Εμφανίζονται 1 - 20 Αποτελέσματα από 196 για την αναζήτηση '"ингибиторы ангиотензинпревращающего фермента"', χρόνος αναζήτησης: 0,79δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
    Academic Journal

    Συγγραφείς: D.D. Ivanov

    Πηγή: Počki, Vol 6, Iss 1, Pp 31-35 (2017)
    KIDNEYS; Том 6, № 1 (2017); 31-35
    Почки-Počki; Том 6, № 1 (2017); 31-35
    Нирки-Počki; Том 6, № 1 (2017); 31-35

    Περιγραφή αρχείου: text/html; application/pdf

  3. 3
  4. 4
    Academic Journal

    Συγγραφείς: L.I. Vakulenko

    Πηγή: Zdorovʹe Rebenka, Vol 13, Iss 2, Pp 165-170 (2018)
    CHILD`S HEALTH; Том 13, № 2 (2018); 165-170
    Здоровье ребенка-Zdorovʹe rebenka; Том 13, № 2 (2018); 165-170
    Здоров'я дитини-Zdorovʹe rebenka; Том 13, № 2 (2018); 165-170

    Περιγραφή αρχείου: application/pdf

  5. 5
  6. 6
    Academic Journal

    Συγγραφείς: Melnyk, O.O.

    Πηγή: Počki, Vol 6, Iss 1, Pp 2-14 (2017)
    KIDNEYS; Том 6, № 1 (2017); 2-14
    Почки-Počki; Том 6, № 1 (2017); 2-14
    Нирки-Počki; Том 6, № 1 (2017); 2-14

    Περιγραφή αρχείου: application/pdf

  7. 7
    Academic Journal

    Συγγραφείς: I.Yu. Golovach, Ye.D. Yehudina

    Πηγή: Počki, Vol 7, Iss 4, Pp 298-310 (2018)
    KIDNEYS; Том 7, № 4 (2018); 298-310
    Почки-Počki; Том 7, № 4 (2018); 298-310
    Нирки-Počki; Том 7, № 4 (2018); 298-310

    Περιγραφή αρχείου: application/pdf

  8. 8
    Academic Journal

    Πηγή: Mìžnarodnij Endokrinologìčnij Žurnal, Vol 16, Iss 7, Pp 593-597 (2020)
    INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine); Vol. 16 No. 7 (2020); 593-597
    Международный эндокринологический журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 16 № 7 (2020); 593-597
    Міжнародний ендокринологічний журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 16 № 7 (2020); 593-597

    Περιγραφή αρχείου: application/pdf

  9. 9
  10. 10
    Academic Journal

    Πηγή: Ophthalmology in Russia; Том 20, № 4 (2023); 641-646 ; Офтальмология; Том 20, № 4 (2023); 641-646 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2023-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/2232/1157; Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014 Nov;121(11):2081–2090. doi:10.1016/j.ophtha.2014.05.013.; Weinreb R.N., Khaw P.T. Primary open-angle glaucoma. Lancet. 2004;363:1711–1720. doi:10.1016/S0140-6736(04)16257-0.; Klein BE, Klein R, Sponsel WE, Franke T, Cantor LB, Martone J, Menage MJ. Prevalence of glaucoma. The Beaver Dam Eye Study. Ophthalmology. 1992 Oct;99(10):1499–1504. doi:10.1016/s0161-6420(92)31774-9.; He Z, Vingrys AJ, Armitage JA, Bui BV. The role of blood pressure in glaucoma. Clin Exp Optom. 2011 Mar;94(2):133–149. doi:10.1111/j.1444-0938.2010.00564.x.; Skrzypecki J., Ufnal M., Szaflik J.P., Filipiak K.J. Blood pressure and glaucoma: At the crossroads between cardiology and ophthalmology. Cardiol J. 2019;26(1):8–12. doi:10.5603/CJ.2019.0008.; Grzybowski A, Och M, Kanclerz P, Leffler C, Moraes CG. Primary Open Angle Glaucoma and Vascular Risk Factors: A Review of Population Based Studies from 1990 to 2019. J Clin Med. 2020 Mar 11;9(3):761. doi:10.3390/jcm9030761.; Эрб К. Глаукома и артериальная гипертония. Российский офтальмологический журнал. 2016;1:105–111. doi:10.21516/2072-0076-2016-9-1-105-111.; Егоров Е.А., Еричев В.П., Онищенко А.Л. Системные факторы риска развития первичной открытоугольной глаукомы. Клиническая офтальмология. 2018;3:140–145. doi:10.21689/2311-7729-2018-18-3-140-145.; Klein BE, Klein R, Knudtson MD. Intraocular pressure and systemic blood pressure: Longitudinal perspective: The Beaver Dam Eye Study. Br J Ophthalmol. 2005;89:284–287. doi:10.1136/bjo.2004.048710.; Chua J, Chee ML, Chin CWL, Tham YC, Tan N, Lim SH, Aung T, Cheng CY, Wong TY, Schmetterer L. Inter-relationship between ageing, body mass index, diabetes, systemic blood pressure and intraocular pressure in Asians: 6-year longitudinal study. Br J Ophthalmol. 2019 Feb;103(2):196–202. doi:10.1136/bjophthalmol-2018-311897.; Jung Y, Han K, Park HYL. Metabolic health, obesity, and the risk of developing open-angle glaucoma: metabolically healthy obese patients versus metabolically unhealthy but normal weight patients. Diabetes Metab J. 2020;44:414–425. doi:10.4093 / dmj.2019.0048.; Macri C, Wong CX, Tu SJ, Casson R, Singh K, Wang SY, Sun MT. Blood Pressure Measures and Incident Primary Open-Angle Glaucoma. Invest Ophthalmol Vis Sci. 2022 Dec 1;63(13):3. doi:10.1167/iovs.63.13.3.; Zhao D, Cho J, Kim MH, Guallar E. The association of blood pressure and primary open-angle glaucoma: a meta-analysis. Am J Ophthalmol. 2014 Sep;158(3):615–627.e9. doi:10.1016/j.ajo.2014.05.029.; Tiambeng C, Batur A, Dikmetas Ö, Aksu NM. The acute effect of systemic blood pressure reduction on intraocular pressure in hypertensive patients. Turk J Emerg Med. 2022;22(3):131–136. doi:10.4103/2452-2473.348441.; Mitchell P, Lee AJ, Rochtchina E, Wang JJ. Open-angle glaucoma and systemic hypertension: The blue mountains eye study. J Glaucoma. 2004;13:319–26. doi:10.1097/00061198-200408000-00010.; Hennis A, Wu SY, Nemesure B, Leske MC. Barbados Eye Studies Group. Hypertension, diabetes, and longitudinal changes in intraocular pressure. Ophthalmology. 2003;110:908–914. doi:10.1016/S0161-6420(03)00075-7.; Xu L, Wang H, Wang Y, Jonas JB. Intraocular pressure correlated with arterial blood pressure: The Beijing eye study. Am J Ophthalmol. 2007;144:461–462. doi:10.1016/j.ajo.2007.05.013.; Topouzis F, Wilson MR, Harris A, Founti P, Yu F, Anastasopoulos E, Pappas T, Koskosas A, Salonikiou A, Coleman AL. Association of open-angle glaucoma with perfusion pressure status in the Thessaloniki Eye Study. Am J Ophthalmol. 2013 May;155(5):843–851. doi:10.1016/j.ajo.2012.12.007.; Horwitz A, Klemp M, Jeppesen J, Tsai JC, Torp-Pedersen C, Kolko M. Antihypertensive Medication Postpones the Onset of Glaucoma: Evidence From a Nationwide Study. Hypertension. 2017 Feb;69(2):202–210. doi:10.1161/HYPERTENSIONAHA.116.08068.; Khawaja AP, Chan MP, Broadway DC, Garway-Heath DF, Luben R, Yip JL, Hayat S, Wareham NJ, Khaw KT, Foster PJ. Systemic medication and intraocular pressure in a British population: the EPIC-Norfolk Eye Study. Ophthalmology. 2014 Aug;121(8):1501–1507. doi:10.1016/j.ophtha.2014.02.009.; Siddiqui M, Iltis J, Yanev P, Sladic J, Huynh C, Nolan D, Singer M. Effect of systemic antihypertensives on change in intraocular pressure after initiating topical prostaglandins for primary open-angle glaucoma. Clin Ophthalmol. 2019 Jan 23;13:207–213. doi:10.2147/OPTH.S192010.; Müskens R.P.H.M., de Voogd S., Wolfs R.C.W. Systemic antihypertensive medication and incident open-angle glaucoma. Ophthalmology.2007 Dec;114(12):2221–2226. doi:10.1016/j.ophtha.2007.03.047.; Stein JD, Newman-Casey PA, Talwar N, Nan B, Richards JE, Musch DC. The relationship between statin use and open-angle glaucoma. Ophthalmology. 2012 Oct;119(10):2074–2081. doi:10.1016/j.ophtha.2012.04.029.; Thiermeier N., Lämmer R., Mardin C., Hohberger B. Erlanger Glaucoma Registry: Effect of a Long-Term Therapy with Statins and Acetyl Salicylic Acid on Glaucoma Conversion and Progression. Biology. 2021;10(6):538. doi:10.3390/biology10060538.; Krasińska B, Karolczak-Kulesza M, Krasiński Z, Pawlaczyk-Gabriel K, Lopatka P, Głuszek J, Tykarski A. Effects of the time of antihypertensive drugs administration on the stage of primary open-angle glaucoma in patients with arterial hypertension. Blood Press. 2012 Aug;21(4):240-8. doi:10.3109/08037051.2012.666423.; Pappelis K, Loiselle AR, Visser S, Jansonius NM. Association of systemic medication exposure with glaucoma progression and glaucoma suspect conversion in the Groningen Longitudinal Glaucoma Study. Invest Ophthalmol Vis Sci. 2019;60:4548–4555. doi:10.1167/iovs.19-27984.; Asefa NG, Neustaeter A, Jansonius NM, Snieder H. Autonomic Dysfunction and Blood Pressure in Glaucoma Patients: The Lifelines Cohort Study. Invest Ophthalmol Vis Sci. 2020;61(11):25. doi:10.1167/iovs.61.11.25.; Остроумова О.Д. Максимов М.Л., Дралова О.В., Ермолаева А.С. Выбор ингибитора АПФ в клинической практике. Медицинский совет. 2014;12:86–91. doi:10.21518/2079-701X-2014-12-86-91.; Mirabito Colafella KM, Bovee DM, Danser AHJ. The renin angiotensin aldosterone system and its therapeutic targets. Experimental Eye Research. Exp Eye Res. 2019;186:107680. doi:10.1016/j.exer.2019.05.020.; White AJR, Cheruvu SC, Sarris M. Expression of classical components of the renin-angiotensin system in the human eye. J Renin Angiotensin Aldosterone Syst. 2015;16:59–66. doi:10.1177/1470320314549791.; Choudhary R, Kapoor MS, Singh A, Bodakhe SH. Therapeutic targets of reninangiotensin system in ocular disorders. Journal of Current Ophthalmology. 2017;29(1):7–16. doi:10.1016/j.joco.2016.09.009.; Danser AH, Van den Dorpel MA, Deinum J. Renin, prorenin, and immunoreactive renin in vitreous fluid from eyes with and without diabetic retinopathy. J Clin Endocrinol Metab. 1989;68:160–167. doi:10.1210/jcem-68-1-160.; Ramirez M, Davidson EA, Luttenauer L, Elena PP, Cumin F, Mathis GA, De Gasparo M. The renin-angiotensin system in the rabbit eye. J Ocul Pharmacol Ther. 1996 Fall;12(3):299–312. doi:10.1089/jop.1996.12.299.; Birk M, Baum E, Zadeh JK, Manicam C, Pfeiffer N, Patzak A, Helmstädter J, Steven S, Kuntic M, Daiber A, Gericke A. Angiotensin II Induces Oxidative Stress and Endothelial Dysfunction in Mouse Ophthalmic Arteries via Involvement of AT1 Receptors and NOX2. Antioxidants (Basel). 2021 Aug 2;10(8):1238. doi:10.3390/antiox10081238.; Shah GB, Sharma S, Mehta AA, Goyal RK. Oculohypotensive effect of angiotensinconverting enzyme inhibitors in acute and chronic models of glaucoma. J Cardiovasc Pharmacol. 2000 Aug;36(2):169–175. doi:10.1097/00005344-20000800000005.; Agarwal R, Krasilnikova AV, Raja IS, Agarwal P, Mohd Ismail N. Mechanisms of angiotensin converting enzyme inhibitor-induced IOP reduction in normotensive rats. Eur J Pharmacol. 2014 May 5;730:8–13. doi:10.1016/j.ejphar.2014.02.021.; Reitsamer HA, Kiel JW. Relationship between ciliary blood flow and aqueous production in rabbits. Invest Ophthalmol Vis Sci. 2003;44(9):3967–3971. doi:10.1167/iovs.03-0088.; Inoue T, Yokoyoma T, Koike H. The effect of angiotensin II on uveoscleral outflow in rabbits. Curr Eye Res. 2001;23(2):139–143. doi:10.1076/ceyr.23.2.139.5470.; Weinreb RN, Toris CB, Gabelt BT. Effects of prostaglandins on the aqueous humor outflow pathways. Surv Ophthalmol. 2002;47(Suppl 1):53. doi:10.1016/s00396257(02)00306-5.; Momose N, Fukuo K, Morimoto S, Ogihara T. Captopril inhibits endothelin-1 secretion from endothelial cells through bradykinin. Hypertension. 1993 Jun;21(6 Pt 2):921–924. doi:10.1161/01.hyp.21.6.921.; Danser AH, Derkx FH, Admiraal PJ, Deinum J, de Jong PT, Schalekamp MA. Angiotensin levels in the eye. Invest Ophthalmol Vis Sci. 1994 Mar;35(3):1008–1018.; Vaajanen A., Vapaatalo H. Local ocular renin-angiotensin system — a target for glaucoma therapy? Basic Clin. Pharmacol. Toxicol. 2011;109(4):217–224. doi:10.1111/j.1742-7843.2011.00729.x.; Cullinane AB, Leung PS, Ortego J, Coca-Prados M, Harvey BJ. Renin-angiotensin system expression and secretory function in cultured human ciliary body nonpigmented epithelium. Br J Ophthalmol. 2002 Jun;86(6):676–683. doi:10.1136/bjo.86.6.676.; Watkins RW, Baum T, Cedeno K, Smith EM, Yuen PH, Ahn HS, Barnett A. Topical ocular hypotensive effects of the novel angiotensin converting enzyme inhibitor SCH 33861 in conscious rabbits. J Ocul Pharmacol. 1987 Winter;3(4):295–307. doi:10.1089/jop.1987.3.295.; Costagliola C, Di Benedetto R, De Caprio L, Verde R, Mastropasqua L. Effect of oral captopril (SQ 14225) on intraocular pressure in man. Eur J Ophthalmol. 1995 Jan-Mar;5(1):19–25. doi:10.1177/112067219500500104.; Holappa M, Vapaatalo H, Vaajanen A. Many Faces of Renin-angiotensin System — Focus on Eye. Open Ophthalmol J. 2017;11:122–142. doi:10.2174/1874364101711010122.; Hirooka K, Baba T, Fujimura T, Shiraga F. Prevention of visual field defect progression with angiotensin-converting enzyme inhibitor in eyes with normal-tension glaucoma. Am J Ophthalmol. 2006 Sep;142(3):523–525. doi:10.1016/j.ajo.2006.04.020.; Iskedjian M, Walker JH, Desjardins O, Robin AL, Covert DW, Bergamini MV, Einarson TR. Effect of selected antihypertensives, antidiabetics, statins and diuretics on adjunctive medical treatment of glaucoma: a population based study. Curr Med Res Opin. 2009 Aug;25(8):1879–1888. doi:10.1185/03007990903035083.; Bild W, Vasincu A, Rusu RN, Ababei DC, Stana AB, Stanciu GD, Savu B, Bild V. Impact of the Renin-Angiotensin System on the Pathogeny and Pharmacotherapeutics of Neurodegenerative Diseases. Biomolecules. 2022 Oct 6;12(10):1429. doi:10.3390/biom12101429.; Аветисов С.Э., Еричев В.П., Туманов В.П. Глаукома и болезнь Альцгеймера: поиск морфологических доказательств тождественности. Волгоградский научно-медицинский журнал. 2017;4:24–32.; Wright JW, Harding JW. The brain RAS and Alzheimer’s disease. Exp. Neurol. 2010;223:326–333. doi:10.1016/j.expneurol.2009.09.012.; Zhuang S, Wang HF, Wang X, Li J, Xing CM. The association of renin-angiotensin system blockade use with the risks of cognitive impairment of aging and Alzheimer’s disease: A meta-analysis. J Clin Neurosci. 2016 Nov;33:32–38. doi:10.1016/j.jocn.2016.02.036.; Austin BP, Nair VA, Meier TB, Xu G, Rowley HA, Carlsson CM, Johnson SC, Prabhakaran V. Effects of hypoperfusion in Alzheimer’s disease. J Alzheimers Dis. 2011;26 Suppl 3(Suppl 3):123–133. doi:10.3233/JAD-2011-0010.; Chong RS, Chee ML, Tham YC, Majithia S, Thakur S, Teo ZL, Da Soh Z, Chua J, Tan B, Wong DWK, Schmetterer L, Sabanayagam C, Cheng CY. Association of Antihypertensive Medication with Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer Thickness. Ophthalmology. 2021 Mar;128(3):393–400. doi:10.1016/j.ophtha.2020.07.051.; https://www.ophthalmojournal.com/opht/article/view/2232

  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Πηγή: Rossiyskiy Vestnik Perinatologii i Pediatrii (Russian Bulletin of Perinatology and Pediatrics); Том 65, № 6 (2020); 108-115 ; Российский вестник перинатологии и педиатрии; Том 65, № 6 (2020); 108-115 ; 2500-2228 ; 1027-4065 ; 10.21508/1027-4065-2020-65-6

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.ped-perinatology.ru/jour/article/view/1298/1031; Костик М.М., Кучинская Е.М., Абдурагимова Ф.Н., Гурина О.П., Калашникова О.В., Часнык В.Г. Опыт применения ритуксимаба у детей с системной красной волчанкой: ретроспективное исследование серии случаев. Вопросы современной педиатрии. 2016; 15 (3): 295–300. [Kostik M.M., Kuchinskaya E.M., Abduragimova F.N., Gurina O.P., Kalashnikova O.V., Chasnyk V.G. Experience using rituximab in children with systemic lupus red: retrospective study of a series of cases. Voprosy sovremennoi pediatrii 2016; 15(3): 295–300. (in Russ.)]; Houssiau F.A., Lauwerys B.R. Current management of lupus nephritis. Best Pract Res Clin Rheumatol 2013; 27(3): 319– 328. DOI:10.1016/j.berh.2013.07.004; Elmougy A., Sarhan A., Hammad A., El-Refaey A., Zedan M., Eid R. et al. Lupus nephritis in Egyptian children: a 16-year experience. J Nephrol 2015; 28(5): 557–562. DOI:10.1007/s40620-014-0157-х; Almaani S., Meara A., Rovin B.H. Update on Lupus Nephritis. CJASN 2017; 12(5): 825–835. DOI:10.2215/CJN.05780616.; Batinić D., Milošević D., Čorić M., Topalović-Grković M., Jelušić M., Turudić D. Lupus nephritis in Croatian children: clinicopathologic findings and outcome. Lupus 2015; 24(3): 307–314. DOI:10.1177/0961203314563133; Jebali H., Hajji M., Rais L., Hamida F.B., Beji S., Zouaghi M.K. Clinicopathological findings and outcome of lupus nephritis in Tunisian children: a review of 43 patients. Pan African Med J 2017; 27: 153. DOI:10.11604/pamj.30/06/2017; Al-Mayouf S.M., AL Ameer A., Alfattani A., lsonbul A. Outcome of childhood lupus nephritis in Saudi children. Saudi J Kidney Dis Transpl 2017; 28(5): 1015–1020. DOI:10.4103/1319-2442.215142; Wenderfer S.E., Ruth N.M., Brunner H.I. Advances in the care of children with lupus nephritis. Pediatr Res 2017; 81(3): 406–414. DOI:10.1038/pr.2016.247; George J., Sankaramangalam K.P., Sinha A., Hari P., Dinda A.K., Bagga A. Lupus Nephritis in Indian Children: Flares and Refractory Illness. Indian Pediatr 2018; 55(6): 478–481. DOI:10.1007/s13312-018-1337-x; Yap D.Y., Cusen Y., Tac Mao Chan. Lupus nephritis: An update on treatments and pathogenesis. Nephrol (Carlton) 2018; 23(Suppl 4): 80–83. DOI:10.1111/nep.13469 11. Tanaka H., Joh K., Imaizumi T. Treatment of pediatric-onset lupus nephritis: a proposal of optimal therapy. Clin Exp Nephrol 2017; 21(5): 755–763. DOI:10.1007/s10157-017-1381-1; Quintana L.F., Jayne D. Sustained remission in lupus nephritis: still a hard road ahead. Nephrol Dial Transplant 2016; 31(12): 2011–2018. DOI: 10/1093/ndt/gfv381; Wilhelmus S., Bajema I.M., Bertsias G.K., Boumpas D.T., Gordon C., Lightstone L. et al. Lupus nephritis management guidelines compared. Nephrol Dial Transplant 2016; 31(6): 904–913. DOI: 10/1093/ndt/gfv102; Groot N., de Graeff N., Marks S.D., Brogan P., Avcin T., Bader-Meunier B. et al. European evidence-based recommendations for the diagnosis and treatment of childhood-onset lupus nephritis: the SHARE initiative. Ann Rheum Dis 2017; 76(12): 1965–1973. DOI:10.1136/annrheumdis-2017-211898; Tunnicliffe D.J., Singh-Greval D., Kim S., Criag J.C., Tong A. Diagnosis, Monitoring and Treatment of Systemic Lupus Erytrematosus: A Systematic Review of Clinical Practice Guidelines. Artritis Care Res (Hoboken) 2015; 67(10): 1440–52. DOI:10.1002/acr.22591; Mok C.C. Current role of rituximab in systemic lupus erythematosus. Int J Rheum Dis 2015; 18(2): 154–163. DOI:10.1111/1756-185Х.12463; Dall Era M. Treatment of lupus nephritis: current paradigms and emerging strategies. Curropin Rheumatol 2017; 29(3):241–247. DOI:10.1097/BOR.0000000000000381; Захарова Е.В. Роль циклоспорина в лечении волчаночного нефрита (обзор литературы и два наблюдения). Нефрология и диализ 2007; 9(2): 192–197. [Zaharova E.V. The role of cyclosporine in the treatment of lupus nephritis. (literature review and two observations). Nefrologiya i dializ. 2007; 9(2): 192–197. (in Russ.)]; Smith E.M.D., Beresford M.W. Urinary biomarkers in childhood lupus nephritis. Clin Immunol 2017; 185: 21–31. DOI:10.1016/j.clim.2016.06.010; Алексеева Е.И., Дворяковская Т.М., Никишина И.П., Денисова Р.В., Подчерняева Н.С. Системная красная волчанка: клинические рекомендации. Часть 1. Вопросы современной педиатрии 2018; 17(1): 19–37. [Alekseeva E.I., Dvoryakovskaya T.M., Nikishina I.P., Denisova R.V., Podchernyaeva N.S. Systemic lupus erythematosus: clinical recommendations. Part 1. Voprosy sovremennoi pediatrii 2018; 17(1): 19–37. DOI:10.15690/vsp.v17i1.1853. (in Russ.)]; Соболева М.К., Симантовская Т.П., Соболь Н.М., Кольцова Е.В., Абдина Н.М., Тимохина В.П. и др. Поражение почек при системной красной волчанке у детей и подростков: особенности течения и исходы. Педиатрия 2012; 91(6): 22–28. [Soboleva M.K., Simantovskaya T.P., Sobol N.M., Koltsova E.V. Abdina N.M., Timochina V.P. et al. Kidney damage in systemic lupus erythematosus in children and adolescents: features of the course and outcomes. Pediatriya 2012; 91(6): 22–28. (in Russ.)]; Hochberg M.C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1997; 40(9): 1725–1732.; Wenderfer S.E., Eldin K.W. Lupus Nephritis. Pediatr Clin North Am 2019; 66(1): 87–99. DOI:10.1016/j.pci.2018/08/007; Конради А.О. Рациональный выбор ингибитора АПФ с позиции нефропротекции. Артериальная гипертензия 2004; 10(4): 177–180. [Konradi A.O. The rational choice of an ACE inhibitor from a position of nephroprotection. Arterial’naya gipertenziya 2004; 10(4): 177–180. DOI:10.18705/1607-419X-2004-10-4-177-180 (in Russ.)]; Нефротический синдром у детей. Клинические рекомендации РФ, Союз педиатров России. М., 2014; 15. [Nephrotic syndrome in children. Clinical guidelines of the Russian Federation, Union of Pediatricians of Russia. Moscow, 2014; 15. (in Russ.)]

  15. 15
    Academic Journal

    Πηγή: Rational Pharmacotherapy in Cardiology; Vol 16, No 2 (2020); 273-276 ; Рациональная Фармакотерапия в Кардиологии; Vol 16, No 2 (2020); 273-276 ; 2225-3653 ; 1819-6446

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.rpcardio.com/jour/article/view/2165/1966; Российский статистический ежегодник. М.: Росстат; 2019.; Yu C.M. Cardiovascular complications of severe acute respiratory syndrome. Postgrad Med J. 2006;82:140-4. DOI:10.1136/pgmj.2005.037515.; Xiong T.Y., Redwood S., Prendergast B., Chen M. Coronaviruses and cardiovascular system: acute and long-term complications. Eur Heart J. 2020; DOI:10.1093/eurheartj/ehaa231.; Libby P., Simon D.L. Inflammation and thrombosis: the clot thickens. Circulation. 2001;103:1718-20. DOI:10.1161/01.cir.103.13.1718.; Fedson D.S., Rordam O.M. Testing Ebola patients: a “bottom up” approach using generic statins and angiotensin receptor blockers. Int J Infect Dis. 2015;36:80-4.; Fedson D.S., Opal S., Rordam O.M. Hiding in plain sight: an approach to treating patients with severe COVID-10 infection. mBio. 11:e00398-20. DOI:10.1128/mBio.00398-20.; Sommerstein R., Grani C. Rapid response: re: preventing a covid-19 pandemic: ACE inhibitors as a potential risk factor for fatal Covid-19. BMJ. 2020;368:m810.; Diaz J.H. Hypothesis: angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19. J Travel Med. 2020 Mar 18. pii: taaa041. DOI:10.1093/jtm/taaa041.; Guan W., Ni Z., Liang W., et al. Clinical characteristics of coronavirus disease in China. N Engl J Med. 2020, February 28. DOI:10.1056/MEJMoa2002032.; Aronson J.K., Ferner R.E. Angiotensin converting enzyme inhibitors and angiotensin receptor blockers in COVID-19 [cited by April 14, 2020]. Available from: https://www.cebm.net/covid-19/angiotensin-converting-enzyme-ace-inhibitors-and-angiotensin-receptor-blockers-in-covid-19/.; Aronson J.A., Ferner R.E. Drugs and the renin-angiotensin system in covid-19. BMJ. 2020;369:m1313. DOI:10.1136/bmj.m1313.; Sarzani R. Relationship between COVID-19 and rennin-angiotensin-aldosterone-system blockers: hasty speculations may be dangerous. BMJ. 2020;368:m810.; Gurwitz D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Disc Res. 2020. DOI:10.1002/ddr.21656.; Kuster G., Pfister O., Burkard T., et al. SARS-CoV2: should inhibitors of the renin-angiotensin system be withdrawn in patients with COVID-19? Eur Heart J. 2020 Mar 20. pii: ehaa235. DOI:10.1093/eurheartj/ehaa235.; Vaduganathan M., Vardeny O., Michel T., et al. Renin-Angiotensin-Aldosterone System Inhibitors in Patients with Covid-19. N Engl J Med. 2020 Mar 30. DOI:10.1056/NEJMsr2005760.; Position Statement of the ESC Council on Hypertension on ACE-Inhibitors and Angiotensin Receptor Blockers [cited by April 14, 2020]. Available from: https://www.escardio.org/Councils/Council-on-Hypertension-(CHT)/News/position-statement-of-the-esc-council-on-hypertension-on-ace-inhibitors-and-ang.; https://www.rpcardio.com/jour/article/view/2165

  16. 16
    Academic Journal

    Πηγή: PULMONOLOGIYA; Том 30, № 5 (2020); 688-699 ; Пульмонология; Том 30, № 5 (2020); 688-699 ; 2541-9617 ; 0869-0189 ; 10.18093/0869-0189-2020-30-5

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/1394/1764; https://journal.pulmonology.ru/pulm/article/view/1394/1791; World Health Organization. Coronavirus disease 2019 (COVID-19) situation report – 48. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200308-sitrep-48-covid-19.pdf?sfvrsn=16f7ccef_4 [Accessed: March 9, 2020].; Wang D., Hu B., Hu C. et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323 (11): 10611069. DOI:10.1001/jama.2020.1585.; Ruan Q., Yang K., Wang W. et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46 (5): 846–848. DOI:10.1007/s00134-020-05991-x.; Guan W.J., Liang W.H., Zhao Y. et al. Comorbidity and its impact on 1590 patients with Covid-19 in China: A Nationwide analysis. Eur. Respir. J. 2020; 55 (5): 2000547. DOI:10.1183/13993003.00547-2020.; Onder G., Rezza G., Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020; 323 (18): 1775–1776. DOI:10.1001/jama.2020.4683.; Richardson S., Hirsch J.S., Narasimhan M. et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020; 323 (20): 2052–2059. DOI:10.1001/jama.2020.6775.; Глыбочко П.В., Фомин В.В., Авдеев С.Н. и др. Клиническая характеристика 1007 больных тяжелой SARS-CoV-2 пневмонией, нуждавшихся в респираторной поддержке. Клиническая фармакология и терапия. 2020; 29 (2): 21–29. DOI:10.32756/0869-5490-2020-2-21-29.; ESC European Society of Cardiology. ESC guidance for the diagnosis and management of CV disease during the COVID-19 pandemic. Available at: https://www.escardio.org/Education/COVID-19-and-Cardiology/ESC-COVID19-Guidance; Wu C., Chen X., Cai Y. et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 2020; 180 (7): 934–943. DOI:10.1001/jamainternmed.2020.0994.; Zhou F., Yu T., Du R. et al. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395 (10229): 1054–1062. DOI:10.1016/S0140-6736(20)30566-3.; Tai S., Tang J., Yu B. et al. Association between cardiovascular burden and requirement of intensive care among patients with mild COVID-19. Cardiovasc. Ther. 2020; 2020: 9059562. DOI:10.1155/2020/9059562.; Inciardi R.M., Adamo M., Lupi L. et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur. Heart J. 2020; 41 (19): 18211829. DOI:10.1093/eurheartj/ehaa388.; Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323 (13): 1239–1242. DOI:10.1001/jama.2020.2648.; Chen R., Liang W., Jiang M. et al. Risk factors of fatal outcome in hospitalized subjects with coronavirus disease 2019 from a nationwide analysis in China. Chest. 2020; 158 (1): 97–105. DOI:10.1016/j.chest.2020.04.010.; Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497–506. DOI:10.1016/S01406736(20)30183-5.; Guzik T., Mohiddin S.A., Dimarco A. et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc. Res. 2020; 116(10): 1666–1687. DOI:10.1093/cvr/cvaa106.; Guan W.J., Ni Z.Y., Hu Y. et al. China Medical Treatment Expert Group for COVID-19. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020; 382 (18): 1708–1720. DOI:10.1056/NEJMoa2002032.; Kreutz R., Algharably E.A., Azizi M. et al. Hypertension, the renin–angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19. Cardiovasc. Res. 2020; 116 (10): 1688–1699. DOI:10.1093/cvr/cvaa097.; Tipnis S.R., Hooper N.M., Hyde R. et al. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captoprilin sensitive carboxypeptidase. J. Biol. Chem. 2000; 275 (43): 33238–33243. DOI:10.1074/jbc.M002615200.; Zhang H., Penninger J.M., Li Y. et al. Angiotensinconverting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020; 46 (4): 586–590. DOI:10.1007/s00134-020-05985-9.; Siedlinski M., Jozefczuk E., Xu X. et al. White blood cells and blood pressure: a mendelian randomization study. Circulation. 2020; 141 (16): 1307–1317. DOI:10.1161/CIRCULATIONAHA.119.045102.; Youn J.C., Yu H.T., Lim B.J. et al. Immunosenescent CD8+ T cells and C-X-C chemokine receptor type 3 chemokines are increased in human hypertension. Hypertension. 2013; 62 (1): 126–133. DOI:10.1161/HYPERTENSIONAHA.113.00689.; Ferrario C.M., Jessup J., Chappell M.C. et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 2005; 111 (20): 2605–2610. DOI:10.1161/CIRCULATIONAHA.104.510461.; Hanff T.C., Harhay M.O., Brown T.S. et al. Is there an association between COVID-19 mortality and the renin-angiotensin system? A call for epidemiologic investigations. Clin. Infect. Dis. 2020; 71 (15): 870–874. DOI:10.1093/cid/ciaa329.; Sommerstein R., Grani C. Rapid response: Рreventing a COVID-19 pandemic: ACE inhibitors as a potential risk factor for fatal COVID-19. Br. Med. J. 2020; 368: m810. DOI:10.1136/bmj.m810.; Danser A.H.J., Epstein M., Batlle D. Renin–angiotensin system blockers and the COVID-19 pandemic: Аt present there is no evidence to abandon renin–angiotensin system blockers. Hypertension. 2020; 75 (6): 1382–1385. DOI:10.1161/HYPERTENSIONAHA.120.15082.; Nicin L., Abplanalp W.T., Mellentin H. et al. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur. Heart J. 2020; 41 (19): 1804–1806. DOI:10.1093/eurheartj/ehaa311.; Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARSCoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181 (2): 271–280.e8. DOI:10.1016/j.cell.2020.02.052.; Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE 2) in SARS coronavirus-induced lung injury. Nat. Med. 2005; 11 (8): 87587–87589. DOI:10.1038/nm1267.; Liu Y., Yang Y., Zhang C. et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci. 2020; 63 (3): 364–374. DOI:10.1007/s11427-020-1643-8.; Imai Y., Kuba K., Rao S. et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005; 436 (7047): 112–116. DOI:10.1038/nature03712.; Yang G., Tan Z., Zhou L. et al. Effects of ARBs and ACEIs on virus infection, inflammatory status and clinical outcomes in COVID-19 patients with hypertension: A single center retrospective study. Hypertension. 2020; 76 (1): 51–58. DOI:10.1161/HYPERTENSIONAHA.120.15143.; Li J., Wang X., Chen J. et al. Association of renin-angiotensin system inhibitors with severity or risk of death in patients with hypertension hospitalized for coronavirus disease 2019 (COVID-19) infection in Wuhan, China. JAMA Cardiol. 2020; 5 (7): 825–830. DOI:10.1001/jamacardio.2020.1624.; Mancia G., Rea F., Ludergnani M. et al. Renin-angiotensinaldosterone system blockers and the risk of COVID-19. N. Engl. J. Med. 2020; 382 (25): 2431–2440. DOI:10.1056/NEJMoa2006923.; Zhang P., Zhu L., Cai J. et al. Association of inpatient use of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ. Res. 2020; 126 (12): 1671–1681. DOI:10.1161/CIRCRESAHA.120.317134.; Gao C., Cai Y., Zhang K. et al. Association of hypertension and antihypertensive treatment with COVID-19 mortality: a retrospective observational study. Eur. Heart J. 2020; 41 (22): 2058–2066. DOI:10.1093/eurheartj/ehaa433.; ESC European Society of Cardiology. Position statement of the ESC Council on Hypertension on ACE-inhibitors and angiotensin receptor blockers. 2020, Mar. 13. Available at: https://www.escardio.org/Councils/Council-on-Hypertension(CHT)/News/position-statement-of-the-esc-council-on-hypertension-on-ace-inhibitors-and-ang; American Colledge of Cardiology. COVID-19 clinical guidance for the cardiovascular care team. Available at: https://www.acc.org/~/media/665AFA1E710B4B3293138D14BE8D1213.pdf [Accessed: March 12, 2020].; Hendren N.S., Drazner M.H., Bozkurt B., Cooper L.T. Description and proposed management of the acute COVID19 cardiovascular syndrome. Circulation. 2020; 141 (23): 19031914. DOI:10.1161/CIRCULATIONAHA.120.047349.; Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab. Syndr. 2020; 14 (3): 247–250. DOI:10.1016/j.dsx.2020.03.013.; Hendren N.S., Grodin J.L., Drazner M.H. Unique patterns of cardiovascular involvement in COVID-19. J. Card. Fail. 2020; 26 (6): 466–469. DOI:10.1016/j.cardfail.2020.05.006.; Jaffe A.S., Cleland J.G.F., Katus H.A. Myocardial injury in severe COVID-19 infection. Eur. Heart J. 2020; 41 (22): 2080–2082. DOI:10.1093/eurheartj/ehaa447.; Babapoor-Farrokhran S., Gill D., Walker J. et al. Myocardial injury and COVID-19: Possible mechanisms. Life Sci. 2020; 253: 117723. DOI:10.1016/j.lfs.2020.117723.; Sardu C., Gambardella J., Morelli M.B. et al. Hypertension, thrombosis, kidney failure, and diabetes: Is COVID-19 an endothelial disease? A comprehensive evaluation of clinical and basic evidence. J. Clin. Med. 2020; 9 (5): 1417. DOI:10.3390/jcm9051417.; Smeda M., Chlopicki S. Endothelial barrier integrity in COVID-19-dependent hyperinflammation: does the protective facet of platelet function matter? Cardiovasc. Res. 2020; 116 (10): e118–121. DOI:10.1093/cvr/cvaa190.; Xiong T.Y., Redwood S., Prendergast B. et al. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur. Heart J. 2020; 41 (19): 1798–1800. DOI:10.1093/eurheartj/ehaa231.; Cooper L.T.Jr. Myocarditis. N. Engl. J. Med. 2009; 360 (15): 1526–1538. DOI:10.1056/NEJMra0800028.; Shi S., Qin M., Shen B. et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020; 5 (7): 802–810. DOI:10.1001/jamacardio.2020.0950.; Arentz M., Yim E., Klaff L. et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA. 2020; 323 (16): 1612–1614. DOI:10.1001/jama.2020.4326.; Li B., Yang J., Zhao F. et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin. Res. Cardiol. 2020; 109 (5): 531–538. DOI:10.1007/s00392-020-01626-9.; Guo T., Fan Y., Chen M. et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5 (7): 811–818. DOI:10.1001/jamacardio.2020.1017.; Shi S., Qin M., Cai Y. et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur. Heart J. 2020; 41 (22): 2070–2079. DOI:10.1093/eurheartj/ehaa408.; Argulian E., Sud K., Vogel B. et al. Right ventricular dilation in hospitalized patients with COVID-19 infection. JACC Cardiovasc. Imaging. [Preprint. Posted 2020, May 15]. DOI:10.1016/j.jcmg.2020.05.010.; Chen C., Zhou Y., Wang D.W. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz. 2020; 45 (3): 230–232. DOI:10.1007/s00059-020-04909-z.; Fovino L.N., Cademartiri F., Tarantini G. Subclinical coronary artery disease in COVID-19 patients. Eur. Heart J. Cardiovas. Imaging. 2020; 21 (9): 1055–1056. DOI:10.1093/ehjci/jeaa202.; Bartlo P., Bauer N. Pulmonary rehabilitation post-acute care for Covid-19 (PACER). Available at: https://youtu.be/XjY_7O3Qpd8; Zhao H.M., Xie Y.X., Wang C. Recommendations for respiratory rehabilitation in adults with COVID-19. Chin. Med. J. (Engl). 2020; 133 (13): 1595–1602. DOI:10.1097/CM9.0000000000000848.; Thomas P., Baldwin C., Bissett B. et al. Physiotherapy management for COVID-19 in the acute hospital setting: clinical practice recommendations. J. Physiother. 2020; 66 (2): 73–82. DOI:10.1016/j.jphys.2020.03.011.; Sheehy L.M. Considerations for postacute rehabilitation for survivors of COVID-19. JMIR Public Health Surveill. 2020; 6 (2): e19462. DOI:10.2196/19462.; Barker-Davies R.M., O’Sullivan O., Senaratne K.P. et al. The Stanford Hall consensus statement for post-COVID-19 rehabilitation. J. Sports Med. 2020; 54 (16): 949–959. DOI:10.1136/bjsports-2020-102596.; Xiang Y.T., Zhao Y.J., Liu Z.H. et al. The COVID-19 outbreak and psychiatric hospitals in China: managing challenges through mental health service reform. Int. J. Biol. Sci. 2020; 16 (10): 1741–1744. DOI:10.7150/ijbs.45072.; Аронов Д.М., Бубнова М.Г., Барбараш О.Л. и др. Национальные российские рекомендации по острому инфаркту миокарда с подъемом сегмента ST ЭКГ: реабилитация и вторичная профилактика. Российский кардиологический журнал. 2015; 20 (1): 6–52. DOI:10.15829/1560-4071-2015-1-6-52.; Бокерия Л.А., Аронов Д.М., Бубнова М.Г. и др. Российские клинические рекомендации. Коронарное шунтирование больных ИБС: реабилитация и вторичная профилактика. Кардиосоматика. 2016; 7 (3–4): 5–71.; https://journal.pulmonology.ru/pulm/article/view/1394

  17. 17
    Academic Journal

    Πηγή: Pharmacogenetics and Pharmacogenomics; № 2 (2015); 9-13 ; Фармакогенетика и фармакогеномика; № 2 (2015); 9-13 ; 2686-8849 ; 2588-0527

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmacogenetics-pharmacogenomics.ru/jour/article/view/159/159; Brown N.J., Vaughan D.E. Angiotensin-Converting Enzyme Inhibitors. // Circulation. 1998;97:1411-14-20.; Орлов В.А., Гиляревский С.Р., Урусбиева Д.М., Даурбекова Л.В. Влияние побочных эффектов иАПФ на тактику лечения сердечно-сосудистых заболеваний. // Рос. Кардиологический жур.-2005-№3.; Israili Z.H., Hall W.D. Cough and angioneurotic edema associated with angiotensinconverting enzyme inhibitor therapy. A review of the literature and pathophysiology. // Ann Intern Med Aug 1 1992;117(3):234—42.; Eck S.L., Morse J.H., Janssen D.A., Emerson S.G., Markovitz D.M. Angioedema presenting as chronic gastrointestinal symptoms. // Am J Gastroenterol Mar 1993;88(3):436—9.; Shahzad G., Korsten M.A., Blatt C., Motwani P. Angiotensin-converting enzyme (ACE) inhibitor-associated angioedema of the stomach and small intestine: a case report. // Mt Sinai J Med Dec 2006;73(8):1123—5.; CKB. Tissue specific autoantibodies induced by captopril. // Clin Res 1987;35:922A.; Bork K., Dewald G. Hereditary angioedema type III, angioedema associated with angiotensin II receptor antagonists, and female sex. // Am J Med May 1 2004;116(9):644.; Chase M.P., Fiarman G.S., Scholz F.J., MacDermott R.P. Angioedema of the small bowel due to an angiotensin-converting enzyme inhibitor. // J Clin Gastroenterol Oct 2000;31(3):254—7.; Molinaro G., Cugno M., Perez M., et al. Angiotensin-converting enzyme inhibitorassociated angioedema is characterized by a slower degradation of des-arginine (9)-bradykinin. // J Pharmacol Exp Ther Oct 2002;303(1):232—7.; Pellacani A., Brunner H.R., Nussberger J. Plasma kinins increase after angiotensinconverting enzyme inhibition in human subjects. // Clin Sci (Lond) Nov 1994;87(5):567—74.; Lu B., Figini M., Emanueli C., Geppetti P., Grady E.F., Gerard N.P., et al. The control of microvascular permeability and blood pressure by neutral endopeptidase. // Nat Med. 1997; 3:904—907. [PubMed:9256283].; Kopp U.C., Farley D.M., Smith L.A. Bradykinin-mediated activation of renal sensory neurons due to prostaglandin-dependent release of substance P. // Am J Physiol. 1997; 272:R2009—R2016.[PubMed: 9227622].; Blais C.J., Rouleau J.L., Brown N.J., Lepage Y., Spence D., Munoz C., et al. Serum metabolism of bradykinin and des-Arg9-bradykinin in patients with angiotensin-converting enzyme inhibitor-associated angioedema. // Immunopharmacology. 1999; 43:293—302. [PubMed: 10596866].; Duan Q.L., Nikpoor B., Dube M.P., Molinaro G., Meijer I.A., Dion P., et al. A variant in XPNPEP2 is associated with angioedema induced by angiotensin I-converting enzyme inhibitors. // Am J Hum Genet. 2005; 77:617—626. [PubMed: 16175507].; Bouchard L., Faucher G., Tchernof A., Deshaies Y., Lebel S., Hould F.S., et al. Comprehensive genetic analysis of the dipeptidyl peptidase-4 gene and cardiovascular disease risk factors in obese individuals. // Acta Diabetol. 2009; 46:13—21. [PubMed:18682883].; Cui J., Melista E., Chazaro I., Zhang Y., Zhou X., Manolis A.J., et al. Sequence variation of bradykinin receptors B1 and B2 and association with hypertension. // J Hypertens. 2005; 23:55—62. [PubMed:15643125].; Seneviratne C., Ait-Daoud N., Ma J.Z., Chen G., Johnson B.A., Li M.D. Susceptibility locus in neurokinin-1 receptor gene associated with alcohol dependence. // Neuropsychopharmacology. 2009; 34:2442—2449. [PubMed: 19553914].; Weidinger S., Gieger C., Rodriguez E., Baurecht H., Mempel M., Klopp N., et al. Genome-wide scan on total serum IgE levels identifies FCER1A as novel susceptibility locus. // PLoS Genet. 2008; 4:e1000166. [PubMed: 18846228].; Sleiman P.M., Flory J., Imielinski M., Bradfield J.P., Annaiah K., Willis-Owen S.A., et al. Variants of DENND1B associated with asthma in children. // N Engl J Med. 2010; 362:36—44. [PubMed:20032318].; Суворов Н.В., Чельцов В.В., Илларионова Т.С, Астахова А.В., Коровякова Э.А. Ингибиторы ангиотензинпревращающего фермента: неблагоприятные побочные реакции. // Вестник РУДН, серия Медицина 2004 №3(27).; Rigat B., Hubert C., Corvol P., Soubrier F. PCR detection of the incertion/deletion polymorphism of the human ACE gene (DCP1) (dipeptidyl carboxypeptidase 1). // Nucl. Acids Res. 1990. V.20. P.1433.; Banerji A.S., Clark M. Blanda, F. LoVecchio, B. Snyder, and C. A. Camargo Jr. 2008. Multicenter study of patients with angiotensin-converting enzyme inhibitor-induced angioedema who present to the emergency department. // Ann. Allergy Asthma Immunol. 100:327—332.; Samuel Michael Lipski, Georges Casimir, Martine Vanlommel1, Mathieu Jeanmaire & Pierre Dolhen. Angiotensin-converting enzyme inhibitorsinduced angioedema treated by C1 esterase inhibitor concentrate (Berinert): about one case and review of the therapeutic arsenal. // Clinical Case Reports 2015; 3(2): 126—130.; Korniyenko A., Alviar C.L., Cordova J.P., Messerli F.H. Visceral angioedema due to angiotensin-converting enzyme inhibitor therapy. // Cleve Clin J Med 2011; 78(5): 297_304.; Toh S., et al. Comparative risk for angioedema associated with the use of drugs that target the rennin-angiotensin-aldosterone system. // Arch. Intern. Med. 2012;172:1582-1589.; Brown N.J., Snowden M., Griffin M.R. Recurrent angiotensin-converting enzyme inhibitor-associated angioedema. // JAMA. 1997;278:232-233.; Beltrami L., Zanichelli A., Zingale L., Vacchini R., Carugo S., Cicardi M. Long-term follow-up of 111 patients with angiotensin-converting enzyme inhibitor-related angioedema. // J. Hypertens. 2011;29:2273-2277.; Fitzharris P., Jordan A. Investigating recurrent angioedema. // BMJ. 2011;343:d6607.; Coelho M.L., Amaral R., Curvo-Semedo L., Caseiro-Alves F. Small bowel angioedema induced by angiotensin converting enzyme (ACE) inhibitor: US and CT fi ndings. // JBR-BTR. 2014 Jul-Aug;97(4):239-41.; Cohen N., Sharon A., Golik A., Zaidenstein R., Modai D. Hereditary angioneurotic edema with severe hypovolemic shock. // J Clin Gastroenterol Apr 1993;16(3):237—9.; Ежова Г.П., Бабаев А.А., Новиков В.В. Биоинформационные аспекты протеомики и деградации белка. // Учебно-методические материалы/ Нижний Новгород 2007.; Kostis J.B., Packer M., Black H.R., Schmieder R., Henry D., Levy E. Omapatrilat and enalapril in patients with hypertension: the Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) trial. // Am J Hypertens. 2004; 17:103—111. [PubMed: 14751650].; Prashanth M. Thalanayar, Ibrahim Ghobrial, Fritz Lubin, Reena Karnik, and Robin Bhasin. Drug-induced visceral angioedema. // Journal of Community Hospital Internal Medicine Perspectives 2014, 4: 25260.; Woodard-Grice A.V., Lucisano A.C., Byrd J.B., Stone E.R., Simmons W.H., Brown N.J. Sex-dependent and race-dependent association of XPNPEP2 C-2399A polymorphism with angiotensin-converting enzyme inhibitor-associated angioedema. // Pharmacogenet Genomics. 2010; 20:532-536.; Guillaume Parea, Michiaki Kuboj, James B. Byrde, Catherine A. McCartyf, Alencia Woodard-Griceg, Koon K. Teob, Sonia S. Anandc,d, Rebecca L. Zuvichh, Yuki Bradfordh, Stephanie Rossa, Yusuke Nakamurak, Marylyn Ritchiei, and Nancy J. Browng. Genetic variants associated with angiotensin-converting enzyme inhibitor-associated angioedema. // Pharmacogenet Genomics. 2013 September; 23(9): 470—478. doi:10.1097/FPC.0b013e328363c137.; Delgoffe G.M., Pollizzi K.N., Waickman A.T., Heikamp E., Meyers D.J., Horton M.R., et al. The kinasemTOR regulates the differentiation of helper T cells through the selective activation of signalingby mTORC1 and mTORC2. // Nat Immunol. 2011; 12:295—303.

  18. 18
  19. 19
  20. 20
    Academic Journal

    Πηγή: Russian Journal of Transplantology and Artificial Organs; Том 20, № 4 (2018); 14-21 ; Вестник трансплантологии и искусственных органов; Том 20, № 4 (2018); 14-21 ; 1995-1191 ; 10.15825/1995-1191-2018-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/945/749; Foreman KJ, Marquez N, Dolgert A et al. Forecasting life expectancy, years of life lost, and all-cause and causespecific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet. 2018; 392: 2052–2090.; Мареев ВЮ, Фомин ИВ, Агеев ФТ и др. Клинические рекомендации ОССН – РКО – РНМОТ. Сердечная недостаточность: хроническая (ХСН) и острая декомпенсированная (ОДСН). Диагностика, профилактика и лечение. Кардиология. 2018; 58 (S6): 8–164. Mareev VYu, Fomin IV, Ageev FT i dr. Klinicheskie rekomendacii OSSN – RKO – RNMOT. Serdechnaya nedostatochnost’: hronicheskaya (HSN) i ostraya dekompensirovannaya (ODSN). Diagnostika, profilaktika i lechenie. Kardiologiya. 2018; 58 (S6): 8–164.; Фомин ИВ. Хроническая сердечная недостаточность в Российской Федерации: что сегодня мы знаем и что должны делать. Российский кардиологический журнал. 2016; 8: 7–13. Fomin IV. Chronic heart failure in Russian Federation: what do we know and what to do. Russian journal of cardiology. 2016; 8: 7–13. doi:10.15829/1560-4071-2016-8-7-13.; Донорство и трансплантация органов в Российской Федерации в 2017 году (X сообщение регистра Российского трансплантологического общества). Трансплантология: итоги и перспективы. Том IX. 2018 год / Под ред. С. В. Готье. М. –Тверь: Триада, 2018: 392, 26–63. Organ donation and transplantation in Russian Federation in 2018 (X report of National Registry). Transplantology: results and prospects. Vol. IX. 2016 / Ed. by S. V. Gautier. M. –Tver: Triad, 2018: 392, 26–63.; Goland S, Czer LSC, Kass RM et al. Use of Cardiac Allografts With Mild and Moderate Left Ventricular Hypertrophy Can Be Safely Used in Heart Transplantation to Expand the Donor Pool. Journal of the American College of Cardiology. 2008; 51: 1214–1220. doi:10.1016/j.jacc.2007.11.052.; Frey N, Katus HA, Olson EN, Hill JA. Hypertrophy of the Heart. A New Therapeutic Target? Circulation. 2004; 109: 1580–1589.; Lüscher TF. Heart failure and its causes: high blood pressure, atrial fibrillation, radiotherapy, and chemotherapy. European Heart Journal. 14 November 2018; 39 (Issue 43): 3827–3831. doi:10.1093/eurheartj/ehy693.; Шевченко АО, Никитина ЕА, Колоскова НН, Шевченко ОП, Готье СВ. Контролируемая артериальная гипертензия и выживаемость без нежелательных событий у реципиентов сердца. Кардиоваскулярная терапия и профилактика. 2018; 17 (4): 4–11. Shevchenko AO, Nikitina EA, Koloskova NN, Shevchenko OP, Gautier SV. Kontroliruemaya arterial’naya gipertenziya i vyzhivaemost’ bez nezhelatel’nyh sobytij u recipientov serdca. Kardiovaskulyarnaya terapiya i profilaktika. 2018; 17 (4): 4–11.; Lindenfeld J et al. Drug Therapy in the Heart Transplant Recipient. Part III: Common Medical Problems. Circulation. 2005; 111: 113–117.; Марцевич СЮ, Толпыгина СН. Ингибиторы ангиотензинпревращающего фермента. Кардиология. Национальное руководство. Краткое издание. М. , 2018: 201–206. Marcevich SYu, Tolpygina SN. Ingibitory angiotenzinprevrashchayushchego fermenta. Kardiologiya. Nacional’noe rukovodstvo. Kratkoe izdanie. M. , 2018: 201–206.; Levy WC et al. The Seattle Heart Failure Model. Circ. 2006; 113 (11): 1424.; Ananthasubramaniam K, Garikapati K, Williams CT. Progressive Left Ventricular Hypertrophy after Heart Transplantation: Insights and Mechanisms Suggested by Multimodal Images. Tex Heart Inst J. 2016 Feb; 43 (1): 65–68.; Atkison P, Joubert G, Barron A, Grant D, Paradis K, Seidman E et al. Hypertrophic cardiomyopathy associated with tacrolimus in paediatric transplant patients. Lancet. 1995; 345 (8954): 894–896.; Patel P, LaPorte K, Carroll M et al. Understanding Hypertension in Pediatric Patients After Heart Transplantation. The Journal of Heart and Lung Transplantation. 2017: 36 (4); S266.; Степина ЕВ, Лукьянов ММ, Бичурина МА, Белова ЕН, Кудряшов ЕВ, Юзьков ЮВ, Бойцов СА. Назначение медикаментозной терапии, влияющей на прогноз у больных с фибрилляцией предсердий в сочетании с артериальной гипертонией, ишемической болезнью сердца, хронической сердечной недостаточностью, по данным регистра Рекваза-клиника. Кардиоваскулярная терапия и профилактика. 2017; 16 (2): 33–38. Stepina EV, Luk’yanov MM, Bichurina MA, Belova EN, Kudryashov EV, Yuz’kov YuV, Bojcov SA. Naznachenie medikamentoznoj terapii, vliyayushchej na prognoz u bol’nyh s fibrillyaciej predserdij v sochetanii s arterial’noj gipertoniej, ishemicheskoj bolezn’yu serdca, hronicheskoj serdechnoj nedostatochnost’yu, po dannym registra Rekvaza-klinika. Kardiovaskulyarnaya terapiya i profilaktika. 2017; 16 (2): 33–38.; Готье СВ. Трансплантология: от невероятного – к очевидному. М. : Триада, 2017: 48. Gautier SV. Transplantologiya: ot neveroyatnogo – k ochevidnomu. M. : Triada, 2017: 48.; https://journal.transpl.ru/vtio/article/view/945