Εμφανίζονται 1 - 1 Αποτελέσματα από 1 για την αναζήτηση '"ингибирование злокачественного роста"', χρόνος αναζήτησης: 0,66δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: The work was supported by the National Medical Research Centre for Oncology of the Ministry of Health of Russia, Работа проведена при поддержке ФГБУ «НМИЦ онкологии» Минздрава России

    Πηγή: Research and Practical Medicine Journal; Том 8, № 3 (2021); 118-132 ; Research'n Practical Medicine Journal; Том 8, № 3 (2021); 118-132 ; 2410-1893 ; 10.17709/2410-1893-2021-8-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.rpmj.ru/rpmj/article/view/683/451; https://www.rpmj.ru/rpmj/article/downloadSuppFile/683/429; https://www.rpmj.ru/rpmj/article/downloadSuppFile/683/430; Qu N, Itoh M, Sakabe K. Effects of Chemotherapy and Radiotherapy on Spermatogene-sis: The Role of Testicular Immunology. Int J Mol Sci. 2019 Feb 22;20(4):957. https://doi.org/10.3390/ijms20040957; Damia G, Broggini M. Platinum Resistance in Ovarian Cancer: Role of DNA Repair. Cancers (Basel). 2019 Jan 20;11(1):119. https://doi.org/10.3390/cancers11010119; Varricchi G, Ameri P, Cadeddu C, Ghigo A, Madonna R, Marone G, et al. Antineo-plastic Drug-Induced Cardiotoxicity: A Redox Perspective. Front Physiol. 2018;9:167. https://doi.org/10.3389/fphys.2018.00167; Кит О.И., Шихлярова А.И., Жукова Г.В., Марьяновская Г.Ю., Барсукова Л.П., Ко-робейникова Е.П. и др. Теоретические и прикладные аспекты активационной терапии. Cardiometry. 2015;7:22–29. https://doi.org/10.12710/cardiometry.2015.7.2229; Сагакянц А.Б. Объединенный иммунологический форум: современные направле-ния развития фундаментальной и прикладной онкоиммунологии (Новосибирск, 2019). Южно-Российский онкологический журнал. 2020;1(2):36–45. https://doi.org/10.37748/2687-0533-2020-1-2-5; Lloyd D. Carbocyclic Non-Benzenoid Aromatic Compounds. Elsevier. Amsterdam-London-New-York. 1966, 220 p.; Liu S, Yamauchi H. Hinokitiol, a metal chelator derived from natural plants, suppresses cell growth and disrupts androgen receptor signaling in prostate carcinoma cell lines. Biochem Biophys Res Commun. 2006 Dec 8;351(1):26–32. https://doi.org/10.1016/j.bbrc.2006.09.166; Li L-H, Wu P, Lee J-Y, Li P-R, Hsieh W-Y, Ho C-C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS One. 2014;9(8):e104203. https://doi.org/10.1371/journal.pone.0104203; Ononye SN, Vanheyst MD, Giardina C, Wright DL, Anderson AC. Studies on the anti-proliferative effects of tropolone derivatives in Jurkat T-lymphocyte cells. Bioorg Med Chem. 2014 Apr 1;22(7):2188–2193. https://doi.org/10.1016/j.bmc.2014.02.018; Bang DN, Sayapin YA, Lam H, Duc ND, Komissarov VN. Synthesis and cytotoxic activ-ity of [benzo[b][1,4]oxazepino[7,6,5-de]quinolin-2-yl]-1,3-tropolones. Chem Heterocycl Comp. 2015 Mar 1;51(3):291–294. https://doi.org/10.1007/s10593-015-1697-2; Tkachev VV, Sayapin YuA, Tupaeva IO, Gusakov EA, Shilov GV, Aldoshin SM, et al. Structure of 2-(benzoxazole-2-Yl)- 5,7-di(tert-butyl)-4-nitro-1,3-tropolone. J Struct Chem. 2018 Jan 1;59(1):197–200. https://doi.org/10.1134/S0022476618010316; Zhao J. Plant troponoids: chemistry, biological activity, and biosynthesis. Curr Med Chem. 2007;14(24):2597–2621. https://doi.org/10.2174/092986707782023253; Shih Y-H, Chang K-W, Hsia S-M, Yu C-C, Fuh L-J, Chi T-Y, et al. In vitro antimicrobi-al and anticancer potential of hinokitiol against oral pathogens and oral cancer cell lines. Mi-crobiol Res. 2013 Jun 12;168(5):254–262. https://doi.org/10.1016/j.micres.2012.12.007; Elagawany M, Hegazy L, Cao F, Donlin MJ, Rath N, Tavis J, et al. Identification of 4-isopropyl–thiotropolone as a novel anti-microbial: regioselective synthesis, NMR characteriza-tion, and biological evaluation. RSC Adv. 2018 Aug 20;8(52):29967–29975. https://doi.org/10.1126/science.2475911; Çankaya N, Bulduk İ, Çolak AM. Extraction, development and validation of HPLC-UV method for rapid and sensitive determination of colchicine from Colchicum autumnale L. Bulbs. Saudi J Biol Sci. 2019 Feb;26(2):345–351. https://doi.org/10.1016/j.sjbs.2018.10.003; Bhattacharyya B, Panda D, Gupta S, Banerjee M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev. 2008 Jan;28(1):155–183. https://doi.org/10.1002/med.20097; Alkadi H, Khubeiz MJ, Jbeily R. Colchicine: A Review on Chemical Structure and Clin-ical Usage. Infect Disord Drug Targets. 2018;18(2):105–121. https://doi.org/10.2174/1871526517666171017114901; Бурбаева Г.Ш., Андросова Л.В., Савушкина О.К. Связывание колхицина с тубули-ном в структурах головного мозга в норме и при шизофрении. Нейрохимия. 2020;37(2):183–187. https://doi.org/10.31857/S1027813320010069; Maldonado EN, Patnaik J, Mullins MR, Lemasters JJ. Free tubulin modulates mito-chondrial membrane potential in cancer cells. Cancer Res. 2010 Dec 15;70(24):10192–10201. https://doi.org/10.1158/0008-5472.CAN-10-2429; Lin Z-Y, Kuo C-H, Wu D-C, Chuang W-L. Anticancer effects of clinically acceptable colchicine concentrations on human gastric cancer cell lines. Kaohsiung J Med Sci. 2016 Feb;32(2):68–73. https://doi.org/10.1016/j.kjms.2015.12.006; Kurek J, Kwaśniewska-Sip P, Myszkowski K, Cofta G, Barczyński P, Murias M, et al. Antifungal, anticancer, and docking studies of colchiceine complexes with monovalent metal cation salts. Chem Biol Drug Des. 2019 Sep;94(5):1930–1943. https://doi.org/10.1111/cbdd.13583; Florian S, Mitchison TJ. Anti-Microtubule Drugs. Methods Mol Biol. 2016;1413:403–421. https://doi.org/10.1007/978-1-4939-3542-0_25; Matsumura E, Morita Y, Date T, Tsujibo H, Yasuda M, Okabe T, et al. Cytotoxicity of the hinokitiol-related compounds, gamma-thujaplicin and beta-dolabrin. Biol Pharm Bull. 2001 Mar;24(3):299–302. https://doi.org/10.1248/bpb.24.299; Максимов А.Ю., Лукбанова Е.А., Саяпин Ю.А., Гусаков Е.А., Гончарова А.С., Лы-сенко И.Б. и др. Противоопухолевая активность алкалоидов трополонового ряда in vitro и in vivo. Современные проблемы науки и образования. 2020:(2);169. https://doi.org/10.17513/spno.29722; Lee Y-S, Choi K-M, Kim W, Jeon Y-S, Lee Y-M, Hong J-T, et al. Hinokitiol inhibits cell growth through induction of S-phase arrest and apoptosis in human colon cancer cells and suppresses tumor growth in a mouse xenograft experiment. J Nat Prod. 2013 Dec 27;76(12):2195–2202. https://doi.org/10.1021/np4005135; Seo JS, Choi YH, Moon JW, Kim HS, Park S-H. Hinokitiol induces DNA demethylation via DNMT1 and UHRF1 inhibition in colon cancer cells. BMC Cell Biol. 2017 Feb 27;18(1):14. https://doi.org/10.1186/s12860-017-0130-3; Chen S-M, Wang B-Y, Lee C-H, Lee H-T, Li J-J, Hong G-C, et al. Hinokitiol up-regulates miR-494-3p to suppress BMI1 expression and inhibits self-renewal of breast cancer stem/progenitor cells. Oncotarget. 2017 Sep 29;8(44):76057–76068. https://doi.org/10.18632/oncotarget.18648; Zhang G, He J, Ye X, Zhu J, Hu X, Shen M, et al. β-Thujaplicin induces autophagic cell death, apoptosis, and cell cycle arrest through ROS-mediated Akt and p38/ERK MAPK signal-ing in human hepatocellular carcinoma. Cell Death Dis. 2019 Mar 15;10(4):255. https://doi.org/10.1038/s41419-019-1492-6; Morita Y, Matsumura E, Tsujibo H, Yasuda M, Okabe T, Sakagami Y, et al. Biological activity of 4-acetyltropolone, the minor component of Thujopsis dolabrata SIeb. et Zucc. hon-dai Mak. Biol Pharm Bull. 2002 Aug;25(8):981–985. https://doi.org/10.1248/bpb.25.981; Ido Y, Muto N, Inada A, Kohroki J, Mano M, Odani T, et al. Induction of apoptosis by hinokitiol, a potent iron chelator, in teratocarcinoma F9 cells is mediated through the activation of caspase-3. Cell Prolif. 1999 Feb;32(1):63–73. https://doi.org/10.1046/j.1365-2184.1999.3210063.x; Zhang L, Peng Y, Uray IP, Shen J, Wang L, Peng X, et al. Natural product β-thujaplicin inhibits homologous recombination repair and sensitizes cancer cells to radiation therapy. DNA Repair (Amst). 2017 Dec;60:89–101. https://doi.org/10.1016/j.dnarep.2017.10.009; Tu D-G, Yu Y, Lee C-H, Kuo Y-L, Lu Y-C, Tu C-W, et al. Hinokitiol inhibits vasculo-genic mimicry activity of breast cancer stem/progenitor cells through proteasome-mediated degradation of epidermal growth factor receptor. Oncol Lett. 2016 Apr;11(4):2934–2940. https://doi.org/10.3892/ol.2016.4300; Huang C-H, Jayakumar T, Chang C-C, Fong T-H, Lu S-H, Thomas PA, et al. Hinokitiol Exerts Anticancer Activity through Downregulation of MMPs 9/2 and Enhancement of Catalase and SOD Enzymes: In Vivo Augmentation of Lung Histoarchitecture. Molecules. 2015 Sep 25;20(10):17720–17734. https://doi.org/10.3390/molecules201017720; Tsao Y-T, Huang Y-F, Kuo C-Y, Lin Y-C, Chiang W-C, Wang W-K, et al. Hinokitiol Inhibits Melanogenesis via AKT/mTOR Signaling in B16F10 Mouse Melanoma Cells. Int J Mol Sci. 2016 Feb 18;17(2):248. https://doi.org/10.3390/ijms17020248; Ahn J-H, Woo J-H, Rho J-R, Choi J-H. Anticancer Activity of Gukulenin A Isolated from the Marine Sponge Phorbas gukhulensis In Vitro and In Vivo. Mar Drugs. 2019 Feb 21;17(2):126. https://doi.org/10.3390/md17020126; Yamato M, Ando J, Sakaki K, Hashigaki K, Wataya Y, Tsukagoshi S, et al. Synthesis and antitumor activity of tropolone derivatives. 7. Bistropolones containing connecting meth-ylene chains. J Med Chem. 1992 Jan 24;35(2):267–273. https://doi.org/10.1021/jm00080a010; Ishihara M, Wakabayashi H, Motohashi N, Sakagami H. Quantitative structure-cytotoxicity relationship of newly synthesized tropolones determined by a semiempirical mo-lecular-orbital method (PM5). Anticancer Res. 2010 Jan;30(1):129–133.; Li J, Falcone ER, Holstein SA, Anderson AC, Wright DL, Wiemer AJ. Novel α-substituted tropolones promote potent and selective caspase-dependent leukemia cell apoptosis. Pharmacol Res. 2016 Nov;113(Pt A):438–448. https://doi.org/10.1016/j.phrs.2016.09.020; Haney SL, Allen C, Varney ML, Dykstra KM, Falcone ER, Colligan SH, et al. Novel tropolones induce the unfolded protein response pathway and apoptosis in multiple myeloma cells. Oncotarget. 2017 Sep 29;8(44):76085–76098. https://doi.org/10.18632/oncotarget.18543; Iwatsuki M, Takada S, Mori M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, et al. In vitro and in vivo antimalarial activity of puberulic acid and its new analogs, viticolins A-C, produced by Penicillium sp. FKI-4410. J Antibiot (Tokyo). 2011 Feb;64(2):183–188. https://doi.org/10.1038/ja.2010.124; Bang DN, Sayapin YA, Lam H, Duc ND, Komissarov VN. Synthesis and cytotoxic activ-ity of [benzo[b][1,4]oxazepino[7,6,5-de]quinolin-2-yl]-1,3-tropolones. Chem Heterocycl Comp. 2015;51(3):291–294. https://doi.org/10.1007/s10593-015-1697-2; Gusakov EA, Topchu IA, Mazitova AM, Dorogan IV, Bulatov ER, Serebriiskii IG, et al. Design, synthesis and biological evaluation of 2-quinolyl-1,3-tropolone derivatives as new anti-cancer agents. RSC Adv. 2021;11(8):4555–4571. https://doi.org/10.1039/d0ra10610k; Thieffry D. Dynamical roles of biological regulatory circuits. Brief Bioinform. 2007 Jul;8(4):220–225. https://doi.org/10.1093/bib/bbm028; https://www.rpmj.ru/rpmj/article/view/683