi.org/10.3390/ijms222111513.; Seko Y., Nishikawa T., Umemura A., Yamaguchi K., Moriguchi M., Yasui K. et al. Efficacy and safety of canagliflozin in type 2 diabetes mellitus patients with biopsy-proven nonalcoholic steatohepatitis classified as stage 1-3 fibrosis. Diabetes Metab Syndr Obes. 2018;11:835–843. https://doi.org/10.2147/DMSO.S184767.; Wang D., Luo Y., Wang X., Orlicky D.J., Myakala K., Yang P., Levi M. The Sodium-Glucose Cotransporter 2 Inhibitor Dapagliflozin Prevents Renal and Liver Disease in Western Diet Induced Obesity Mice. Int J Mol Sci. 2018;19(1):137. https://doi.org/10.3390/ijms19010137.; Li B., Wang Y., Ye Z., Yang H., Cui X., Wang Z., Liu L. Effects of Canagliflozin on Fatty Liver Indexes in Patients with Type 2 Diabetes: A Meta-analysis of Randomized Controlled Trials. J Pharm Pharm Sci. 2018;21(1):222–235. https://doi.org/10.18433/jpps29831.; Gallo S., Calle R.A., Terra S.G., Pong А., Tarasenko L., Raji А. Effects of Ertugliflozin on Liver Enzymes in Patients with Type 2 Diabetes: A PostHoc Pooled Analysis of Phase 3 Trials. Diabetes Ther. 2020;11(8):1849– 1860. https://doi.org/10.1007/s13300-020-00867-1.; Arase Y., Shiraishi K., Anzai K., Sato H., Teramura E., Tsuruya K. et al. Effect of Sodium Glucose Co-Transporter 2 Inhibitors on Liver Fat Mass and Body Composition in Patients with Nonalcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus. Clin Drug Investig. 2019;39(7):631–641. https://doi.org/10.1007/s40261-019-00785-6.; Eriksson J.W., Lundkvist P., Jansson P.A., Johansson L, Kvarnström M., Moris L. et al. Effects of dapagliflozin and n-3 carboxylic acids on nonalcoholic fatty liver disease in people with type 2 diabetes: a doubleblind randomised placebo-controlled study. Diabetologia. 2018;61(9):1923–1934. https://doi.org/10.1007/s00125-018-4675-2.; Kashiwagi A., Takahashi H., Ishikawa H., Yoshida S., Kazuta K., Utsuno A. A randomized, double-blind, placebo-controlled study on long-term efficacy and safety of ipragliflozin treatment in patients with type 2 diabetes mellitus and renal impairment: results of the long-term ASP1941 safety evaluation in patients with type 2 diabetes with renal impairment (LANTERN) study. Diabetes Obes Metab. 2015;17(2):152–160. https://doi.org/10.1111/dom.12403.; Kashiwagi A., Sakatani T., Nakamura I., Akiyama N., Kazuta K., Ueyama E. et al. Improved cardiometabolic risk factors in Japanese patients with type 2 diabetes treated with ipragliflozin: a pooled analysis of six randomized, placebo-controlled trials. Endocr J. 2018;65(7):693–705. https://doi.org/10.1507/endocrj.EJ17-0491.; Honda Y., Imajo K., Kato T., Kessoku T., Ogawa Y., Tomeno W. et al. The Selective SGLT2 Inhibitor Ipragliflozin Has a Therapeutic Effect on Nonalcoholic Steatohepatitis in Mice. PLoS ONE. 2016;11(1):e0146337. https://doi.org/10.1371/journal.pone.0146337.; Tobita H., Sato S., Miyake T., Ishihara S., Kinoshita Y. Effects of Dapagliflozin on Body Composition and Liver Tests in Patients with Nonalcoholic Steatohepatitis Associated with Type 2 Diabetes Mellitus: A Prospective, Open-label, Uncontrolled Study. Curr Ther Res Clin Exp. 2017;87:13–19. https://doi.org/10.1016/j.curtheres.2017.07.002.; Tabuchi H., Maegawa H., Tobe K., Nakamura I., Uno S. Effect of ipragliflozin on liver function in Japanese type 2 diabetes mellitus patients: a subgroup analysis of the STELLA-LONG TERM study (3-month interim results). Endocr J. 2019;66(1):31–41. https://doi.org/10.1507/endocrj.EJ18-0217.; Ohta A., Kato H., Ishii S., Sasaki Y., Nakamura Y., Nakagawa T. et al. Ipragliflozin, a sodium glucose co-transporter 2 inhibitor, reduces intrahepatic lipid content and abdominal visceral fat volume in patients with type 2 diabetes. Expert Opin Pharmacother. 2017;18(14):1433–1438. https://doi.org/10.1080/14656566.2017.1363888.; Nakamura I., Maegawa H., Tobe K., Tabuchi H., Uno S. Safety and efficacy of ipragliflozin in Japanese patients with type 2 diabetes in real-world clinical practice: interim results of the STELLA-LONG TERM postmarketing surveillance study. Expert Opin Pharmacother. 2018;19(3):189–201. https://doi.org/10.1080/14656566.2017.1408792.; Nishimiya N., Tajima K., Imajo K., Kameda A., Yoshida E., Togashi Y. et al. Effects of Canagliflozin on Hepatic Steatosis, Visceral Fat and Skeletal Muscle among Patients with Type 2 Diabetes and Non-alcoholic Fatty Liver Disease. Intern Med. 2021;60(21):3391–3399. https://doi.org/10.2169/internalmedicine.7134-21.; Pokharel A., Kc S., Thapa P., Karki N., Shrestha R., Jaishi B., Paudel M.S. The Effect of Empagliflozin on Liver Fat in Type 2 Diabetes Mellitus Patients With Non-Alcoholic Fatty Liver Disease. Cureus. 2021;13(7):e16687. https://doi.org/10.7759/cureus.16687.; Lai L.L., Vethakkan S.R., Nik Mustapha N.R., Mahadeva S., Chan W.K. Empagliflozin for the Treatment of Nonalcoholic Steatohepatitis in Patients with Type 2 Diabetes Mellitus. Dig Dis Sci. 2020;65(2):623–631. https://doi.org/10.1007/s10620-019-5477-1.; Akuta N., Watanabe C., Kawamura Y., Arase Y., Saitoh S., Fujiyama S. et al. Effects of a sodium-glucose cotransporter 2 inhibitor in nonalcoholic fatty liver disease complicated by diabetes mellitus: Preliminary prospective study based on serial liver biopsies. Hepatol Commun. 2017;1(1):46–52. https://doi.org/10.1002/hep4.1019.; Yabiku K., Nakamoto K., Tsubakimoto M. Effects of Sodium-Glucose Cotransporter 2 Inhibition on Glucose Metabolism, Liver Function, Ascites, and Hemodynamics in a Mouse Model of Nonalcoholic Steatohepatitis and Type 2 Diabetes. J Diabetes Res. 2020;2020:1682904. https://doi.org/10.1155/2020/1682904.; Ribeiro Dos Santos L., Baer Filho R. Treatment of nonalcoholic fatty liver disease with dapagliflozin in non-diabetic patients. Metabol Open. 2020;5:100028. https://doi.org/10.1016/j.metop.2020.100028.; Shiba K., Tsuchiya K., Komiya C., Miyachi Y., Mori K., Shimazu N. et al. Canagliflozin, an SGLT2 inhibitor, attenuates the development of hepatocellular carcinoma in a mouse model of human NASH. Sci Rep. 2018;8(1):2362. https://doi.org/10.1038/s41598-018-19658-7.; Jojima T., Wakamatsu S., Kase M., Iijima T., Maejima Y., Shimomura K. et al. The SGLT2 Inhibitor Canagliflozin Prevents Carcinogenesis in a Mouse Model of Diabetes and Non-Alcoholic Steatohepatitis-Related Hepatocarcinogenesis: Association with SGLT2 Expression in Hepatocellular Carcinoma. Int J Mol Sci. 2019;20(20):5237. https://doi.org/10.3390/ijms20205237.; Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–314. https://doi.org/10.1126/science.123.3191.309.; Scafoglio C., Hirayama B.A., Kepe V., Liu J., Ghezzi C., Satyamurthy N. et al. Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci U S A. 2015;112(30):E4111–1119. https://doi.org/10.1073/pnas.1511698112.; Du D., Liu C., Qin M., Zhang X., Xi T., Yuan S. et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B. 2022;12(2):558–580. https://doi.org/10.1016/j.apsb.2021.09.019.

  6. 6
    Academic Journal

    Source: Bulletin of Siberian Medicine; Том 21, № 3 (2022); 181-197 ; Бюллетень сибирской медицины; Том 21, № 3 (2022); 181-197 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2022-21-3

    File Description: application/pdf

    Relation: https://bulletin.tomsk.ru/jour/article/view/4920/3267; McDonagh T.A., Metra M., Adamo M., Gardner R.S., Baumbach A., Böhm M. et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021;42(36):3599−3726. DOI:10.1093/eurheartj/ehab368.; Salah H.M., Minhas A.M.K., Khan M.S., Khan S.U., Ambrosy A.P., Blumer V. et al. Trends in hospitalizations for heart failure, acute myocardial infarction, and stroke in the United States from 2004 to 2018. Am. Heart J. 2022; 243:103−109. DOI:10.1016/j.ahj.2021.09.009.; Roger V.L. Epidemiology of heart failure: A contemporary perspective. Circ. Res. 2021;128(10):1421−1434. DOI:10.1161/CIRCRESAHA.121.318172.; Калюжин В.В., Тепляков А.Т., Калюжин О.В. Сердеч ная недостаточность. М.: Медицинское информационное агентство, 2018:376.; Groenewegen A., Rutten F.H., Mosterd A., Hoes A.W. Epidemiology of heart failure. Eur. J. Heart Fail. 2020;22 (8):1342−1356. DOI:10.1002/ejhf.1858.; Тепляков А.Т., Тарасов Н.И., Исаков Л.К., Гракова Е.В., Синькова М.Н., Копьева К.В. и др. Прогноз сердечно-сосудистых событий после имплантации кардиовертера-дефибриллятора пациентам с хронической сердечной недостаточностью: значение повышения концентрации эндотелина-1 и растворимой формы белка ST2 в плазме крови. Бюллетень сибирской медицины. 2018;17(3):140−150. DOI:10.20538/1682-0363-2018-3-140-150.; Bottle A., Faitna P., Aylin P., Cowie M.R. Five-year survival and use of hospital services following ICD and CRT implantation: comparing real-world data with RCTs. ESC Heart Fail. 2021;8(4):2438−2447. DOI:10.1002/ehf2.13357.; Spitaleri G., Lupón J., Domingo M., Santiago-Vacas E., Codina P., Zamora E. et al. Mortality trends in an ambulatory multidisciplinary heart failure unit from 2001 to 2018. Sci. Rep. 2021;11(1):732. DOI:10.1038/s41598-020-79926-3.; Virani S.S., Alonso A., Aparicio H.J., Benjamin E.J., Bittencourt M.S., Callaway C.W. et al. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation. 2021;143(8):e254−e743. DOI:10.1161/CIR.0000000000000950.; Поляков Д.С., Фомин И.В., Беленков Ю.Н., Мареев В.Ю., Агеев Ф.Т., Артемьева Е.Г. и др. Хроническая сердечная недостаточность в Российской Федерации: что изменилось за 20 лет наблюдения? Результаты исследования ЭПОХА–ХСН. Кардиология. 2021;61(4):4−14. [DOI:10.18087/cardio.2021.4.n1628.; Remme W.J., Swedberg K. Task Force for the Diagnosis and Treatment of Chronic Heart Failure, European Society of Cardiology. Guidelines for the diagnosis and treatment of chronic heart failure. Eur. Heart J. 2001;22(17):1527–1560. DOI:10.1053/euhj.2001.2783.; Мареев В.Ю., Фомин И.В., Агеев Ф.Т., Беграмбеко ва Ю.Л., Васюк Ю.А., Гарганеева А.А. и др. Клинические рекомендации ОССН – РКО – РНМОТ. Сердечная недостаточность: хроническая (ХСН) и острая декомпенсированная (ОДСН). Диагностика, профилактика и лечение. Кардиология. 2018;58(S6):8−161. DOI:10.18087/cardio.2475.; Калюжин В.В., Тепляков А.Т., Черногорюк Г.Э., Калюжина Е.В., Беспалова И.Д., Терентьева Н.Н. и др. Хроническая сердечная недостаточность: синдром или заболевание? Бюллетень сибирской медицины. 2020;19(1):134–139. DOI:10.20538/1682-0363-2020-1-134–139.; Triposkiadis F., Xanthopoulos A., Parissis J., Butler J., Farmakis D. Pathogenesis of chronic heart failure: cardiovascular aging, risk factors, comorbidities, and disease modifiers. Heart Fail. Rev. 2022;27(1):337−344. DOI:10.1007/s10741020-09987-z.; Fayol A., Wack M., Livrozet M., Carves J.B., Domengé O., Vermersch E. et al. Aetiological classification and prognosis in patients with heart failure with preserved ejection fraction. ESC Heart Fail. 2022;9(1):519−530. DOI:10.1002/ehf2.13717.; Ройтберг Г.Е., Струтынский А.В. Внутренние болезни. Сердечно-сосудистая система: учеб. пособие. М.: МЕДпресс-информ, 2019:904.; Мареев В.Ю., Беленков Ю.Н. Перспективы в лечении хронической сердечной недостаточности. Журнал сердечная недостаточность. 2002;3(3):109–114.; Xanthopoulos A., Tryposkiadis K., Giamouzis G., Dimos A., Bourazana A., Papamichalis M. et al. Coexisting morbidity burden in hospitalized elderly patients with new-onset heart failure vs acutely decompensated chronic heart failure. Angiology. 2022;33197211062661. DOI:10.1177/00033197211062661.; Калюжин В.В., Тепляков А.Т., Беспалова И.Д., Калюжина Е.В., Останко В.Л., Терентьева Н.Н. и др. Корректная формулировка диагноза у пациента с хронической сердечной недостаточностью: реальность или несбыточная мечта? Бюллетень сибирской медицины. 2020;19(3):128−136. DOI:10.20538/1682-0363-2020-3-128-136.; Zheng C., Han L., Tian J., Li J., He H., Han G. et al. Hierarchical management of chronic heart failure: a perspective based on the latent structure of comorbidities. ESC Heart Fail. 2022;9(1):595−605. DOI:10.1002/ehf2.13708.; Maeda D., Matsue Y., Kagiyama N., Jujo K., Saito K., Kamiya K. et al. Inaccurate recognition of own comorbidities is associated with poor prognosis in elderly patients with heart failure. ESC Heart Fail. 2022. DOI:10.1002/ehf2.13824.; Kaye D., Krum H. Drug discovery for heart failure: a new era or the end of the pipeline? Nat. Rev. Drug Discov. 2007;6:127– 139. DOI:10.1038/nrd2219.; Marra A.M., Bencivenga L., D’Assante R., Rengo G., Cittadini A. Heart failure with preserved ejection fraction: Squaring the circle between comorbidities and cardiovascular abnormalities. Eur. J. Intern. Med. 2022:S0953-6205(22)00018-8. DOI:10.1016/j.ejim.2022.01.019.; Sabouret P., Attias D., Beauvais C., Berthelot E., Bouleti C., Gibault Genty G. et al. Diagnosis and management of heart failure from hospital admission to discharge: A practical expert guidance. Ann. Cardiol. Angeiol. (Paris). 2022;71(1):41−52. DOI:10.1016/j.ancard.2021.05.004.; Ghionzoli N., Gentile F., Del Franco A.M., Castiglione V., Aimo A., Giannoni A. et al. Current and emerging drug targets in heart failure treatment. Heart Fail. Rev. 2021;27(4):1119– 1136. DOI:10.1007/s10741-021-10137-2.; Swedberg K. Importance of neuroendocrine activation in chronic heart failure. Impact on treatment strategies. Eur. J. Heart Fail. 2000;2(3):229−233. DOI:10.1016/s1388-9842(00)00102-1.; Калюжин В.В., Тепляков А.Т., Соловцов М.А. Роль систолической и диастолической дисфункции ЛЖ в клинической манифестации хронической сердечной недостаточности у больных, перенесших инфаркт миокарда. Терапевтический архив. 2002;74(12):15−18.; Калюжин В.В., Тепляков А.Т., Вечерский Ю.Ю., Рязанцева Н.В., Хлапов А.П. Патогенез хронической сердечной недостаточности: изменение доминирующей парадигмы. Бюллетень сибирской медицины. 2007;6(4):71−79. DOI:10.20538/1682-0363-2007-4-71-79.; Калюжин В.В., Тепляков А.Т., Рязанцева Н.В., Вечерский Ю.Ю., Хлапов А.П., Колесников Р.Н. Диастола сердца. Физиология и клиническая патофизиология. Томск: Изд-во ТПУ, 2007:212.; Gheorghiade M., De Luca L., Bonow R.O. Neurohormonal inhibition in heart failure: insights from recent clinical trials. Am. J. Cardiol. 2005;96(12A):3L−9L. DOI:10.1016/j.amjcard.2005.09.059.; Тепляков А.Т., Попов С.В., Калюжин В.В., Гарганеева А.А., Курлов И.О., Нилогов В.Л. и др. Оценка влияния карведилола, атенолола и их комбинации с фозиноприлом на вариабельность ритма сердца, клинико-функциональный статус и качество жизни больных с постинфарктной дисфункцией левого желудочка. Терапевтический архив. 2004;76(9):62−65.; Jneid H., Moukarbel G.V., Dawson B., Hajjar R.J., Francis G.S. Combining neuroendocrine inhibitors in heart failure: reflections on safety and efficacy. Am. J. Med. 2007;120(12):1090. e1−1090.e8. DOI:10.1016/j.amjmed.2007.02.029.; Dobrek Ł., Thor P. Neuroendocrine activation as a target of modern chronic heart failure pharmacotherapy. Acta Pol. Pharm. 2011;68(3):307−316.; Ferrari R., Cardoso J., Fonseca M.C., Aguiar C., Moreira J.I., Fucili A. et al. ARNIs: balancing “the good and the bad” of neuroendocrine response to HF. Clin. Res. Cardiol. 2020;109(5):599−610. DOI:10.1007/s00392-019-01547-2.; Berliner D., Bauersachs J. New drugs: big changes in conservative heart failure therapy? Eur. J. Cardiothorac. Surg. 2019;55(1):i3−i10. DOI:10.1093/ejcts/ezy421.; Gu J., Noe A., Chandra P., Al-Fayoumi S., Ligueros-Say lan M., Sarangapani R. et al. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor (ARNi). J. Clin. Pharmacol. 2010;50(4):401−414. DOI:10.1177/0091270009343932.; McMurray J.J., Packer M., Desai A.S., Gong J., Lefko witz M.P., Rizkala A.R. et al. Dual angiotensin receptor and neprilysin inhibition as an alternative to angiotensin-converting enzyme inhibition in patients with chronic systolic heart failure: rationale for and design of the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure trial (PARADIGM-HF). Eur. J. Heart Fail. 2013;15(9):1062−1073. DOI:10.1093/eurjhf/hft052.; Berg D.D., Samsky M.D., Velazquez E.J., Duffy C.I., Gurmu Y., Braunwald E. et al. Efficacy and Safety of Sacubitril/ Valsartan in High-Risk Patients in the PIONEER-HF Trial. Circ. Heart Fail. 2021;14(2):e007034. DOI:10.1161/CIRCHEARTFAILURE.120.007034.; Wachter R., Senni M., Belohlavek J., Straburzynska-Migaj E., Witte K.K., Kobalava Z. et al. Initiation of sacubitril/valsartan in haemodynamically stabilised heart failure patients in hospital or early after discharge: primary results of the randomised TRANSITION study. Eur. J. Heart Fail. 2019; 21 (8):998−1007. DOI:10.1002/ejhf.1498; Chandra A., Lewis E.F., Claggett B.L., Desai A.S., Packer M., Zile M.R. et al. Effects of Sacubitril/Valsartan on Physical and Social Activity Limitations in Patients With Heart Failure: A Secondary Analysis of the PARADIGM-HF Trial. JAMA Cardiol. 2018;3(6):498−505. DOI:10.1001/jamacardio.2018.0398.; Lindenfeld J., Jessup M. ‘Drugs don’t work in patients who don’t take them’ (C. Everett Koop, MD, US Surgeon General, 1985). Eur. J. Heart Fail. 2017;19(11):1412−1413. DOI:10.1002/ejhf.920.; Cole G.D., Patel S.J., Zaman N., Barron A.J., Raphael C.E., Mayet J. et al. “Triple therapy” of heart failure with angiotensin-converting enzyme inhibitor, beta-blocker, and aldosterone antagonist may triple survival time: shouldn’t we tell patients? JACC Heart Fail. 2014;2(5):545−548. DOI:10.1016/j.jchf.2014.04.012/; Zaman S., Zaman S.S., Scholtes T., Shun-Shin M.J., Plymen C.M., Francis D.P., Cole G.D. The mortality risk of deferring optimal medical therapy in heart failure: a systematic comparison against norms for surgical consent and patient information leaflets. Eur. J. Heart Fail. 2017;19(11):1401−1409. DOI:10.1002/ejhf.838.; Bhatt A.S., Vaduganathan M., Claggett B.L., Liu J. Packer M., Desai A.S. et al. Effect of sacubitril/valsartan vs. enalapril on changes in heart failure therapies over time: the PARADIGM-HF trial. Eur. J. Heart Fail. 2021;23(9):1518−1524. DOI:10.1002/ejhf.2259.; Cabral J., Vasconcelos H., Maia-Araújo P., Moreira E., Campelo M., Amorim S. et al Sacubitril/valsartan in everyday clinical practice: an observational study based on the experience of a heart failure clinic. Cardiovasc. Diagn. Ther. 2021;11(6):1217−1227. DOI:10.21037/cdt-21-312.; Yoshikawa T. New paradigm shift in the pharmacotherapy for heart failure-where are we now and where are we heading? J. Cardiol. 2022:S0914-5087(22)00031-4. DOI:10.1016/j.jjcc.2022.02.008.; Мареев Ю.В., Мареев В.Ю. Возможности современной терапии в улучшении прогноза при хронической сердечной недостаточности: фокус на ангиотензиновых рецепторов и неприлизина ингибиторах и ингибиторах натрий глюкозного транспортера. Кардиология. 2021;61(6):4−10. DOI:10.18087/cardio.2021.6.n1678.; Vaduganathan M., Claggett B.L., Greene S.J., Aggarwal R., Bhatt A.S., McMurray J.J.V. et al. Potential implications of expanded US food and drug administration labeling for sacubitril/ valsartan in the US. JAMA Cardiol. 2021;6(12):1415−1423. DOI:10.1001/jamacardio.2021.3651.; Lin Y., Wu M., Liao B., Pang X., Chen Q., Yuan J. et al. Comparison of Pharmacological Treatment Effects on Long-Time Outcomes in Heart Failure With Preserved Ejection Fraction: A Network Meta-analysis of Randomized Controlled Trials. Front. Pharmacol. 2021;12:707777. DOI:10.3389/fphar.2021.707777.; Bozkurt B., Ezekowitz J. Substance and Substrate: LVEF and Sex Subgroup Analyses of PARAGON-HF and PARADIGM-HF Trials. Circulation. 2020;141(5):362−366. DOI:10.1161/CIRCULATIONAHA.120.045008; Yancy C.W. An expanded heart failure indication for sacubitril/valsartan: evolving the evidence bar. JAMA Cardiol. 2021;6(12):1357−1358. DOI:10.1001/jamacardio.2021.3658.; Gallo G., Volpe M., Battistoni A., Russo D., Tocci G., Musumeci M.B. Sacubitril/valsartan as a therapeutic tool across the range of heart failure phenotypes and ejection fraction spectrum. Front. Physiol. 2021;12:652163. DOI:10.3389/fphys.2021.652163.; Vaz-Salvador P., Adão R., Vasconcelos I., Leite-Moreira A.F., Brás-Silva C. Heart failure with preserved ejection fraction: a pharmacotherapeutic update. Cardiovasc. Drugs Ther. 2022:1–18. DOI:10.1007/s10557-021-07306-8.; Aikins A.O., Nguyen D.H., Paundralingga O., Farmer G.E., Shimoura C.G., Brock C. et al. Cardiovascular neuroendocrinology: emerging role for neurohypophyseal hormones in pathophysiology. Endocrinology. 2021;162(8):bqab082. DOI:10.1210/endocr/bqab082.; Urbach J., Goldsmith S.R. Vasopressin antagonism in heart failure: a review of the hemodynamic studies and major clinical trials. Ther. Adv. Cardiovasc. Dis. 2021;15:1753944720977741. DOI:10.1177/1753944720977741.; Vishram-Nielsen J.K.K., Tomasoni D., Gustafsson F., Metra M. Contemporary drug treatment of advanced heart failure with reduced ejection fraction. Drugs. 2022:1−31. DOI:10.1007/s40265-021-01666-z.; Bhatt A.S., Yanamandala M., Konstam M.A. For vaptans, as for life, balance is better. Eur. J. Heart Fail. 2021;23(5):751−753. DOI:10.1002/ejhf.2042.; Goldsmith S.R., Burkhoff D., Gustafsson F., Voors A., Zannad F., Kolkhof P. et al. Dual Vasopressin Receptor Antagonism to Improve Congestion in Patients With Acute Heart Failure: Design of the AVANTI Trial. J. Card. Fail. 2021;27(2):233−241. DOI:10.1016/j.cardfail.2020.10.007.; Mondritzki T., Mai T.A., Vogel J., Pook E., Wasnaire P., Schmeck C. et al. Cardiac output improvement by pecavaptan: a novel dual-acting vasopressin V1a/V2 receptor antagonist in experimental heart failure. Eur. J. Heart Fail. 2021;23(5):743−750. DOI:10.1002/ejhf.2001.; Kolkhof P., Bärfacker L. 30 years of the mineralocorticoid receptor: Mineralocorticoid receptor antagonists: 60 years of research and development. J. Endocrinol. 2017;234(1):T125− T140. DOI:10.1530/JOE-16-0600.; Filippatos G., Anker S.D., Böhm M., Gheorghiade M., Køber L., Krum H. et al. A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur. Heart J. 2016;37(27):2105−2114. DOI:10.1093/eurheartj/ehw132.; Capelli I., Gasperoni L., Ruggeri M., Donati G., Baraldi O., Sorrenti G. et al. New mineralocorticoid receptor antagonists: update on their use in chronic kidney disease and heart failure. J. Nephrol. 2020;33(1):37−48. DOI:10.1007/s40620-01900600-7.; Rico-Mesa J.S., White A., Ahmadian-Tehrani A., Anderson AS. Mineralocorticoid Receptor Antagonists: a Comprehensive Review of Finerenone. Curr. Cardiol. Rep. 2020;22(11):140. DOI:10.1007/s11886-020-01399-7.; Filippatos G., Anker S.D., Agarwal R., Ruilope L.M., Rossing P., Bakris G.L. et al. Finerenone Reduces Risk of Incident Heart Failure in Patients With Chronic Kidney Disease and Type 2 Diabetes: Analyses From the FIGARO-DKD Trial. Circulation. 2022;145(6):437−447. DOI:10.1161/CIRCULATIONAHA.121.057983.; Cox Z.L., Hung R., Lenihan D.J., Testani J.M. Diuretic strategies for loop diuretic resistance in acute heart failure: the 3t trial. JACC Heart Fail. 2020;8(3):157−168. DOI:10.1016/j.jchf.2019.09.012.; Batool A., Salehi N., Chaudhry S., Cross M., Malkawi A., Siraj A. Role of vasodilator therapy in acute heart failure. Cureus. 2021;13(8):e17126. DOI:10.7759/cureus.17126.; Armstrong P.W., Pieske B., Anstrom K.J., Ezekowitz J., Hernandez A.F., Butler J. et al. Vericiguat in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 2020;382(20):1883−1893. DOI:10.1056/NEJMoa1915928.; Calamera G., Moltzau L.R., Levy F.O., Andressen K.W. Phosphodiesterases and compartmentation of cAMP and cGMP signaling in regulation of cardiac contractility in normal and failing hearts. Int. J. Mol. Sci. 2022;23(4):2145. DOI:10.3390/ijms23042145.; Klinger J.R., Chakinala M.M., Langleben D., Rosenkranz S., Sitbon O. Riociguat: clinical research and evolving role in therapy. Br. J. Clin. Pharmacol. 2021;87(7):2645−2662. DOI:10.1111/bcp.14676.; McMurray J.J.V., Solomon S.D., Inzucchi S.E., Køber L., Kosiborod M.N., Martinez F.A. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 2019;381(21):1995−2008. DOI:10.1056/NEJMoa1911303.; Packer M., Anker S.D., Butler J., Filippatos G., Poco ck S.J., Carson P. et al. Cardiovascular and renal out comes with empagliflozin in heart failure. N. Engl. J. Med. 2020;383(15):1413−1424. DOI:10.1056/NEJMoa2022190.; Solomon S.D., de Boer R.A., DeMets D., Hernandez A.F., Inzucchi S.E., Kosiborod M.N. et al. Dapagliflozin in heart failure with preserved and mildly reduced ejection fraction: rationale and design of the DELIVER trial. Eur. J. Heart Fail. 2021;23(7):1217−1225. DOI:10.1002/ejhf.2249.; Butler J., Packer M., Filippatos G., Ferreira J.P., Zeller C., Schnee J. et al. Effect of empagliflozin in patients with heart failure across the spectrum of left ventricular ejection fraction. Eur. Heart J. 2022;43(5):416−426. DOI:10.1093/eurheartj/ehab798.; Yadava O.P. Heart failure does ejection fraction hold any relevance? Indian J. Thorac. Cardiovasc. Surg. 2022;38(1):1−4. DOI:10.1007/s12055-021-01295-x.; Bethel M.A., McMurray J.J.V. Class effect for sodium glucose-cotransporter-2 inhibitors in cardiovascular outcomes: implications for the cardiovascular disease specialist. Circulation. 2018;137(12):1218−1220. DOI:10.1161/CIRCULATIONAHA.117.030117.; Volpe M., Patrono C. Do VERTIS-CV trial results question a class-effect of cardiovascular protection with sodium-glucose cotransporter 2 inhibitors? Eur. Heart J. 2020;41(44):4232−4233. DOI:10.1093/eurheartj/ehaa891.; Teo Y.H., Yoong C.S.Y., Syn N.L., Teo Y.N., Cheong J.Y.A., Lim Y.C. et al. Comparing the clinical outcomes across different sodium/glucose cotransporter 2 (SGLT2) inhibitors in heart failure patients: a systematic review and network meta-analysis of randomized controlled trials. Eur. J. Clin. Pharmacol. 2021;77(10):1453−1464. DOI:10.1007/s00228-02103147-4.; Savarese G., Butler J., Lund L.H., Bhatt D.L., Anker S.D. Cardiovascular effects of non-insulin glucose-lowering agents: a comprehensive review of trial evidence and potential cardioprotective mechanisms. Cardiovasc. Res. 2021:cvab271. DOI:10.1093/cvr/cvab271.; Täger T., Frankenstein L., Atar D., Agewall S., Frey N., Grundtvig M. et al. Influence of receptor selectivity on benefits from SGLT2 inhibitors in patients with heart failure: a systematic review and head-to-head comparative efficacy network meta-analysis. Clin. Res. Cardiol. 2022;111(4):428– 439. DOI:10.1007/s00392-021-01913-z.; Correale M., Lamacchia O., Ciccarelli M., Dattilo G., Tricarico L., Brunetti N.D. Vascular and metabolic effects of SGLT2i and GLP-1 in heart failure patients. Heart Fail. Rev. 2021. DOI:10.1007/s10741-021-10157-y.; Helmstädter J., Keppeler K., Küster L., Münzel T., Daiber A., Steven S. Glucagon-like peptide-1 (GLP-1) receptor agonists and their cardiovascular benefits-The role of the GLP-1 receptor. Br. J. Pharmacol. 2022;179(4):659−676. DOI:10.1111/bph.15462.; Tanday N., Flatt P.R., Irwin N. Metabolic responses and benefits of glucagon-like peptide-1 (GLP-1) receptor ligands. Br. J. Pharmacol. 2022;179(4):526−541. DOI:10.1111/bph.15485.; Rashki Kemmak A., Dolatshahi Z., Mezginejad F., Narge si S. Economic evaluation of ivabradine in treatment of patients with heart failure: a systematic review. Expert Rev. Pharmacoecon. Outcomes Res. 2022;22(1):37−44. DOI:10.1080/14737167.2021.1941881.; Heringlake M., Alvarez J., Bettex D., Bouchez S., Fruhwald S., Girardis M. et al. An update on levosimendan in acute cardiac care: applications and recommendations for optimal efficacy and safety. Expert Rev. Cardiovasc. Ther. 2021;19(4):325−335. DOI:10.1080/14779072.2021.1905520.; Asai Y., Sato T., Kito D., Yamamoto T., Hioki I., Urata Y. et al. Combination therapy of midodrine and droxidopa for refractory hypotension in heart failure with preserved ejection fraction per a pharmacist’s proposal: a case report. J. Pharm. Health Care Sci. 2021;7(1):10. DOI:10.1186/s40780-02100193-z.; Nagao K., Kato T., Yaku H., Morimoto T., Inuzuka Y., Tamaki Y. et al. Current use of inotropes according to initial blood pressure and peripheral perfusion in the treatment of congestive heart failure: findings from a multicentre observational study. BMJ Open. 2022;12(1):e053254. DOI:10.1136/bmjopen-2021-053254.; Cotter G., Davison B.A., Edwards C., Takagi K., Cohen-Solal A., Mebazaa A. Acute heart failure treatment: a light at the end of the tunnel? Eur. J. Heart Fail. 2021;23(5):698−702. DOI:10.1002/ejhf.2116.; Felker G.M., Solomon S.D., Claggett B., Diaz R., McMurray J.J.V., Metra M. et al. Assessment of Omecamtiv Mecarbil for the Treatment of Patients With Severe Heart Failure: A Post Hoc Analysis of Data From the GALACTIC-HF Randomized Clinical Trial. JAMA Cardiol. 2022;7(1):26−34. DOI:10.1001/jamacardio.2021.4027.; Bernardo B.C., Blaxall B.C. From bench to bedside: new approaches to therapeutic discovery for heart failure. Heart Lung Circ. 2016;25(5):425−434. DOI:10.1016/j.hlc.2016.01.002.; Greenberg B. Gene therapy for heart failure. Trends Cardiovasc. Med. 2017;27(3):216−222. DOI:10.1016/j.tcm.2016.11.001.; Gabisonia K., Recchia F.A. Gene therapy for heart failure: new perspectives. Curr. Heart Fail. Rep. 2018;15(6):340−349. DOI:10.1007/s11897-018-0410-z.; Yamada K.P., Tharakan S., Ishikawa K. Consideration of clinical translation of cardiac AAV gene therapy. Cell Gene Ther. Insights. 2020;6(5):609−615. DOI:10.18609/cgti.2020.073.; Devarakonda T., Mauro A.G., Cain C., Das A., Salloum F.N. Cardiac gene therapy with relaxin receptor 1 overexpression protects against acute myocardial infarction. JACC Basic Transl. Sci. 2021;7(1):53−63. DOI:10.1016/j.jacbts.2021.10.012.; Sayed N., Allawadhi P., Khurana A., Singh V., Navik U., Pasumarthi S.K. et al. Gene therapy: comprehensive overview and therapeutic applications. Life Sci. 2022;294:120375. DOI:10.1016/j.lfs.2022.120375.; Palmiero G., Florio M.T., Rubino M., Nesti M., Marchel M., Russo V. Cardiac resynchronization therapy in patients with heart failure: what is new? Heart Fail. Clin. 2021;17(2):289−301. DOI:10.1016/j.hfc.2021.01.010.; Heidenreich P.A., Bozkurt B., Aguilar D., Allen L.A., Byun J.J., Colvin M.M. et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022:101161CIR0000000000001062. DOI:10.1161/CIR.0000000000001062.; Chinyere I.R., Balakrishnan M., Hutchinson M.D. The emerging role of cardiac contractility modulation in heart failure treatment. Curr. Opin. Cardiol. 2022;37(1):30−35. DOI:10.1097/HCO.0000000000000929.; Jorbenadze A., Fudim M., Mahfoud F., Adamson P.B., Bekfani T., Wachter R. et al. Extra-cardiac targets in the management of cardiometabolic disease: Device-based therapies. ESC Heart Fail. 2021;8(4):3327−3338. DOI:10.1002/ehf2.13361.; Reed S.D., Yang J.C., Rickert T., Johnson F.R., Gonzalez J.M., Mentz R.J. et al. Quantifying Benefit-Risk Preferences for Heart Failure Devices: A Stated-Preference Study. Circ. Heart Fail. 2022;15(1):e008797. DOI:10.1161/CIRCHEARTFAILURE.121.008797.; Baumwol J. “I Need Help” − A mnemonic to aid timely referral in advanced heart failure. J. Heart Lung Transplant. 2017;36(5):593594. DOI:10.1016/j.healun.2017.02.010.; Калюжин В.В., Тепляков А.Т., Беспалова И.Д., Калюжина Е.В., Терентьева Н.Н., Сибирева О.Ф. et al. Прогрессирующая (advanced) сердечная недостаточность. Бюллетень сибирской медицины. 2021;20(1):129−146. DOI:10.20538/1682-0363-2021-1-129-146.; Crespo-Leiro M.G., Metra M., Lund L.H., Milicic D., Costanzo M.R., Filippatos G. et al. Advanced heart fail ure: a position statement of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018;20(11):1505−1535. DOI:10.1002/ejhf.1236.; Shi X., Bao J., Zhang H., Wang H., Li L., Zhang Y. Patients with high-dose diuretics should get ultrafiltration in the management of decompensated heart failure: a meta-analysis. Heart Fail. Rev. 2019;24(6):927−940. DOI:10.1007/s10741-019-09812-2.; Grossekettler L., Schmack B., Meyer K., Brockmann C., Wanninger R., Kreusser M.M. et al. Peritoneal dialysis as therapeutic option in heart failure patients. ESC Heart Fail. 2019;6(2):271−279. DOI:10.1002/ehf2.12411.; Masarone D., Kittleson M., Petraio A., Pacileo G. Advanced heart failure: state of the art and future directions. Rev. Cardiovasc. Med. 2022;23(2):48. DOI:10.31083/j.rcm2302048.; Hullin R., Meyer P., Yerly P., Kirsch M. Cardiac surgery in advanced heart failure. J. Clin. Med. 2022;11(3):773. DOI:10.3390/jcm11030773.; Tadic M., Sala C., Cuspidi C. The role of TAVR in patients with heart failure: do we have the responses to all questions? Heart Fail. Rev. 2022;27:1617–1625. DOI:10.1007/s10741021-10206-6.; Yousef S., Arnaoutakis G.J., Gada H., Smith A.J.C., Sanon S., Sultan I. Transcatheter mitral valve therapies: State of the art. J. Card. Surg. 2022;37(1):225−233. DOI:10.1111/jocs.15995.; Lund L.H., Khush K.K., Cherikh W.S., Goldfarb S., Kucheryavaya A.Y., Levvey B.J. et al. The Registry of the International Society for Heart and Lung Transplantation: Thirty-fourth Adult Heart Transplantation Report-2017; Focus Theme: Allograft ischemic time. J. Heart Lung Transplant. 2017;36(10):1037−1046. DOI:10.1016/j.healun.2017.07.019.; Kormos R.L., Cowger J., Pagani F.D., Teuteberg J.J., Goldstein D.J., Jacobs J.P. et al. The society of thoracic surgeons intermacs database annual report: evolving indications, outcomes, and scientific partnerships. Ann. Thorac. Surg. 2019;107(2):341−353. DOI:10.1016/j.athoracsur.2018.11.011.; Rizzo C., Carbonara R., Ruggieri R., Passantino A., Scrutinio D. Iron deficiency: a new target for patients with heart failure. Front. Cardiovasc. Med. 2021;8:709872. DOI:10.3389/fcvm.2021.709872.; Мареев В.Ю., Гиляревский С.Р., Мареев Ю.В., Беграмбекова Ю.Л., Беленков Ю.Н., Васюк Ю.А. и др. Согласованное мнение экспертов по поводу роли дефицита железа у больных с хронической сердечной недостаточностью, а также о современных подходах к его коррекции. Кардиология. 2020;60(1):99−106. DOI:10.18087/cardio.2020.1.n961.; Pintér A., Behon A., Veres B., Merkel E.D., Schwertner W.R., Kuthi L.K. et al. The prognostic value of anemia in patients with preserved, mildly reduced and recovered ejection fraction. Diagnostics (Basel). 2022;12(2):517. DOI:10.3390/diagnostics12020517.; Toblli J.E., Brignoli R. Iron(III)-hydroxide polymaltose complex in iron deficiency anemia / review and meta-analysis. Arzneimittelforschung. 2007;57(6A):431−438. DOI:10.1055/s-0031-1296692.; Zdravkovic S.C., Nagorni S.P., Cojbasic I., Mitic V., Cvetkovic P., Nagorni I. et al. Effects of 6-months of oral ferrous and ferric supplement therapy in patients who were hospitalized for decompensated chronic heart failure. J. Int. Med. Res. 2019;47(7):3179−3189. DOI:10.1177/0300060519847352.; Loncar G., Obradovic D., Thiele H., von Haehling S., Lainscak M. Iron deficiency in heart failure. ESC Heart Fail. 2021;8(4):2368−2379. DOI:10.1002/ehf2.13265.; Shen T., Xia L., Dong W., Wang J., Su F., Niu S. et al. A Systematic Review and Meta-Analysis: Safety and Efficacy of Mesenchymal Stem Cells Therapy for Heart Failure. Curr. Stem Cell Res. Ther. 2021;16(3):354−365. DOI:10.2174/1574888X15999200820171432.; Kir D., Patel M.J., Munagala M.R. What is the status of regenerative therapy in heart failure? Curr. Cardiol. Rep. 2021;23(10):146. DOI:10.1007/s11886-021-01575-3.; Pourtaji A., Jahani V., Moallem S.M.H., Karimani A., Mohammadpour A.H. Application of G-CSF in congestive heart failure treatment. Curr. Cardiol. Rev. 2019;15(2):83−90. DOI:10.2174/1573403X14666181031115118; Sadahiro T., Ieda M. In vivo reprogramming as a new approach to cardiac regenerative therapy. Semin. Cell Dev. Biol. 2022;122:21−27. DOI:10.1016/j.semcdb.2021.06.019.; Testa G., Di Benedetto G., Passaro F. Advanced Technologies to Target Cardiac Cell Fate Plasticity for Heart Regeneration. Int. J. Mol. Sci. 2021;22(17):9517. DOI:10.3390/ijms22179517; Pascale E., Caiazza C., Paladino M., Parisi S., Passa ro F., Caiazzo M. MicroRNA Roles in Cell Reprogramming Mechanisms. Cells. 2022;11(6):940. DOI:10.3390/cells11060940; Zhou W., Ma T., Ding S. Non-viral approaches for somat ic cell reprogramming into cardiomyocytes. Semin. Cell Dev. Biol. 2022;122:28−36. DOI:10.1016/j.semcdb.2021.06.021; Garbern J.C., Lee R.T. Heart regeneration: 20 years of progress and renewed optimism. Dev. Cell. 2022;57(4):424−439. DOI:10.1016/j.devcel.2022.01.012.; Sharma V., Dash S.K., Govarthanan K., Gahtori R., Negi N., Barani M. et al. Recent advances in cardiac tissue engineering for the management of myocardium infarction. Cells. 2021;10(10):2538. DOI:10.3390/cells10102538.; Goonoo N. Tunable biomaterials for myocardial tissue regeneration: promising new strategies for advanced biointerface control and improved therapeutic outcomes. Biomater. Sci. 2022;10(7):1626−1646. DOI:10.1039/d1bm01641e.; Hoeeg C., Dolatshahi-Pirouz A., Follin B. Injectable hydrogels for improving cardiac cell therapy in vivo evidence and translational challenges. Gells. 2021;7(1):7. DOI:10.3390/gels7010007.; Eschenhagen T., Ridders K., Weinberger F. How to repair a broken heart with pluripotent stem cell-derived cardiomyocytes. J. Mol. Cell. Cardiol. 2022;163:106−117. DOI:10.1016/j.yjmcc.2021.10.005.; Калюжин В.В., Соловцов М.А., Камаев Д.Ю. Эффективность цитокардиопротекции у больных с умеренно выраженной постинфарктной дисфункцией левого желудочка: результаты рандомизированного исследования триметазидина и атенолола. Бюллетень сибирской медицины. 2002;1(1):40−44. DOI:10.20538/1682-03632002-1-40-44.; Shu H., Peng Y., Hang W., Zhou N., Wang D.W. Trimetazidine in heart failure. Front. Pharmacol. 2021;11:569132. DOI:10.3389/fphar.2020.569132.; Jong C.J., Sandal P., Schaffer S.W. The role of taurine in mitochondria health: more than just an antioxidant. Molecules. 2021;26(16):4913. DOI:10.3390/molecules26164913.; Yuan S., Schmidt H.M., Wood K.C., Straub A.C. Coenzyme Q in cellular redox regulation and clinical heart failure. Free Radic. Biol. Med. 2021;167:321−334. DOI:10.1016/j.freeradbiomed.2021.03.011.; Raddysh M.E., Delgado D.H. Integratingsupplementationinthe management of patients with heart failure: an evidence-based review. Expert. Rev. Cardiovasc. Ther. 2021;19(10):891−905. DOI:10.1080/14779072.2021.1999806.; Oppedisano F., Mollace R., Tavernese A., Gliozzi M., Musolino V., Macrì R. et al. PUFA supplementation and heart failure: effects on fibrosis and cardiac remodeling. Nutrients. 2021;13(9):2965. DOI:10.3390/nu13092965.; Liu J., Meng Q., Zheng L., Yu P., Hu H., Zhuang R. et al. Effect of omega-3 polyunsaturated fatty acids on left ventricular remodeling in chronic heart failure: a systematic review and meta-analysis. Br. J. Nutr. 2022;1−35. DOI:10.1017/S0007114521004979.; Мареев В.Ю., Мареев Ю.В., Беграмбекова Ю.Л. Коэнзим Q-10 в лечении больных с хронической сердечной недостаточностью и сниженной фракцией выброса левого желудочка: систематический обзор и мета-анализ. Кардиология. 2022;62(6):3−14. DOI:10.18087/cardio.2022.6.n2050.; Samuel T.Y., Hasin T., Gotsman I., Weitzman T., Ben Ivgi F., Dadon Z. et al. Coenzyme Q10 in the Treatment of Heart Failure with Preserved Ejection Fraction: A Prospective, Randomized, Double-Blind, Placebo-Controlled Trial. Drugs R. D. 2022;22(1):25−33. DOI:10.1007/s40268-02100372-1.; Mongirdienė A., Skrodenis L., Varoneckaitė L., Mierkytė G., Gerulis J. Reactive oxygen species induced pathways in heart failure pathogenesis and potential therapeutic strategies. Biomedicines. 2022;10(3):602. DOI:10.3390/biomedicines10030602.; Schwemmlein J., Maack C., Bertero E. Mitochondria as therapeutic targets in heart failure. Curr. Heart Fail. Rep. 2022;19(2):27–36. DOI:10.1007/s11897-022-00539-0.; Bisaccia G., Ricci F., Gallina S., Di Baldassarre A., Ghinassi B. Mitochondrial Dysfunction and Heart Disease: Critical Appraisal of an Overlooked Association. Int. J. Mol. Sci. 2021;22(2):614. DOI:10.3390/ijms22020614.; Ghionzoli N., Gentile F., Del Franco A.M., Castiglione V., Aimo A., Giannoni A. et al. Current and emerging drug targets in heart failure treatment. Heart Fail. Rev. 2022;27(4):1119– 1136. DOI:10.1007/s10741-021-10137-2.; Ismail U., Sidhu K., Zieroth S. Hyperkalaemia in heart failure. Card. Fail. Rev. 2021;7:e10. DOI:10.15420/cfr.2020.29.; Murphy D., Ster I.C., Kaski J.C., Anderson L., Banerjee D. The LIFT trial: study protocol for a double-blind, randomised, placebo-controlled trial of K+-binder Lokelma for maximisation of RAAS inhibition in CKD patients with heart failure. BMC Nephrol. 2021;22(1):254. DOI:10.1186/s12882-021-02439-2; Montagnani A., Frasson S., Gussoni G., Manfellotto D. Optimization of RAASi Therapy with New Potassium Binders for Patients with Heart Failure and Hyperkalemia: Rapid Review and Meta-Analysis. J. Clin. Med. 2021;10(23):5483. DOI:10.3390/jcm10235483.; Silva-Cardoso J., Brito D., Frazão J.M., Ferreira A., Bettencourt P., Branco P. et al. Management of RAASi-associated hyperkalemia in patients with cardiovascular disease. Heart Fail. Rev. 2021;26(4):891−896. DOI:10.1007/s10741-02010069-3.; Останко В.Л., Калачева Т.П., Калюжина Е.В., Лившиц И.К., Шаловай А.А., Черногорюк Г.Э. и др. Биологические маркеры в стратификации риска развития и прогрессирования сердечно-сосудистой патологии: настоящее и будущее. Бюллетень сибирской медицины. 2018;17(4):264−280. DOI:10.20538/1682-0363-2018-4-264-280.; Sainio A., Järveläinen H. Extracellular matrix macromolecules as potential targets of cardiovascular pharmacotherapy. Adv. Pharmacol. 2018;81:209−240. DOI:10.1016/bs.apha.2017.09.008.; Castiglione V., Aimo A., Vergaro G., Saccaro L., Passi no C., Emdin M. Biomarkers for the diagnosis and management of heart failure. Heart Fail. Rev. 2022;27(2):625−643. DOI:10.1007/s10741-021-10105-w.; Sygitowicz G., Maciejak-Jastrzębska A., Sitkiewicz D. The diagnostic and therapeutic potential of galectin-3 in cardiovascular diseases. Biomolecules. 2021;12(1):46. DOI:10.3390/biom12010046.; Shirakawa K., Sano M. Osteopontin in cardiovascular diseases. Biomolecules. 2021;11(7):1047. DOI:10.3390/ biom11071047.; Maruyama K., Imanaka-Yoshida K. The pathogenesis of Cardiac Fibrosis: A Review of Recent Progress. Int. J. Mol. Sci. 2022;23(5):2617. DOI:10.3390/ijms23052617.; Aimo A., Spitaleri G., Panichella G., Lupón J., Emdin M., Bayes-Genis A. Pirfenidone as a novel cardiac protective treatment. Heart Fail. Rev. 2022;27(2):525−532. DOI:10.1007/s10741-021-10175-w.; Trinh K., Julovi S.M., Rogers N.M. The role of matrix proteins in cardiac pathology. Int. J. Mol. Sci. 2022;23(3):1338. DOI:10.3390/ijms23031338.; May B.M., Pimentel M., Zimerman L.I., Rohde L.E. GDF-15 as a biomarker in cardiovascular disease. Arq. Bras. Cardiol. 2021;116(3):494−500. DOI:10.36660/abc.20200426 .; Lewis G.A., Rosala-Hallas A., Dodd S., Schelbert E.B., Williams S.G., Cunnington C. et al. Predictors of myocardial fibrosis and response to anti-fibrotic therapy in heart failure with preserved ejection fraction. Int. J. Cardiovasc. Imaging. 2022. DOI:10.1007/s10554-022-02544-9.; Zhang Y., Bauersachs J., Langer H.F. Immune mechanisms in heart failure. Eur. J. Heart Fail. 2017;19(11):1379−1389. DOI:10.1002/ejhf.942.; Murphy S.P., Kakkar R., McCarthy C.P., Januzzi J.L. Jr. Inflammation in Heart Failure: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020;75(11):1324−1340. DOI:10.1016/j.jacc.2020.01.014.; Kumar P., Lim A., Poh S.L., Hazirah S.N., Chua C.J.H., Sutamam N.B. et al. Pro-Inflammatory Derangement of the Immuno-Interactome in Heart Failure. Front. Immunol. 2022;13:817514. DOI:10.3389/fimmu.2022.817514.; Bertero E., Dudek J., Cochain C., Delgobo M., Ramos G., Gerull B. et al. Immuno-metabolic interfaces in cardiac disease and failure. Cardiovasc. Res. 2022;118(1):37−52. DOI:10.1093/cvr/cvab036.; Everett B.M., Cornel J.H., Lainscak M., Anker S.D., Abbate A., Thuren T. et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation. 2019;139(10):1289−1299. DOI:10.1161/CIRCULATIONAHA.118.038010.; Abbate A., Toldo S., Marchetti C., Kron J., Van Tassell B.W., Dinarello C.A. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ. Res. 2020;126(9):1260−1280. DOI:10.1161/CIRCRESAHA.120.315937.; Hanna A., Frangogiannis N.G. Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc. Drugs Ther. 2020;34(6):849−863. DOI:10.1007/s10557-020-07071-0.; Libby P. Targeting inflammatory pathways in cardiovascular disease: the inflammasome, interleukin-1, interleukin-6 and beyond. Cells. 2021;10(4):951. DOI:10.3390/cells10040951.; Reina-Couto M., Pereira-Terra P., Quelhas-Santos J., Silva-Pereira C., Albino-Teixeira A., Sousa T. Inflammation in human heart failure: major mediators and therapeutic targets. Front. Physiol. 2021Oct.11;12: 746494. DOI:10.3389/fphys.2021.746494; Szabo T.M., Frigy A., Nagy E.E. Targeting mediators of inflammation in heart failure: a short synthesis of experimental and clinical results. Int. J. Mol. Sci. 2021;22(23):13053. DOI:10.3390/ijms222313053.; Olsen M.B., Gregersen I., Sandanger Ø., Yang K., Sokolova M., Halvorsen B.E. et al. Targeting the inflammasome in cardiovascular disease. JACC Basic Transl. Sci. 2021;7(1):84−98. DOI:10.1016/j.jacbts.2021.08.006.; Ridker P.M., Rane M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease. Circ. Res. 2021;128(11):1728−1746. DOI:10.1161/CIRCRESAHA.121.319077.; Corcoran S.E., Halai R., Cooper M.A. Pharmacological inhibition of the nod-like receptor family pyrin domain containing 3 inflammasome with MCC950. Pharmacol. Rev. 2021;73(3):968−1000. DOI:10.1124/pharmrev.120.000171/; Zhuang C., Chen R., Zheng Z., Lu J., Hong C. Toll-like receptor 3 in cardiovascular diseases. Heart Lung Circ. 2022:S14439506(22)00080-4. DOI:10.1016/j.hlc.2022.02.012.; Zhang F.S., He Q.Z., Qin C.H., Little P.J., Weng J.P., Xu S.W. Therapeutic potential of colchicine in cardiovascular medicine: a pharmacological review. Acta Pharmacol. Sin. 2022;43(9):2173–2190. DOI:10.1038/s41401-021-00835-w.; Arfè A., Scotti L., Varas-Lorenzo C., Nicotra F., Zambon A., Kollhorst B. et al. Non-steroidal anti-inflammatory drugs and risk of heart failure in four European countries: nested case-control study. BMJ. 2016;354:i4857. DOI:10.1136/bmj.i4857.; Мареев В.Ю., Агеев Ф.Т., Арутюнов Г.П., Коротеев А.В., Мареев Ю.В., Овчинников А.Г. и др. Национальные рекомендации ОССН, РКО и РНМОТ по диагностике и лечению ХСН (четвертый пересмотр). Журнал Сердечная Недостаточность. 2013;14(7):379–472.; https://bulletin.tomsk.ru/jour/article/view/4920

  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19