Showing 1 - 18 results of 18 for search '"игольчатая электромиография"', query time: 0.97s Refine Results
  1. 1
    Academic Journal

    Source: Neuromuscular Diseases; Том 12, № 2 (2022); 47-63 ; Нервно-мышечные болезни; Том 12, № 2 (2022); 47-63 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2022-12-2

    File Description: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/488/322; Davis B.M., McCurrach M.E., Taneja K.L. et al. Expansion of a CUG trinucleotide repeat in the 3’ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc Natl Acad Sci USA 1997;94:7388– 93. DOI:10.1073/pnas.94.14.7388.; Udd B., Krahe R. The myotonic dystrophies: molecular, clinical, and therapeutic challenges. Lancet Neurol 2012;11(10):891–905. DOI:10.1016/S1474-4422(12)70204-1.; López-Martínez A., Soblechero-Martín P., de-la-Puente-Ovejero L. et al. An Overview of Alternative Splicing Defects Implicated in Myotonic Dystrophy Type I. Genes (Basel) 2020:22;11(9):1109. DOI:10.3390/genes11091109.; Wagner S.D., Struck A.J., Gupta R. et al. Dose-dependent regulation of alternative splicing by MBNL proteins reveals biomarkers for myotonic dystrophy. PLoS Genet 2016;12(9):e1006316. DOI:10.1371/journal.pgen.1006316.; Harper P.S. Myotonic dystrophy. 3rd edn. London: W.B. Saunders, 2001.; Rutherford M.A., Heckmatt J.Z., Dubowitz V. Congenital myotonic dystrophy: respiratory function at birth determines survival. Arch Dis Child 1989:64(2);191–5. DOI:10.1136/adc.64.2.191.; De Serres-Bérard T., Pierre M., Chahine M., Puymirat J. Deciphering the mechanisms underlying brain alterations and cognitive impairment in congenital myotonic dystrophy. Neurobiol Dis 2021;160:105532. DOI:10.1016/j.nbd.2021.105532.; Курбатов С.А., Федотов В.П., Галеева Н.М. и др. Случай дистрофической миотонии 1-го типа с утяжелением клиники по линии отца. Анналы клинической и экспериментальной неврологии 2015;9(2):47–52. DOI:10.17816/psaic144.; Hilbert J.E., Ashizawa T., Day J.W. et al. Diagnostic odyssey of patients with myotonic dystrophy. J Neurol 2013;260(10):2497–504. DOI:10.1007/s00415-013-6993-0.; Van Engelen B.G., Eymard B., Wilcox D. 123rd ENMC International Workshop: management and therapy in myotonic dystrophy, 6–8 February 2004, Naarden, The Netherlands. Neuromusc Dis 2005;15:389–94. DOI:10.1016/j.nmd.2005.02.001.; Bassez G., Lazarus A., Desguerre I. et al. Severe cardiac arrhytmia in young patients with myotonic dystrophy type 1. Neurology 2004;63:1939–41. DOI:10.1212/01.wnl.0000144343.91136.cf.; Fournier E., Arzel M., Sternberg D. et al. Electromyography guides toward subgroups of mutations in muscle channelopathies. Ann Neurol 2004;56(5):650–61. DOI:10.1002/ana.20241.; Theadom A., Rodrigues M., Roxburgh R. et al. Prevalence of muscular dystrophies: a systematic literature review. Neuroepidemiology 2014;43(3–4):259–68. DOI: https://doi.org/10.1159/000369343.; Chong-Nguyen C., Wahbi K., Algalarrondo V. et al. Association between mutation size and cardiac involvement in Myotonic dystrophy type 1: an analysis of the DM1-heart registry. Circ Cardiovasc Genet 2017:10(3); e001526. DOI:10.1161/CIRCGENETICS.116.001526.; Myotonic Dystrophy. Available at: https://neuromuscular.wustl.edu/musdist/peeom.html#severe.; Zapata-Aldana E., Ceballos-Sáenz D., Hicks R., Campbell C. Prenatal, neonatal, and early childhood features in congenital myotonic dystrophy. J Neuromuscul Dis 2018;5(3):331–40. DOI:10.3233/JND-170277.; Campbell C., Sherlock R., Jacob P., Blayney M. Congenital myotonic dystrophy: assisted ventilation duration and outcome. Pediatrics 2004;113(4): 811–6. DOI:10.1542/peds.113.4.811.; Quigg K.H., Berggren K.N., McIntyre M. et al. 12-month progression of motor and functional outcomes in congenital myotonic dystrophy. Muscle Nerve 2020. DOI:10.1002/mus.27147.; Sansone V.A. The dystrophic and nondystrophic myotonias. Continuum (Minneap Minn) 2016;22(6):1889–915. DOI:10.1212/CON.0000000000000414.; Roig M., Balliu P.R., Navarro C. et al. Presentation, clinical course, and outcome of the congenital form of myotonic dystrophy. Pediatr Neurol 1994;11(3):208–13. DOI:10.1016/0887-8994(94)90104-x.; Renault F., Fedida A. Early electromyographic signs in congenital myotonic dystrophy. A study of ten cases. Neurophysiol Clin 1991;21(3):201–11. DOI:10.1016/s0987-7053(05)80427-7.; Nam T.S., Jung H.J., Choi S.Y. et al. Clinical Characteristics and Analysis of CLCN1 in Patients with “EMG Disease”. J Clin Neurol 2012;8(3):212–7. DOI:10.3988/jcn.2012.8.3.212.; Kimura J. Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practice. Ed. by Oxford University Press. 4rd edn. 2013. P. 1176.; Young N.P., Daube J.R., Sorenson E.J., Milone M. Absent, unrecognized, and minimal myotonic discharges in myotonic dystrophy type 2. Muscle Nerve 2010;41(6):758–62. DOI:10.1002/mus.21615.; Merletti R., Farina D. Analysis of intramuscular electromyogram signals. Philos Trans A Math Phys Eng Sci 2009;367(1887):357–68. DOI:10.1098/rsta.2008.0235.; Kuo H.C., Huang C.C., Chu C.C. et al. Congenital myotonic dystrophy: variability in muscle involvement and histopathological process. Acta Neurol Taiwan 2006;15(1):13–20.; Курбатов С.А. Клинико-электромиографические характеристики дистрофических и недистрофических миотоний. Автореф. дис. . канд. мед. наук. М., 2017. 26 с.; Rabie M., Jossiphov J., Nevo Y. Electromyography (EMG) accuracy compared to muscle biopsy in childhood. J Child Neurol 2007;22(7):803–8. DOI:10.1177/0883073807304204.; Stokes M., Varughese N., Iannaccone S., Castro D. Clinical and genetic characteristics of hildhood-onset myotonic dystrophy. Muscle Nerve 2019;60(6): 732–8. DOI:10.1002/mus.26716.; Igarashi M. Floppy infant syndrome. J Clin Neuromuscul Dis 2004;6(2):69–90. DOI:10.1097/00131402-20041200000003.; Pascual-Gilabert M., López-Castel A., Artero R. Myotonic dystrophy type 1 drug development: A pipeline toward the market. Drug Discov Today 2021;26(7):1765–72. DOI:10.1016/j.drudis.2021.03.024.; https://nmb.abvpress.ru/jour/article/view/488

  2. 2
    Academic Journal

    Source: Rheumatology Science and Practice; Vol 57, No 4 (2019); 474-477 ; Научно-практическая ревматология; Vol 57, No 4 (2019); 474-477 ; 1995-4492 ; 1995-4484

    File Description: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/2762/1873; Devin CJ, McCullough KA, Yates AJ, Kang JD, et al. Hip-spine syndrome. J Am Acad Orthop Surg. 2012 Jul;20(7):434-42. doi:10.5435/JAAOS-20-07-434; Offierski CM, MacNab I. Hip-spine syndrome. Spine. 1983;8(3):316. doi:10.1097/00007632-198304000-00014; Eneqvist T, Nemes S, Brisby H, et al. Lumbar surgery prior to total hip arthroplasty is associated with worse patientreported outcomes. Bone Joint J. 2017;99-B:759-65. doi:10.1302/0301-620X.99B6.BJJ-2016-0577.R2; Eneqvist T, Bulow E, Nemes S, et al. Patients with a previous total hip replacement experience less reduction of back pain following lumbar back surgery. J Orthop Res. 2018 Sep;36(9):2484-90. doi:10.1002/jor.24018; Fogel GR, Esses SI. Hip spine syndrome: Management of coexisting radiculopathy and arthritis of the lower extremity. Spine J. 2003;3(3):238-41. doi:10.1016/S1529-9430(02)00453-9; Brown MD, Gomez-Martin O, Brookfield KF, et al. Differential diagnosis of hip disease versus spine disease. Clin Orthop. 2004;1:280. doi:10.1097/00003086-200402000-00044; Khan AM, McLoughlin E, Giannakas K, et al. Hip osteoarthritis: where is the pain? Ann R Coll Surg Engl. 2004 Mar;86(2):119-21. doi:10.1308/003588404322827518; Кирпичев ИВ, Кирпикова МН. Внесуставной болевой синдром после первичного протезирования тазобедренного сустава. Клиницист. 2016;10(1):17-21; Redmond JM, Gupta A, Nasser R, Domb BG. The hip-spine connection: understanding its importance in the treatment of hip pathology. Orthopedics. 2015;38(1):49. doi:10.3928/01477447-20150105-07; Кудяшев АЛ, Хоминец ВВ, Шаповалов ВМ и др. Особенности хирургической тактики лечения пациентов с коксовертебральным синдромом. Травматология и ортопедия России. 2017;23(1):122-43; Miyagi M, Kensuke Fukushima K, Inoue G, et al. Hip-spine syndrome: cross-sectional-study of spinal alignment in patients with coxalgia. Hip Int. 2019 Jan 14;29(1):21-5. Epub 2018 Oct 14.; Van Zyl A. Misdiagnosis of hip pain could lead to unnecessary spinal surgery. SA Orthop J. 2010;9(4):54-7.; Sembrano JN, Polly DW Jr. How Often Is Low Back Pain Not Coming From the Back. Spine. 2008;34(1):E27-E32. doi:10.1097/BRS.0b013e31818b8882; Kleiner JB, Thorne RP, Curd JG. The value of bupivicaine hip injection in the differentiation of coxarthrosis from lower extremity neuropathy. J Rheumatol. 1991;18(3):422-7.; Crawford RW, Gie GA, Ling RS, Murray DW. Diagnostic value of intraarticular anaesthetic in primary osteoarthritis of the hip. J Bone Joint Surg Br. 1998;80(2):279-81. doi:10.1302/0301-620X.80B2.8299; Chu CR, Coyle CH, Chu CT, et al. In vivo effects of single intraarticular injection of 0.5% bupivacaine on articular cartilage. J Bone Joint Surg Am. 2010;92(3):599-608. doi:10.2106/JBJS.I.00425; Kuittinen P, Sipola P, Aalto TJ, et al. Correlation of lateral stenosis in MRI with symptoms, walking capacity and EMG findings in patients with surgically confirmed lateral lumbar spinal canal stenosis. BMC Musculoskelet Dis. 2014;15:247. doi:10.1186/1471-2474-15-247; Piazzolla A, Solarino G. Spinopelvic parameter changes and low back pain improvement due to femoral neck anteversion in patients with severe unilateral primary hip osteoarthritis undergoing total hip replacement. Eur Spine J. 2018 Jan;27(1):125-34. doi:10.1007/s00586-017-5033-7; Eguchi Y, Iida S, Suzuki C, et al Spinopelvic Alignment and Low Back Pain after Total Hip Replacement Arthroplasty in Patients with Severe Hip Osteoarthritis. Asian Spine J. 2018;12(2):325-34. doi:10.4184/asj.2018.12.2.325

  3. 3
    Academic Journal

    Source: Neuromuscular Diseases; № 3 (2012); 55-66 ; Нервно-мышечные болезни; № 3 (2012); 55-66 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2012-0-3

    File Description: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/89/85; Emery A.E. Population frequencies of inherited neuromuscular diseases — a world survey. Neuromuscul Disord 1991;1:19–29.; Sun C., Tranebjaerg L., Torbergsen T. et al. Spectrum of CLCN‑1 mutations in patients with myotonia congenita in Northern Scandinavia. Eur J Hum Genet 2001;9:903–9.; Гехт Б.М., Ильина Н.А. Нервно-мышечные болезни. М.: Медицина, 1982. 352 с.; Иллариошкин С.Н. Миотонические синдромы. Обзор. Неврол журн 1998; 6:42−51.; Касаткина Л.Ф., Гильванова О.В., Сиднев Д.В. Клинико-электромиографический анализ больных с врожденной миотонией Томсена и дистрофической миотонией 1 типа. Клин неврол 2008; 3:15−9.; Лобзин В.С., Сайкова Л.А., Шиман А.Г. Нервно-мышечные болезни. СПб.: Гиппократ, 1998. С. 138−44.; Шнайдер Н.А., Шпраха В.В., Никулина С.Ю. Миотония. Руководство для врачей. М.: НМФ МБН, 2005. 245 с.; Chrestian N., Puymirat J., Bouchard J.‑P., Dupré N. Myotonia congenital — a cause of muscle weakness and stiffness. Nat Clin Pract Neurol 2006;2:393−9.; Colding‑Jorgensen E. Phenotypic variability in myotonia congenita. Muscle Nerve 2005;32:19–34.; Matthews E., Fialho D., Tan S.V. et al. The non-dystrophic myotonias: molecular pathogenesis, diagnosis and treatment. Brain 2010;133:9−22.; Grunnet M., Jespersen T., Colding‑Jørgensen E. et al. Characterization of two new dominant clc‑1 channel mutations associated with myotonia. Muscle Nerve 2003;28:722–32.; Papponen H., Toppinen T., Baumann P. et al. Founder mutations and the high prevalence of myotonia congenita in northern Finland. Neurology 1999;53:297–302.; Plassart‑Schiess E., Gervais A., Eymard B. et al. Novel muscle chloride channel (CLCN1) mutations in myotonia congenita with various modes of inheritance including incomplete dominance and penetrance. Neurology 1998;50:1176–9.; Pusch M. Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum Mutat 2002;19:423–34.; Sloan‑Brown K., George A.L. Jr. Inheritance of three distinct muscle chloride channel gene (CLCN1) mutations in a single recessive myotonia congenita family. Neurology 1997;48:542–3.; Steinmeyer K., Lorenz C., Pusch M., Koch M.C., Jentsch T.J. Multimeric structure of ClC‑1 chloride channel revealed by mutations in dominant myotonia congenita (Thomsen). EMBO 1994;13:737–43.; Wu F.F., Ryan A., Devaney J. et al. Novel CLCN1 mutations with unique clinical and electrophysiological consequences. Brain 2002;125:2392–407.; Zhang J., George A.L. Jr., Griggs R.C. et al. Mutations in the human skeletal muscle chloride channel gene (CLCN1) associated with dominant and recessive myotonia congenita. Neurology 1996; 47:993–8.; Зинченко А.П., Лобзин В.С., Бузиновский И.С. Наследственные формы миотонии и миотонические синдромы. Киев: Здоровья, 1979.; Harper P.S. Myotonic dystrophy. 3rd ed. London: WB Saunders, 2001.; Harper P.S., van Engelen B.G.M., Eymard B., Wilcox D.E. 1st edition. Myotonic Dystrophy: present management, future therapy. New York: Oxford University Press, 2004.; Norwood F.L., Harling C., Chinnery P.F. et al. Prevalence of genetic muscle disease in Northern England: in‑depth analysis of a muscle clinic population. Brain 2009; 132:3175–86.; Davis B.M., McCurrach M.E., Taneja K.L. et al. Expansion of a CUG trinucleotide repeat in the 3’ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc Nat Acad Sci USA (1997); 94:7388–93.; Logigian E.L., Moxley R.T., Blood C.L. et al. Leukocyte CTG repeat length correlates with severity of myotonia in myotonic dystrophy type 1. Neurology 2004;62:1081–9.; Logigian E.L., Ciafaloni E., Quinn L.C. et al. Severity, type, and distribution of myotonic discharges are different in type 1 and type 2 myotonic dystrophy. Muscle Nerve 2007;35:479−85.; Liquori C.L., Ricker K., Moseley M.L. et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 2001;293:864–7.; Timothy M. Miller. Differential diagnosis of myotonic disorders. Muscle Nerve 2008;37:293–9.; Aminoff M.J., Layzer R.B., Satya‑Murti S. et al. The declining electrical response of muscle to repetitive nerve stimulation in myotonia. Neurology 1977; 27:812–6.; Deymeer F., Cakirkaya S., Serdaroglu P. et al. Transient weakness and compound muscle action potential decrement in myotonia congenita. Muscle Nerve 1998; 21:1334–7.; Ricker K., Meinck H.M., Stumpf H. europhysiologische Untersuchungen uЁber das Stadium passagerer LaЁhmung bei Myotonia congenita und Dystrophia myotonica. Z Neurol 1973;204:135–48.; Colding‑Jorgensen E., Duno M., Schwartz M. et al. Decrement of compound muscle action potential is related to mutation type in myotonia congenita. Muscle Nerve 2003;27:449–55.; www.neuromuscular.wustl.edu/activity.html#mc; https://nmb.abvpress.ru/jour/article/view/89

  4. 4
    Academic Journal

    Source: Neuromuscular Diseases; № 2 (2013); 27-34 ; Нервно-мышечные болезни; № 2 (2013); 27-34 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2013-0-2

    File Description: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/46/42; Tsao B. The Electrodiagnosis of cervical and lumbosacral radiculopathy. Neurol Clin 2007;25:473–94.; Zwart J.A., Sand T., Unsgaard G. Warm and cold sensory thresholds in patients with unilateral sciatica: C fibers are more severely affected than A-delta fibers. Acta Neurol Scand 1998;97:41.; American Association of Electrodiagnostic Medicine Practice parameter for needle electromyographic; evaluation of patients with suspected cervical radiculopathy: summary statement. Muscle Nerve 1999;22(Suppl 8):209–11.; Cho S.C., Ferrante M.A., Levin K.H. et al. Utility of electrodiagnostic testing in evaluating patients with lumbosacral radiculopathy: An evidence-based review. Muscle & Nerve 2010;42:276–82.; Shea P.A., Woods W.W., Werden D.H. Electromyography in diagnosis of nerve root compression syndrome. Arch Neuro Psychiatr 1950;64:93–104.; Aminoff M.J. Electrodiagnosis in clinical neurology 4th Edition. New-York: Churchill Livingstone, 1999. 792 p.; Knutsson B. Comparative value of electromyographic, myelographic and clinical-neurological examination in the diagnosis of lumbar root compression syndromes. Acta Orthop Scand 1961;49 (Suppl):121–35.; Wilbourn A.J., Aminoff M.J. The electrodiagnostic examination in patients with radiculopathies. Muscle Nerve 1998;21:1621–31.; Гехт Б.М., Касаткина Л.Ф., Самойлов М.И., Санадзе А.Г. Элетромиография в диагностике нервно-мышечных заболеваний. Таганрог: Издательство ТРТУ, 1997. 370 с.; Розмарин В.Ш. Электромиографическая диагностика вертеброгенного поражения пояснично-крестцовых корешков. Автореф. дис. … канд. мед. наук. М., 1981. 31 с.; Robinson L.R. Electromyography, magnetic resonance imaging, and radiculopathy: it’s time to focus on specificity. Muscle Nerve 1999;22:149–50.; Levin K.H. Electrodiagnostic approach to the patient with suspected radiculopathy. Neurologic Clinics 2002;20(2):397–421.; Wilbourn A.J., Aminoff M.J. Radiculopathies. Clinical electromyography, 2nd ed. [Ed. W.F. Brown, C.F. Bolton]. Boston, MA: Butterworth-Heinemann, 1993;p.177–209.; Chouteau W.L., Annaswamy T.M., Bierner S.M. et al. Interrater reliability of needle electromyographic findings in lumbar radiculopathy. Am J Phys Med Rehabil 2010;89(7):561–9.; Kendall R., Werner R.A. Interrater reliability of the needle examination in lumbosacral radiculopathy. Muscle Nerve 2006;34(2):238–41.; Fisher M.A. Electrophysiology of radiculopathies. Clinical Neurophysiology 2002;113:317–35.; Kimura J. Electromyography. Electrodiagnosis in diseases of nerve and muscle: principles and practice. Ed. F.A.Davis. Philadelphia, 1989. 2nd ed. 678 p.; Gilai A.N. Analysis of turns and amplitude in EMG Computer-Aided Electromyography and Expert Systems [Ed. J.E. Desmedt]. Elsevier Science Publishers B.V., 1989. Chapter 12. P. 143–160.; Waylonis G.W. Electromyographic findings in chronic cervical radicular syndromes. Arch Phys Med Rehabil 1968;49:407–12.; Хабиров Ф.А., Хабиров Р.А. Мышечная боль. Казань, 1995. 206 с.; Коуэн Х., Брумлик Дж. Руководство по электромиографии и электродиагностике [пер. с англ.]. М.: Медицина, 1975. 192 с.; Levin K.H., Maggiano H.J., Wilbourn A.J. Cervical radiculopathies: comparison of surgical and EMG localization of single-root lesions. Neurology 1996;46:1022–5.; Tsao B.E., Levin K.H., Bodner R.A. Comparison of surgical and electrodiagnostic findings in single root umbosacral radiculopathies. Muscle Nerve 2003;27(1):60–4.; Date E.S., Mar E.Y., Bugola M.R., Teraoka J.K. The prevalence of lumbar paraspinal spontaneous activity in asymptomatic subjects. Muscle Nerve 1996;19(3):350–4.; Nardin R.A., Raynor E.M., Rutkove S.B. Fibrillations in lumbosacral paraspinal muscles of normal subjects. Muscle Nerve 1998;21(10):1347–9.; Date E.S., Kim B.J., Yoon J.S., Park B.K. Cervical paraspinal spontaneous activity in asymptomatic subjects. Muscle Nerve 2006;34(3):361–4.; Gough J., Koepke G. Electromyographic determination of motor root levels in erector spinae muscles. Arch Phys Med Rehabil 1966;47:9–11.; Kottlors M., Glocker F.X. Polysegmental innervation of the medial paraspinal lumbar muscles. Eur Spine J 2008;17:300–6.; Albeck M.J., Taher G., Lauritzen M., Trojaborg W. Diagnostic value of electrodiagnostic tests in patients with sciatica Acta Neurol Scand 2000;101:249–4.; Hurtevent J.F. The place of electroneuromyography in the exploration of radiculopathy. Rev Neurol (Paris) 2002;158:1232–5.; Hamanishi C., Tanaka S. Dorsal root ganglia in the lumbosacral region observed from the axial views of MRI. Spine 1993;18:1753–6.; Kikuchi S., Sato K., Konno S. et al. Anatomic and radiographic study of dorsal root ganglia. Spine 1994;19:6–11.; Yabuki S., Kikuchi S. Positions of dorsal root ganglia in the cervical spine: an anatomic and clinical study. Spine 1996;21:1513–17.; Ho Y.-H., Yan S.-H., Lin Y.-T., Lo Y.-K. Sensory Nerve Conduction Studies of the Superficial Peroneal Nerve in L5 Radiculopathy. Acta Neurol Taiwan 2004;13:114–9.; Magladery J.W., McDougal D.B., Stoll J. Electrophysiological studies of nerve andreflex activity in normal man. II The effects of peripheral ischemia. Bull Johns Hopkins Hosp 1950; p. 291–312.; Fisher M.A. F-waves – physiology and clinical uses. Scientific World J, 2007;2:144–60.; Eisen A., Schomer D., Melmed C. An electrophysiological method for examining lumbosacral root compression. Can J Neurol Sci 1977;4:117–23.; Tang L.M., Schwartz M.S., Swash M. Postural effects on F-wave parameters in lumbar root compression and canal stenosis. Brain 1988;207:207–13.; Berger A.R., Sharma K., Lipton R.B. Comparison of motor conduction abnormalities in lumbosacral radiculopathy and axonal polyneuropathy. Muscle Nerve 1999;22:1053–7.; Scelsa S.N., Herskovitz S., Berger A.R. The diagnostic utility of F-waves in L5/S1 radiculopathy. Muscle Nerve 1995;18:1496–7.; Tsur A. Exhausting fatigue influences Fwave and peripheral conduction velocity, following lumbar radiculopathy. Disabil Rehabil 2002;24(13):647–53.; Buschbacher R.M. Peroneal nerve Fwave latencies recorded from the extensor digitorum brevis. Am J Phys Med Rehabil 1999;78 (suppl):48–52.; Aminoff M.J. Electrophysiological evaluation of root and spinal cord disease. Semin Neurol 2002;22:197–9.; Toyokura M., Murakami K. F-wave study in patients with lumbosacral radiculopathies. Electromyogr Clin Neurophysiol 1997;37:19–26.; Fisher M.A. H reflexes and F waves. Fundamentals, normal and abnormal patterns. Neurologic Clinics ;20(2):145–51.; Braddom R.I., Johnson E.W. Standardization of H-reflex and diagnostic use in S1 radiculopathy. Arch Phys Med Rehabil 1974;55:161–6.; Nishida T., Kompoliti A., Janssen I., Levin K. H-reflex in S1 radiculopathy: latency versus amplitude controversy revisited. Muscle Nerve 1996;19:915–7.; Albeck M.J., Taher G., Lauritzen M., Trojaborg W. Diagnostic value of electrophysiological tests in patients with sciatica. Acta Neurol Scand 2000;101:249–54.; Schimsheimer R.J., Ongerboer de Visser B.W., Kemp B. The flexor carpi radialis H-reflex in lesions of the sixth and seventh cervical nerve roots. J Neurol Neurosurg Psychiatry 1985;48:445–9.; Eliaspour D., Sanati E., Hedayati Moqadam M.R. et al. Utility of flexor carpi radialis H-reflex in diagnosis of cervical radiculopathy. J Clin Neurophysiol 2009;26(6):458–60.; Kaylan T.A., Bilgic F., Ertem O. The diagnostic value of late responses in radiculopathies due to disc herniation. Electromyogr Clin Neurophysiol 1983;23:183–6.; Alrowayeh H.N., Sabbahi M.A. H-reflex amplitude asymmetry is an earlier sign of nerve root involvement than latency in patients with S1 radiculopathy. BMC Res Notes 2011;5:102.; https://nmb.abvpress.ru/jour/article/view/46

  5. 5
    Academic Journal

    Source: Neuromuscular Diseases; № 4 (2012); 43-52 ; Нервно-мышечные болезни; № 4 (2012); 43-52 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2012-0-4

    File Description: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/98/94; Bax M., Goldstein M., Rosenbaum P. et al. Proposed definition and classification of cerebral palsy. Dev Med Child Neurol 2005;47(8):571–6.; Miller G. Cerebral Palsies: An Overview. In: The Cerebral Palsies: causes, consequences, and management. Boston, 1998. P. 1–35.; Семенова К.А. Восстановительное лечение детей с перинатальным поражением нервной системы и детским церебральным параличом. – М.: ЗАКОН И ПОРЯДОК, 2007. 616 с.; Miller F. Cerebral palsy. New York: Springer Science, 2005. 1055 p.; Журавлев А.М., Перхурова И.С. Основные принципы, методы и результаты хирургического лечения. В кн.: Регуляция позы и ходьбы при детском церебральном параличе и некоторые способы коррекции. М., 1996; с.153–182.; Horstmann H.M., Bleck E.E. Orthopaedic Management in Cerebral Palsy. London: Mac Keith Press, 2007. 412 p.; Ponseti I.V. Congenital clubfoot: Fundamentals of treatment (Second Edition). Oxford: Oxford University press, 2008. 147 p.; Польской В.В. О некоторых предпосылках нарушений статики и локомоции у детей первых 2 лет жизни, страдающих детским церебральным параличом. Автореф. дис. . канд. мед. наук. М., 1975.; Доценко В.И., Семенова К.А. Роль нарушений нейротрофического контроля в развитии миелодиспластических деформаций нижних конечностей у детей (клинико-электромиографические сопоставления). В кн.: Теоретические вопросы травматологии и ортопедии. М., 1990; с. 164–173.; Козявкін В.І. Структурно-функціональні порушення церебральних та спінальних утворень при дитячому церебральному паралічу та система реабілітації цих хворих. Автореферат дис. . докт. мед. наук. Харків, 1996.; Куренков А.Л. Электро-нейромиографические критерии диагностики детского церебрального паралича. Дис. . канд. мед. наук. М., 1997.; Семенова К.А. Антонова Л.В. Влияние лечебно-нагрузочного костюма ЛК-92 «Адели» на электронейромиографические характеристики у больных детским церебральным параличом. Журн невропатол и психиатр 1998;98:9:22–25.; Куренков А.Л. Оценка двигательных нарушений при детском церебральном параличе и других болезнях нервной системы детей. Автореф. дис. . докт. мед. наук. М., 2005. 46 с.; Коуэн Х., Брумлик Дж. (Cohen H.L., Brumlik J.) Руководс тво по электромиографии и электродиагностике. М.: Медицина, 1975. 192 с.; Kimura J. Electrodiagnosis in diseases of nerve and muscle: principles and practice. Philadelphia: F.A. Davis Company, 1989. 709 p.; Buchthal F. Electromyography in the evaluation of muscle diseases. Method in clinical neurophysiology 1991;2:25–45.; Stalberg E., Chu J., Bril V. et al. Automatic analysis of the EMG interference pattern. EEG Clin Neurophysiol 1983;56:672–81.; Lee H.J., DeLisa J.A. Manual of nerve conduction study and surface anatomy for needle electromyography. Philadelphia: Lippincott Williams & Wilkins, 2004. 301 p.; Liveson J.A., Dong M.M. Laboratory reference for clini cal neurophysiology. Philadelphia: F.A. Davis Company, 1992. 514 p.; Зыков В.П., Комарова И.Б., Новикова Е.Б. Болезни нервной системы перинатального периода. В кн.: Лечение заболеваний нервной системы у детей. М.: Триада-Х, 2009. С. 5–62.; Ратнер А.Ю. Неврология новорожденных. Острый период и поздние осложнения. М.: БИНОМ. Лаборатория знаний, 2005.; Volpe J.J. Neurology of newborn. Fifth edition. Philadelphia: Saunders Elsevier, 2008. 1094 p.; Корниенко В.Н., Пронин И.Н. Заболевания спинного мозга и позвоночника. В кн.: Диагностическая нейрорадиология. М.: ИП «Андреева Т.М.», 2006. С. 1151–1316.; Gourineni P., Dias L., Blanco R., Muppavarapu S. Orthopaedic deformities associated with lumbosacral spinal lipomas. J Pediatr Orthop 2009;29(8):932–6.; Flynn J.M., Herrera-Soto J.A., Ramirez N.F. et al. Clubfoot release in myelodysplasia. J Pediatr Orthop B. 2004; 13(4):259–62.; Noonan K.J., Didelot W.P., Lindseth R.E. Care of the pediatric foot in myelodysplasia. Foot Ankle Clin ;5(2):281–304.; Ozaras N., Yalcin S., Ofluoglu D. et al. Are some cases of spina bifida combined with cerebral palsy? A study of 28 cases. Eura Medicophys 2005;41(3):239–42.; Левченкова В.Д. Патогенетические основы формирования детского церебрального паралича. Автореф. дис. . докт. мед. наук. М., 2001. 39 с.; Terao S., Li M., Hashizume Y., Mitsuma T., Sobue G. No transneuronal degeneration between human cortical motor neurons and spinal motor neurons. J Neurol 1999;246(1):61–2.; Yamada K., Patel U., Shrier D.A. et al. MR imaging of CNS tractopathy: wallerian and transneuronal degeneration. AJR Am J Roentgenol 1998; 171(3):813–8.; https://nmb.abvpress.ru/jour/article/view/98

  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18