Εμφανίζονται 1 - 20 Αποτελέσματα από 218 για την αναζήτηση '"заместительная терапия"', χρόνος αναζήτησης: 0,88δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
    Academic Journal

    Συνεισφορές: Авторы заявляют об отсутствии финансирования исследования.

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 14, № 2 (2025); 78-88 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 14, № 2 (2025); 78-88 ; 2587-9537 ; 2306-1278

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1541/1028; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1541/1796; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1541/1797; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1541/1798; Ota K, Ara R, Takahashi K, Toma H, Agishi T. Clinical experience with circumferentially reinforced expanded polytetrafluoroenthylene (E-PTFE) graft as a vascular access for haemodialysis. Proc Eur Dial Transplant Assoc. 1977;14:222-8.; Hedin U. Long-term results of PTFE grafts. J Vasc Access. 2015;16 Suppl 9:S87-92. doi:10.5301/jva.5000350.; Marcus P, Echeverria A, Cheung M, Kfoury E, Shim K, Lin PH. Early Cannulation of Bovine Carotid Artery Graft Reduces Tunneled Dialysis Catheter-Related Complications: A Comparison of Bovine Carotid Artery Graft Versus Expanded Polytetrafluoroethylene Grafts in Hemodialysis Access. Vasc Endovascular Surg. 2019 Feb;53(2):104-111. doi:10.1177/1538574418813595.; Гуревич М. И., Бернштен С. А. Основы гемодинамики. 1979. S232.; Клинические рекомендации Министерства Здравоохранения Российской Федерации: Заболевания артерий нижних конечностей. 2019. S17.; Agarwal R. Prevalence, determinants and prognosis of pulmonary hypertension among hemodialysis patients. Nephrol Dial Transplant. 2012 Oct;27(10):3908-14. doi:10.1093/ndt/gfr661.; Padberg FT Jr, Calligaro KD, Sidawy AN. Complications of arteriovenous hemodialysis access: recognition and management. J Vasc Surg. 2008 Nov;48(5 Suppl):55S-80S. doi:10.1016/j.jvs.2008.08.067.; Zhao T, Wang W, Lui KHW, Liu H, Li P, Xu Y, Wen D, Zhang Y. Retrospective evaluation of three types of expanded polytetrafluoroethylene grafts for upper limb vascular access. Ren Fail. 2024 Dec;46(2):2371056. doi:10.1080/0886022X.2024.2371056; Lew SQ, Nguyen BN, Ing TS. Hemodialysis vascular access construction in the upper extremity: a review. J Vasc Access. 2015 Mar-Apr;16(2):87-92. doi:10.5301/jva.5000299; Feng R, Wang S, Chang G, Zhang WW, Liu Q, Wang X, Chen W, Wang S. The feasibility of small-caliber veins for autogenous arteriovenous fistula creation: A single-center retrospective study. Front Cardiovasc Med. 2023 Jan 26;10:1070084. doi:10.3389/fcvm.2023.1070084.; Iqbal R, Bhandare D, St Louis M, Ruchi R. Think before you leap: cutaneous hypersensitivity to polytetrafluoroethylene arteriovenous graft masquerading as infection. BMJ Case Rep. 2019 Sep 6;12(9):e230401. doi:10.1136/bcr-2019-230401; Dyer-Kindy LM, Heelan Gladden AA, Gralla J, McCormick ND, Jenks C, Cooper J, Kennealey PT. Relationship between bovine carotid artery grafts for hemodialysis access and human leukocyte antigen sensitization. Hemodial Int. 2020 Jan;24(1):36-42. doi:10.1111/hdi.12784; К.М.Гринёв, С.А.Карпов , С.В.Алфёров НЕТРОМБОТИЧЕСКИЕ ОСЛОЖНЕНИЯ ПОСТОЯННОГО СОСУДИСТОГО ДОСТУПА ПРИ ПРОГРАММНОМ ГЕМОДИАЛИЗЕ И СПОСОБЫ ИХ ХИРУРГИЧЕСКОЙ КОРРЕКЦИИ. 2017. стр.342.; Bachleda P, Utíkal P, Kalinová L, Zadrazil J, Buriánková E, Kolár M. Infekce av spojky k hemodialźe zalozené ePTFE interponátem. Lécba na základe zkuseností nebo podle nálezů moderních vyetrovacích metod? [The infection of the arteriovenous hemodialysis access created with ePTFE prosthesis. Treatment based on experience or on modern examinations findings?]. Rozhl Chir. 2010 Jan;89(1):80-4. Czech.; Kingsmore DB, Stevenson KS, Jackson A, Desai SS, Thompson P, Karydis N, Franchin M, White B, Tozzi M, Isaak A. Arteriovenous Access Graft Infection: Standards of Reporting and Implications for Comparative Data Analysis. Ann Vasc Surg. 2020 Feb;63:391-398. doi:10.1016/j.avsg.2019.08.081. Epub 2019 Oct 15.; Dakour Aridi H, Arhuidese I, Scudder M, Reifsnyder T, Malas MB. A prospective randomized study of bovine carotid artery biologic graft and expanded polytetrafluoroethylene for permanent hemodialysis access. J Vasc Surg. 2018 May;67(5):1606-1612.e4. doi:10.1016/j.jvs.2017.12.058; Padberg FT Jr, Calligaro KD, Sidawy AN. Complications of arteriovenous hemodialysis access: recognition and management. J Vasc Surg. 2008 Nov;48(5 Suppl):55S-80S. doi:10.1016/j.jvs.2008.08.067; Warner ED, Corsi DR, Jimenez D, Bierowski M, Brailovsky Y, Oliveros E, Alvarez RJ, Kumar V, Bhardwaj A, Rajapreyar IN. Determinants of pulmonary hypertension in patients with end-stage kidney disease and arteriovenous access. Curr Probl Cardiol. 2024 Apr;49(4):102406. doi:10.1016/j.cpcardiol.2024.102406; Marcus P, Echeverria A, Cheung M, Kfoury E, Shim K, Lin PH. Early Cannulation of Bovine Carotid Artery Graft Reduces Tunneled Dialysis Catheter-Related Complications: A Comparison of Bovine Carotid Artery Graft Versus Expanded Polytetrafluoroethylene Grafts in Hemodialysis Access. Vasc Endovascular Surg. 2019 Feb;53(2):104-111. doi:10.1177/1538574418813595; Buggs J, Tanious A, Camba V, Albertson C, Rogers E, Lahiff D, Rashid T, Leone J, Pearson H, Huang J, Kumar A, Bowers V. Effective arteriovenous fistula alternative for hemodialysis access. Am J Surg. 2018 Dec;216(6):1144-1147. doi:10.1016/j.amjsurg.2018.08.004; Thwaites SE, Holt SG, Yii MK. Inferiority of arteriovenous grafts, in comparison to autogenous fistulas, is underestimated by standard survival measures alone. ANZ J Surg. 2021 Jan;91(1-2):162-167. doi:10.1111/ans.16472; Greenberg KI, Choi MJ. Hemodialysis Emergencies: Core Curriculum 2021. Am J Kidney Dis. 2021.77(5):796-809. doi:10.1053/j.ajkd.2020.11.024; Schmidli J, Widmer MK, Basile C, de Donato G, Gallieni M, Gibbons CP, Haage P, Hamilton G, Hedin U, Kamper L, Lazarides MK, Lindsey B, Mestres G, Pegoraro M, Roy J, Setacci C, Shemesh D, Tordoir JHM, van Loon M, Esvs Guidelines Committee, Kolh P, de Borst GJ, Chakfe N, Debus S, Hinchliffe R, Kakkos S, Koncar I, Lindholt J, Naylor R, Vega de Ceniga M, Vermassen F, Verzini F, Esvs Guidelines Reviewers, Mohaupt M, Ricco JB, Roca-Tey R. Editor's Choice - Vascular Access: 2018 Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS). Eur J Vasc Endovasc Surg. 2018 Jun;55(6):757-818. doi:10.1016/j.ejvs.2018.02.001

  6. 6
    Academic Journal

    Συνεισφορές: The study was carried out according to the state assignment of the Ministry of Science and Higher Education of the Russian Federation for the RCMG., Исследование выполнено в рамках государственного задания Министерства науки и высшего образования РФ для ФГБНУ МГНЦ.

    Πηγή: Medical Genetics; Том 24, № 1 (2025); 3-12 ; Медицинская генетика; Том 24, № 1 (2025); 3-12 ; 2073-7998

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.medgen-journal.ru/jour/article/view/2599/1842; Geberhiwot T., Wasserstein M., Wanninayake S. et al. Consensus clinical management guidelines for acid sphingomyelinase deficiency (Niemann–Pick disease types A, B and A/B). Orphanet J Rare Dis. 2023;18(1):85.; Zampieri S., Filocamo M., Pianta A. et al. SMPD1 Mutation Update: Database and Comprehensive Analysis of Published and Novel Variants: HUMAN MUTATION. Human Mutation. 2016;37(2):139–47.; Hollak C.E.M., De Sonnaville E.S.V., Cassiman D. et al. Acid sphingomyelinase (Asm) deficiency patients in The Netherlands and Belgium: Disease spectrum and natural course in attenuated patients. Molecular Genetics and Metabolism. 2012;107(3):526–33.; Wasserstein M.P., Desnick R.J., Schuchman E.H. et al. The Natural History of Type B Niemann-Pick Disease: Results From a 10-Year Longitudinal Study. Pediatrics. 2004;114(6):e672–7.; McGovern M.M., Aron A., Brodie S.E. et al. Natural history of Type A Niemann-Pick disease: Possible endpoints for therapeutic trials. Neurology. 2006;66(2):228–32.; Wasserstein M.P., Aron A., Brodie S.E. et al. Acid sphingomyelinase deficiency: prevalence and characterization of an intermediate phenotype of Niemann-Pick disease. J Pediatr. 2006;149(4):554–9.; McGovern M.M., Dionisi-Vici C., Giugliani R. et al. Consensus recommendation for a diagnostic guideline for acid sphingomyelinase deficiency. Genetics in Medicine. 2017;19(9):967–74.; Cassiman D., Packman S., Bembi B. et al. Cause of death in patients with chronic visceral and chronic neurovisceral acid sphingomyelinase deficiency (Niemann-Pick disease type B and B variant): Literature review and report of new cases. Mol Genet Metab. 2016;118(3):206–13.; Wasserstein M., Godbold J., McGovern M.M. Skeletal manifestations in pediatric and adult patients with Niemann Pick disease type B. J Inherit Metab Dis. 2013;36(1):123–7.; McGovern M.M., Wasserstein M.P., Giugliani R. et al. A prospective, cross-sectional survey study of the natural history of Niemann-Pick disease type B. Pediatrics. 2008;122(2):e341-349.; Thurberg B.L., Wasserstein M.P., Schiano T. et al. Liver and skin histopathology in adults with acid sphingomyelinase deficiency (Niemann-Pick disease type B). Am J Surg Pathol. 2012;36(8):1234–46.; Mendelson D.S., Wasserstein M.P., Desnick R.J. et al. Type B Niemann-Pick disease: findings at chest radiography, thin-section CT, and pulmonary function testing. Radiology. 2006;238(1):339–45.; Pavlů‐Pereira H., Asfaw B., Poupčtova H. et al. Acid sphingomyelinase deficiency. Phenotype variability with prevalence of intermediate phenotype in a series of twenty‐five Czech and Slovak patients. A multi‐approach study. J of Inher Metab Disea. 2005;28(2):203–27.; Quinn P.J. Sphingolipid symmetry governs membrane lipid raft structure. Biochimica et Biophysica Acta (BBA) – Biomembranes. 2014;1838(7):1922–30.; Podbielska M., Ariga T., Pokryszko-Dragan A. Sphingolipid Players in Multiple Sclerosis: Their Influence on the Initiation and Course of the Disease. IJMS. 2022;23(10):5330.; Kirkegaard T., Roth A.G., Petersen N.H.T. et al. Hsp70 stabilizes lysosomes and reverts Niemann–Pick disease-associated lysosomal pathology. Nature. 2010;463(7280):549–53.; Schuchman E.H., Desnick R.J. Types A and B Niemann-Pick disease. Molecular Genetics and Metabolism. 2017;120(1–2):27–33.; Buccinna B., Piccinini M., Prinetti A. et al. Alterations of myelinspecific proteins and sphingolipids characterize the brains of acid sphingomyelinase‐deficient mice, an animal model of Niemann–Pick disease type A. Journal of Neurochemistry. 2009;109(1):105–15.; Kinnunen P. Sphingomyelinase Activity of LDL A Link between Atherosclerosis, Ceramide, and Apoptosis? Trends in Cardiovascular Medicine. 2002;12(1):37–42.; Charruyer A., Grazide S., Bezombes C. et al. UV-C Light Induces Raft-associated Acid Sphingomyelinase and JNK Activation and Translocation Independently on a Nuclear Signal. Journal of Biological Chemistry. 2005;280(19):19196–204.; Kornhuber J., Muller C.P., Becker K.A. et al. The ceramide system as a novel antidepressant target. Trends in Pharmacological Sciences. 2014;35(6):293–304.; Da Veiga Pereira L., Desnick R.J., Adler D.A. et al.Regional assignment of the human acid sphingomyelinase gene (SMPD1) by PCR analysis of somatic cell hybrids and in situ hybridization to 11p15.1→p15.4. Genomics. 1991;9(2):229–34.; Mihaylova V., Hantke J., Sinigerska I. et al. Highly variable neural involvement in sphingomyelinase-deficient Niemann-Pick disease caused by an ancestral Gypsy mutation. Brain. 2006;130(4):1050–61.; Simonaro C.M., Desnick R.J., McGovern M.M. et al. The Demographics and Distribution of Type B Niemann-Pick Disease: Novel Mutations Lead to New Genotype/Phenotype Correlations. The American Journal of Human Genetics. 2002;71(6):1413–9.; Ferlinz K., Hurwitz R., Vielhaber G. et al. Occurrence of two molecular forms of human acid sphingomyelinase. Biochemical Journal. 1994;301(3):855–62.; McGovern M.M., Pohl-Worgall T., Deckelbaum R.J. et al. Lipid abnormalities in children with types A and B Niemann Pick disease. J Pediatr. 2004;145(1):77–81.; Wang R., Qin Z., Huang L. et al. SMPD1 expression profile and mutation landscape help decipher genotype–phenotype association and precision diagnosis for acid sphingomyelinase deficiency. Hereditas. 2023;160(1):11.; Dardis A., Zampieri S., Filocamo M. et al. Functionalin vitro characterization of 14SMPD1 mutations identified in Italian patients affected by Niemann Pick Type B disease. Hum Mutat. 2005;26(2):164–164.; Pittis M.G., Ricci V., Guerci V.I. et al. Acid sphingomyelinase: Identification of nine novel mutations among Italian Niemann Pick type B patients and characterization of in vivo functional in-frame start codon: MUTATIONS IN BRIEF. Hum Mutat. 2004;24(2):186–7.; Jones I., He X., Katouzian F., Darroch P.I., Schuchman E.H. Characterization of common SMPD1 mutations causing types A and B Niemann-Pick disease and generation of mutation-specific mouse models. Mol Genet Metab. 2008;95(3):152–62.; Simonaro C.M., Park J.H., Eliyahu E. et al. Imprinting at the SMPD1 Locus: Implications for Acid Sphingomyelinase–Deficient Niemann-Pick Disease. The American Journal of Human Genetics. 2006;78(5):865–70.; Oliva P., Schwarz M., Mechtler T.P. et al. Importance to include differential diagnostics for acid sphingomyelinase deficiency (ASMD) in patients suspected to have to Gaucher disease. Molecular Genetics and Metabolism. 2023;139(1):107563.; Piraud M., Pettazzoni M., Lavoie P. et al. Contribution of tandem mass spectrometry to the diagnosis of lysosomal storage disorders. J of Inher Metab Disea. 2018;41(3):457–77.; Kuchar L., Sikora J., Gulinello M.E. et al. Quantitation of plasmatic lysosphingomyelin and lysosphingomyelin-509 for differential screening of Niemann-Pick A/B and C diseases. Anal Biochem. 2017; 525: 73-77.; Voorink-Moret M., Goorden S.M.I., Van Kuilenburg A.B.P. et al. Rapid screening for lipid storage disorders using biochemical markers. Expert center data and review of the literature. Molecular Genetics and Metabolism. 2018;123(2):76–84.; Breilyn M.S., Zhang W., Yu C., Wasserstein M.P. Plasma lyso-sphingomyelin levels are positively associated with clinical severity in acid sphingomyelinase deficiency. Mol Genet Metab Rep. 2021;28:100780.; Diaz G.A., Jones S.A., Scarpa M. et al. One-year results of a clinical trial of olipudase alfa enzyme replacement therapy in pediatric patients with acid sphingomyelinase deficiency. Genet Med. 2021;23(8):1543–50.; Wasserstein M., Lachmann R., Hollak C. et al. A randomized, placebo-controlled clinical trial evaluating olipudase alfa enzyme replacement therapy for chronic acid sphingomyelinase deficiency (ASMD) in adults: One-year results. Genetics in Medicine. 2022;24(7):1425–36.; Hollak C.E., van Weely S., van Oers M.H., Aerts J.M. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest. 1994;93(3):1288–92.; Boot R.G., Renkema G.H., Verhoek M. et al. The human chitotriosidase gene. Nature of inherited enzyme deficiency. J Biol Chem. 1998;273(40):25680–5.; Porter F.D., Scherrer D.E., Lanier M.H. et al. Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease. Sci Transl Med. 2010;2(56):56ra81.; Romanello M., Zampieri S., Bortolotti N. et al. Comprehensive Evaluation of Plasma 7-Ketocholesterol and Cholestan-3β,5α,6β-Triol in an Italian Cohort of Patients Affected by Niemann-Pick Disease due to NPC1 and SMPD1 Mutations. Clin Chim Acta. 2016;455:39–45.; Di Rocco M., Vici C.D., Burlina A. et al. Screening for lysosomal diseases in a selected pediatric population: the case of Gaucher disease and acid sphingomyelinase deficiency. Orphanet J Rare Dis. 2023;18(1):197.; Hickey R.E, Baker J. Newborn screening for acid sphingomyelinase deficiency in Illinois: A single center’s experience. J of Inher Metab Disea. J Inherit Metab Dis. 2024;47(6):1363-1370.; McGovern M.M., Wasserstein M.P., Kirmse B. et al. Novel first-dose adverse drug reactions during a phase I trial of olipudase alfa (recombinant human acid sphingomyelinase) in adults with Niemann–Pick disease type B (acid sphingomyelinase deficiency). Genetics in Medicine. 2016;18(1):34–40.; Wasserstein M.P., Jones S.A., Soran H. et al. Successful within-patient dose escalation of olipudase alfa in acid sphingomyelinase deficiency. Mol Genet Metab. 2015;116(1–2):88–97.; O’Neill R.S., Belousova N., Malouf M.A. Pulmonary Type B Niemann-Pick Disease Successfully Treated with Lung Transplantation. Case Reports in Transplantation. 2019;2019:1–5.; Mannem H., Kilbourne S., Weder M. Lung transplantation in a patient with Niemann–Pick disease. The Journal of Heart and Lung Transplantation. 2019;38(1):100–1.; Uyan Z.S., Karadağ B., Ersu R. et al. Early pulmonary involvement in Niemann‐Pick type B disease: Lung lavage is not useful. Pediatric Pulmonology. 2005;40(2):169–72.; Nicholson A.G., Wells A.U., Hooper J. et al. Successful Treatment of Endogenous Lipoid Pneumonia due to Niemann–Pick Type B Disease with Whole-Lung Lavage. Am J Respir Crit Care Med. 2002;165(1):128–31.; Jin H.K., Carter J.E., Huntley G.W., Schuchman E.H. Intracerebral transplantation of mesenchymal stem cells into acid sphingomyelinase-deficient mice delays the onset of neurological abnormalities and extends their life span. J Clin Invest. 2002;109(9):1183–91.; Barbon C.M., Ziegler R.J., Li C. et al. AAV8-mediated hepatic expression of acid sphingomyelinase corrects the metabolic defect in the visceral organs of a mouse model of Niemann-Pick disease. Mol Ther. 2005;12(3):431–40.; Miranda S.R., Erlich S., Friedrich V.L. et al. Hematopoietic stem cell gene therapy leads to marked visceral organ improvements and a delayed onset of neurological abnormalities in the acid sphingomyelinase deficient mouse model of Niemann-Pick disease. Gene Ther. 2000;7(20):1768–76.; Samaranch L., Perez-Canamas A., Soto-Huelin B. et al. Adeno-associated viral vector serotype 9–based gene therapy for Niemann-Pick disease type A. Sci Transl Med. 2019;11(506):eaat3738.; Beretta G., Shala A.L. Impact of Heat Shock Proteins in Neurodegeneration: Possible Therapeutical Targets. Annals of Neurosciences. 2022;29(1):71–82.

  7. 7
    Academic Journal

    Πηγή: CHILDREN INFECTIONS; Том 24, № 1 (2025); 43-50 ; ДЕТСКИЕ ИНФЕКЦИИ; Том 24, № 1 (2025); 43-50 ; 2618-8139 ; 2072-8107

    Περιγραφή αρχείου: application/pdf

    Relation: https://detinf.elpub.ru/jour/article/view/1032/705; Проект клинических рекомендаций по ведению и терапии новорожденных с нарушением полового развития. 2016.; Никитина И.Л., Е.К. Кудряшова, А.М. Тодиева и др. К вопросу о своевременной диагностике нарушений формирования пола. Лечащий врач. 2020; 3:17—21. DOI 10.26295/OS.2020.83.45.002.; Опарина Н.В., Райгородская Н.Ю., Латышев О.Ю. и др. Тканевой гоносомный мозаицизм у пациентов с нарушением формирования пола, связанным с аномалиями дифференцировки гонад. Генетика. 2021. 57(11):306—1317. DOI:10.31857/S0016675821110102.; Лиссауэр Т., А.A. Фанарофф, Л. Майалл, Дж. Фанарофф; пер. под ред. И.И. Рюминой. Наглядная неонатология. ГЭОТАР-Медиа, 2019:304.; Володин Н.Н., Д.Н. Дегтярев и др. Неонатология: национальное руководство: в 2 т. Том 2. 2-е изд., перераб. и доп. Москва: ГЭОТАР-Медиа, 2023:752. DOI:10.33029/9704-7828-8-NNG-2023-1-752; Gardner, R.J.M. and Amor, D.J. Gardner and Sutherland’s Chromosome Abnormalities and Genetic Counseling. 5th Edition, Oxford University Press, Oxford. 2018. DOI:10.1093/med/9780199329007.001.0001.; Мокрышева Н.Г., Мельниченко Г.А., Адамян Л.В., Трошина Е.А., Молашенко Н.В., Сазонова А.И. и др. Клинические рекомендации «врожденная дисфункция коры надпочечников (адреногенитальный синдром)». Ожирение и метаболизм. 2021; 18(3): 345—382. DOI:10.14341/omet12787; Christine A. Gleason Avery’s Diseases of the Newborn, 11th Edition. Elsilver Copyright. 2024:1215-1237.; De Mello Santos T, Hinton BT. We, the developing rete testis, efferent ducts, and Wolffian duct, all hereby agree that we need to connect. Andrology. 2019 Sep; 7(5):581—587. DOI:10.1111/andr.12631.; Ferrari MTM, Silva ESDN, Nishi MY, Batista RL, Mendonca BB, Domenice S. Testicular differentiation in 46,XX DSD: an overview of genetic causes. Front Endocrinol (Lausanne). 2024 Apr 24; 15:1385901. DOI:10.3389/fendo.2024.1385901.; Jia S, Zhao F. Single-cell transcriptomic profiling of the neonatal oviduct and uterus reveals new insights into upper Müllerian duct regionalization. FASEB J. 2024 May 15; 38(9):e23632. DOI:10.1096/fj.202400303R.; Herlin MK. Genetics of Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome: advancements and implications. Front Endocrinol (Lausanne). 2024 Apr 18; 15:1368990. DOI:10.3389/fendo.2024.1368990.; Baetens D, Verdin H, De Baere E, Cools M. Update on the genetics of differences of sex development (DSD). Best Pract Res Clin Endocrinol Metab. 2019 Jun; 33(3):101271. DOI:10.1016/j.beem.2019.04.005.; Mäkelä JA, Koskenniemi JJ, Virtanen HE, Toppari J. Testis Development. Endocr Rev. 2019 Aug 1; 40(4):857—905. DOI:10.1210/er.2018-00140.; Rey RA. Clinical tools in the diagnosis of disorders of sex development: a switch from the hormonal to the genetics laboratory? Adv Lab Med. 2021 Nov 3; 2(4):463—467. DOI:10.1515/almed-2021-0072.; Josso N, Rey RA. What Does AMH Tell Us in Pediatric Disorders of Sex Development? Front Endocrinol (Lausanne). 2020 Sep 8; 11:619. DOI:10.3389/fendo.2020.00619.; Harrison SM, Bush NC, Wang Y, Mucher ZR, Lorenzo AJ, Grimsby GM et al. Insulin-Like Peptide 3 (INSL3) Serum Concentration During Human Male Fetal Life. Front Endocrinol (Lausanne). 2019 Sep 4; 10:596. DOI:10.3389/fendo.2019.00596; Grinspon RP, Bergadá I, Rey RA. Male Hypogonadism and Disorders of Sex Development. Front Endocrinol (Lausanne). 2020 Apr 15; 11:211. DOI:10.3389/fendo.2020.00211.; Auer MK, Nordenström A, Lajic S, Reisch N. Congenital adrenal hyperplasia. Lancet. 2023 Jan 21; 401(10372):227—244. DOI:10.1016/S0140-6736(22)01330-7.; Дедов И.И., Мельниченко Г.А. Эндокринология: национальное руководство. 2-е изд., перераб. и доп. Москва: ГЭОТАР-Медиа, 2021: 1112.; McElreavey K, Bashamboo A. Monogenic Forms of DSD: An Update. Horm Res Paediatr. 2023; 96(2):144—168. DOI:10.1159/000521381; Van den Bergen JA, Robevska G, Eggers S, Riedl S, Grover SR, Bergman PBet al. Analysis of variants in GATA4 and FOG2/ZFPM2 demonstrates benign contribution to 46,XY disorders of sex development. Mol Genet Genomic Med. 2020 Mar; 8(3):e1095. DOI:10.1002/mgg3.1095.; Mazen I, Mekkawy M, Kamel A, Essawi M, Hassan H, Abdel-Hamid M et al. Advances in genomic diagnosis of a large cohort of Egyptian patients with disorders of sex development. Am J Med Genet A. 2021 Jun; 185(6):1666—1677. DOI:10.1002/ajmg.a.62129; Guerrero-Fernández J, Azcona San Julián C, Barreiro Conde J, Bermúdez de la Vega JA, Carcavilla Urquí A, Castaño González LA et al. Guía de actuación en las anomalías de la diferenciación sexual (ADS) / desarrollo sexual diferente (DSD) [Management guidelines for disorders / different sex development (DSD)]. An Pediatr (Engl Ed). 2018 Nov; 89(5):315.e1— 315.e19. Spanish. DOI:10.1016/j.anpedi.2018.06.009.; Liang Y, Wu H, He X, He X. Case Report: Aarskog-scott syndrome caused by FGD1 gene variation: A family study. Front Genet. 2022 Aug 16; 13:932073. DOI:10.3389/fgene.2022.932073.; Kline AD, Moss JF, Selicorni A, Bisgaard AM, Deardorff MA et al. Diagnosis and management of Cornelia de Lange syndrome: first international consensus statement. Nat Rev Genet. 2018 Oct; 19(10):649—666. DOI:10.1038/s41576-018-0031-0.; Smith CM, Guinon K, Bachir S, Tise CG. Fetal phenotype and diagnosis of autosomal dominant Robinow syndrome due to novel DVL1 variant. Prenat Diagn. 2024 Jul 9. DOI:10.1002/pd.6632.; Sanghera AS, Zeppieri M. Smith-Lemli-Opitz Syndrome. 2024 Jan 11. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan.; Becker D, Wain LM, Chong YH, et al. Topical dihydrotestosterone to treat micropenis secondary to partial androgen insensitivity syndrome (PAIS) before, during, and after puberty — A case series. J Pediatr Endocrinol Metab. 2016; 29:173—7. DOI:10.1515/jpem-2015-0175.; Simpson H, Hughes I. Congenital adrenal hyperplasia. Med (United Kingdom) 2021; 49:507—11. DOI:10.1016/jmpmed.2021.05.012.; Ciocca G, Limoncin E, Carosa E, Di Sante S, Gravina GL, Mollaioli D et al. Is Testosterone a Food for the Brain? Sex Med Rev. 2016 Jan; 4(1):15—25. DOI:10.1016/j.sxmr.2015.10.007.; Cools M, Nordenström A, Robeva R, Hall J, Westerveld P, Flück C, et al.; COST Action BM1303 working group 1. Caring for individuals with a difference of sex development (DSD): a Consensus Statement. Nat Rev Endocrinol. 2018 Jul; 14(7):415—429. DOI:10.1038/s41574-018-0010-8.; Profeta G, Micangeli G, Tarani F, Paparella R, Ferraguti G, Spaziani M et al. Sexual Developmental Disorders in Pediatrics. Clin Ter. 2022 Sep-Oct; 173(5):475—488. DOI:10.7417/CT.2022.2466.; Van Der Straaten S, Springer A, Zecic A, et al. The External Genitalia Score (EGS): A European Multicenter Validation Study. J Clin Endocrinol Metab. 2020; 105. DOI:10.1210/clinem/dgz142.; Саприна Т.В., М.А. Подпорина, Ю.С. Рафикова, Е.В. Горбатенко; Неонатальная эндокринология. Аспекты клиники, диагностики, лечения: учебное пособие. Под ред. Т.В. Саприной. 2-е изд., перераб. и доп. Томск: Изд-во СибГМУ, 2024:236.; Lee PA, Fuqua JS, Houk CP, Kogan BA, Mazur T, Caldamone A. Individualized care for patients with intersex (disorders/differences of sex development): part I. J Pediatr Urol. 2020 Apr; 16(2):230—237. DOI:10.1016/j.jpurol.2020.02.013.; GarcíaAcero M, Moreno O, Suárez F, Rojas A. Disorders of Sexual Development: Current Status and Progress in the Diagnostic Approach. Curr Urol. 2020 Jan; 13(4):169—178. DOI:10.1159/000499274.; Yankulov K (2015) Book review: Epigenetics (second edition, eds. Allis, Caparros, Jenuwein, Reinberg). Front. Genet. 6:315. DOI:10.3389/fgene.2015.00315.; Fisher AD, Ristori J, Fanni E, Castellini G, Forti G, Maggi M. Gender identity, gender assignment and reassignment in individuals with disorders of sex development: a major of dilemma. J Endocrinol Invest. 2016 Nov; 39(11):1207—1224. DOI:10.1007/s40618-016-0482-0.; Адамян Л.В., Сибирская Е.В., Пивазян Л.Г., Матевосян Т.А., Бадахова А.Б., Соколов А.Д. Реализация репродуктивной функции у пациенток с нарушением формирования пола (обзор литературы). Проблемы репродукции. 2022; 28(2):3339. DOI:10.17116/repro2022280213; Wisniewski AB, Batista RL, Costa EMF, Finlayson C, Sircili MHP, Dénes FT et al. Management of 46,XY Differences/Disorders of Sex Development (DSD) Throughout Life. Endocr Rev. 2019 Dec 1; 40(6):1547—1572. DOI:10.1210/er.2019-00049.; Vora KA, Srinivasan S. A guide to differences/disorders of sex development/intersex in children and adolescents. Aust J Gen Pract. 2020 Jul; 49(7):417—422. DOI:10.31128/AJGP-03-20-5266.; Raza J, Zaidi SZ, Warne GL. Management of disorders of sex development — With a focus on development of the child and adolescent through the pubertal years. Best Pract Res Clin Endocrinol Metab. 2019 Jun; 33(3):101297. DOI:10.1016/j.beem.2019.101297.; Hemesath TP, de Paula LCP, Carvalho CG, Leite JCL, Guaragna-Filho G, Costa EC. Controversies on Timing of Sex Assignment and Surgery in Individuals With Disorders of Sex Development: A Perspective. Front Pediatr. 2019 Jan 10; 6:419.; Cañete Estrada R, Gil Campos M, Cañete Vázquez MD. Pubertad retrasada. Hipogonadismos. Protoc diagn ter pediatr. 2019;1:253-66.; https://detinf.elpub.ru/jour/article/view/1032

  8. 8
  9. 9
  10. 10
  11. 11
    Academic Journal

    Πηγή: Mother and Baby in Kuzbass; № 1 (2024): март; 101-104 ; Мать и Дитя в Кузбассе; № 1 (2024): март; 101-104 ; 2542-0968 ; 1991-010X

    Περιγραφή αρχείου: text/html; application/pdf

  12. 12
    Academic Journal

    Συνεισφορές: The research was supported by the non-commercial federal state scientific organization — the Russian Science Foundation (FundRef ID 10.13039/501100006769), under grant No. 14-25-00052., Исследование выполнено при поддержке некоммерческой федеральной государственной научной организации — Российского научного фонда (FundRef ID 10.13039/501100006769), грант № 14-25-00052.

    Πηγή: Urology Herald; Том 12, № 4 (2024); 14-22 ; Вестник урологии; Том 12, № 4 (2024); 14-22 ; 2308-6424 ; 10.21886/2308-6424-2024-12-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.urovest.ru/jour/article/view/916/584; Price MA, Alvarado BE, Rosendaal NTA, Câmara SMA, Pirkle CM, Velez MP. Early and surgical menopause associated with higher Framingham Risk Scores for cardiovascular disease in the Canadian Longitudinal Study on Aging. Menopause. 2021;28(5):484-90. DOI:10.1097/GME.0000000000001729; Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, Bremner WJ, McKinlay JB. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87(2):589-98. DOI:10.1210/jcem.87.2.8201; Mulligan T, Frick MF, Zuraw QC, Stemhagen A, McWhirter C. Prevalence of hypogonadism in males aged at least 45 years: the HIM study. Int J Clin Pract. 2006;60(7):762-9. DOI:10.1111/j.1742-1241.2006.00992.x; Boden WE, Miller MG, McBride R, Harvey C, Snabes MC, Schmidt J, McGovern ME, Fleg JL, Desvigne-Nickens P, Anderson T, Kashyap M, Probstfield JL.Testosterone concentrations and risk of cardiovascular events in androgen-deficient men with atherosclerotic cardiovascular disease. Am Heart J. 2020;224:65-76. DOI:10.1016/j.ahj.2020.03.016; Islam RM, Bell RJ, Handelsman DJ, McNeil JJ, Nelson MR, Reid CM, Tonkin AM, Wolfe RS, Woods RL, Davis SR. Associations between blood sex steroid concentrations and risk of major adverse cardiovascular events in healthy older women in Australia: a prospective cohort substudy of the ASPREE trial. Lancet Healthy Longev. 2022;3(2):e109-e118. DOI:10.1016/S2666-7568(22)00001-0; Mederos MA, Bernie AM, Scovell JM, Ramasamy R. Can Serum Testosterone Be Used as a Marker of Overall Health? Rev Urol. 2015;17(4):226-30. PMCID: PMC473566; Kirby M, Hackett G, Ramachandran S. Testosterone and the Heart. Eur Cardiol. 2019;14(2):103-10. DOI:10.15420/ecr.2019.13.1; Veerasamy M, Bagnall A, Neely D, Allen J, Sinclair H, Kunadian V. Endothelial dysfunction and coronary artery disease: a state-of-the-art review. Cardiol Rev. 2015;23(3):119-29. DOI:10.1097/CRD.0000000000000047; Khripun IA, Vorobyev SV, Morgunov MN, Kogan MI. Endothelial function in men with type 2 diabetes without clinical signs of cardiovascular disease. Diabetes mellitus. 2016;19(5):383-7. DOI:10.14341/DM8017; Shi Y, Vanhoutte PM. Macro- and microvascular endothelial dysfunction in diabetes. J Diabetes. 2017;9(5):434-49. DOI:10.1111/1753-0407.12521; Cyr AR, Huckaby LV, Shiva SS, Zuckerbraun BS. Nitric oxide and endothelial dysfunction. Crit Care Clin. 2020;36(2):307-21. DOI:10.1016/j.ccc.2019.12.009; Dubsky M, Veleba J, Sojakova D, Marhefkova N, Fejfarova V, Jude EB. Endothelial dysfunction in diabetes mellitus: new insights. Int J Mol Sci. 2023;24(13):10705. DOI:10.3390/ijms241310705; Lorigo M, Mariana M, Lemos MC, Cairrao E. Vascular mechanisms of testosterone: the nongenomic point of view. J Steroid Biochem Mol Biol. 2020;196:105496. DOI:10.1016/j.jsbmb.2019.105496; Hotta Y, Kataoka T, Kimura K. Testosterone deficiency and endothelial dysfunction: nitric oxide, asymmetric dimethylarginine, and endothelial progenitor cells. Sex Med Rev. 2019;7(4):661-68. DOI:10.1016/j.sxmr.2019.02.005; Sansone A, Rastrelli G, Cignarelli A, de Rocco Ponce M, Condorelli RA, Giannetta E, Maseroli E, Pinto S, Salzano C, Santi D. Effect of treatment with testosterone on endothelial function in hypogonadal men: a systematic review and meta-analysis. Int J Impot Res. 2020;32(4):379-86. DOI:10.1038/s41443-019-0163-6; Online Mendelian Inheritance in Man® (OMIM®). OMIM® Database [Internet]. *313700 Androgen receptor (AR) gene-phenotype relationships. Baltimore (MD), the USA: McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine. ©1966 – 2023. [cited 2022 Oct 17]. Available from: https://www.omim.org/entry/313700.; Gerald T, Raj G. Testosterone and the androgen receptor. Urol Clin North Am. 2022;49(4):603-14. DOI:10.1016/j.ucl.2022.07.004; Aurilio G, Cimadamore A, Mazzucchelli R, Lopez-Beltran A, Verri E, Scarpelli M, Massari F, Cheng L, Santoni M, Montironi R. Androgen receptor signaling pathway in prostate cancer: from genetics to clinical applications. Cells. 2020;9(12):2653. DOI:10.3390/cells9122653; Walker WH. Androgen actions in the testis and the regulation of spermatogenesis. ADV Exp Med Biol. 2021;1288:175-203. DOI:10.1007/978-3-030-77779-1_9; McEwan IJ, Brinkmann AO. Androgen physiology: receptor and metabolic disorders. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al. editor(s). Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2021.; Zitzmann M, Brune M, Kornmann B, Gromoll J, von Eckardstein S, von Eckardstein A, Nieschlag E. The CAG repeat polymorphism in the AR gene affects high density lipoprotein cholesterol and arterial vasore-activity. J Clin Endocrinol Metab. 2001;86(10):4867-73. DOI:10.1210/jcem.86.10.7889; Khripun IA, Vorobyev SV, Kogan MI. Association of the polymorphism in the androgen receptor gene and endothelial function in men with type 2 diabetes. Diabetes mellitus. 2015;18(4):35-40. DOI:10.14341/DM7622; Stanworth RD, Akhtar S, Channer KS, Jones TH. The role of androgen receptor CAG repeats polymorphism and other factors which affect the clinical response to testosterone replacement in metabolic syndrome and type 2 diabetes: TIMES2 substudy. Eur J Endocrinol. 2013;170(2):193-200. DOI:10.1530/EJE-13-0703; Khripun IA, Morgunov MN, Vorobyev SV, Terentiev VP, Kogan MI. Endothelial dysfuncton and 2 type diabetes: novel markers for earlier diagnostics. Cardiovascular Therapy and Prevention. 2016;15(5):59-63. DOI:10.15829/1728-8800-2016-5-59-63; Heald AH, Yadegar Far G, Livingston M, Fachim H, Lunt M, Narayanan RP, Siddals K, Moreno G, Jones R, Malipatil N, Rutter M, Gibson M, Donn R, Hackett G, Jones H. Androgen receptor-reduced sensitivity is associated with increased mortality and poorer glycemia in men with type 2 diabetes mellitus: a prospective cohort study. Cardiovasc Endocrinol Metab. 2020;10(1):37-44. DOI:10.1097/XCE.0000000000000230; Möhlig M, Arafat AM, Osterhoff MA, Isken F, Weickert MO, Spranger J, Pfeiffer AF, Schöfl, C. Androgen receptor CAG repeat length polymorphism modifies the impact of testosterone on insulin sensitivity in men. European journal of endocrinology. 2011;164(6):1013-8. DOI:10.1530/EJE-10-1022; Malavige LS, Jayawickrama S, Ranasinghe P, Levy JC. Androgen receptor CAG repeat polymorphism is not associated with insulin resistance and diabetes among South Asian males. BMC Res Notes. 2017;10(1):685. DOI:10.1186/s13104-017-3035-5; Yang D, Tian J, Zhang X, Yu J, Li S, Wang Z, Ma Y, Liu L, Huang Q, Ma R, Wang J, Li X, Jiang M. The polymorphic CAG repeats in exon 1 of androgen receptor is associated with level of HDL cholesterol and hypertension in Chinese middle-aged and elderly men. Clin Endocrinol (Oxf). 2017;87(1):29-34. DOI:10.1111/cen.13326; Khripun IА, Vorobyev SV. Endothelial function status in hypogonadal men. Diabetes Mellitus. 2021;24(5):440-7. DOI:10.14341/DM12780; https://www.urovest.ru/jour/article/view/916

  13. 13
    Academic Journal

    Συνεισφορές: The article was conducted with the support of Chiesi Pharmaceuticals LLC, Статья опубликована при поддержке Общества с ограниченной ответственностью «Кьези Фармасьютикалс»

    Πηγή: PULMONOLOGIYA; Том 34, № 2 (2024); 225-229 ; Пульмонология; Том 34, № 2 (2024); 225-229 ; 2541-9617 ; 0869-0189

    Περιγραφή αρχείου: application/pdf

    Relation: https://journal.pulmonology.ru/pulm/article/view/4472/3643; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4472/2496; https://journal.pulmonology.ru/pulm/article/downloadSuppFile/4472/2606; Министерство здравоохранения Российской Федерации. Федеральный закон «Об основах охраны здоровья граждан в Российской Федерации» от 21.11.11 № 323-ФЗ. Ст. 44. Медицинская помощь гражданам, которым предоставляются государственные гарантии в виде обеспечения лекарственными препаратами и специализированными продуктами лечебного питания. Доступно на: https://minzdrav.gov.ru/documents/7025; Stoller J.K., Sandhaus R.A., Turino G. et al. Delay in diagnosis of alpha1-antitrypsin deficiency: a continuing problem. Chest. 2005; 128 (4): 1989–1994. DOI:10.1378/chest.128.4.1989.; Campos M.A., Wanner A., Zhang G., Sandhaus R.A. Trends in the diagnosis of symptomatic patients with alpha1-antitrypsin deficiency between 1968 and 2003. Chest. 2005; 128 (3): 1179–1186. DOI:10.1378/chest.128.3.1179.; de Serres F.J., Blanco I., Fernández-Bustillo E. PI S and PI Z alpha-1 antitrypsin deficiency worldwide: a review of existing genetic epidemiological data. Monaldi Arch. Chest Dis. 2007; 67 (4): 184–208. DOI:10.4081/monaldi.2007.476.; de Serres F.J. Worldwide racial and ethnic distribution of alpha1-antitrypsin deficiency: summary of an analysis of published genetic epidemiologic surveys. Chest. 2002; 122 (5): 1818–1829. DOI:10.1378/chest.122.5.1818.; American Thoracic Society; European Respiratory Society. American Thoracic Society/European Respiratory Society statement: standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency. Am. J. Respir. Crit. Care Med. 2003; 168 (7): 818–900. DOI:10.1164/rccm.168.7.818.; Black L.F., Kueppers F. Alpha1-antitrypsin deficiency in nonsmokers. Am. Rev. Respir. Dis. 1978; 117 (3): 421–428. DOI:10.1164/arrd.1978.117.3.421.; Gishen P., Saunders A.J., Tobin M.J., Hutchison D.C. Alpha 1-antitrypsin deficiency: the radiological features of pulmonary emphysema in subjects of Pi type Z and Pi type SZ: a survey by the British Thoracic Association. Clin. Radiol. 1982; 33 (4): 371–377. DOI:10.1016/s0009-9260(82)80297-3.; Cuvelier A., Muir J.F., Hellot M.F. et al. Distribution of alpha(1)-antitrypsin alleles in patients with bronchiectasis. Chest. 2000; 117 (2): 415–419. DOI:10.1378/chest.117.2.415.; Sharp H.L., Bridges R.A., Krivit W., Freier E.F. Cirrhosis associated with alpha-1-antitrypsin deficiency: a previously unrecognized inherited disorder. J. Lab. Clin. Med. 1969; 73 (6): 934–939. Available at: https://www.translationalres.com/article/0022-2143(69)90151-6/abstract; Mahadeva R., Chang W.S., Dafforn T.R. et al. Heteropolymerization of S, I, and Z alpha1-antitrypsin and liver cirrhosis. J. Clin. Invest. 1999; 103 (7): 999–1006. DOI:10.1172/JCI4874.; Franciosi A.N., Ralph J., O'Farrell N.J. et al. Alpha-1 antitrypsin deficiency-associated panniculitis. J. Am. Acad. Dermatol. 2022; 87 (4): 825–832. DOI:10.1016/j.jaad.2021.01.074.; Schievink W.I., Björnsson J., Parisi J.E., Prakash U.B. Arterial fibromuscular dysplasia associated with severe alpha 1-antitrypsin deficiency. Mayo Clin. Proc. 1994; 69 (11): 1040–1043. DOI:10.1016/s0025-6196(12)61369-x.; Cox D.W. Alpha 1-antitrypsin: a guardian of vascular tissue. Mayo Clin. Proc. 1994; 69 (11): 1123–1124. DOI:10.1016/s0025-6196(12)61385-8.; Miravitlles M., Dirksen A., Ferrarotti I. et al. European Respiratory Society statement: diagnosis and treatment of pulmonary disease in α1-antitrypsin deficiency. Eur. Respir. J. 2017; 50 (5): 1700610. DOI:10.1183/13993003.00610-2017.; Sandhaus R.A., Turino G., Brantly M.L. et al. The diagnosis and management of alpha-1-antitrypsin deficiency in the adult. Chronic Obstr. Pulm. Dis. 2016; 3 (3): 668–682. DOI:10.15326/jcopdf.3.3.2015.0182.; Buist A.S., Burrows B., Eriksson S. et al. The natural history of air-flow obstruction in PiZ emphysema. Report of an NHLBI workshop. Am. Rev. Respir. Dis. 1983; 127 (2): S43–45. DOI:10.1164/arrd.1983.127.2P2.S43.; Piitulainen E., Eriksson S. Decline in FEV1 related to smoking status in individuals with severe alpha1-antitrypsin deficiency (PiZZ). Eur. Respir. J. 1999; 13 (2): 247–251. DOI:10.1183/09031936.99.13224799.; Stoller J.K., Aboussouan L.S. Alpha1-antitrypsin deficiency. 5: Intravenous augmentation therapy: current understanding. Thorax. 2004; 59 (8): 708–712. DOI:10.1136/thx.2003.006544.; McElvaney N.G., Burdon J., Holmes M. et al. Long-term efficacy and safety of α1 proteinase inhibitor treatment for emphysema caused by severe α1 antitrypsin deficiency: an open-label extension trial (RAPID-OLE). Lancet Respir. Med. 2017; 5 (1): 51–60. DOI:10.1016/S2213-2600(16)30430-1.; https://journal.pulmonology.ru/pulm/article/view/4472

  14. 14
    Academic Journal

    Πηγή: Meditsinskiy sovet = Medical Council; № 20 (2024); 116-122 ; Медицинский Совет; № 20 (2024); 116-122 ; 2658-5790 ; 2079-701X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.med-sovet.pro/jour/article/view/8757/7689; Notter RH. Lung surfactants: basic science and clinical applications. New York: Marcel Dekker; 2000. 464 p. Available at: https://doi.org/10.1201/9781482270426.; Bernhard W. Lung surfactant: Function and composition in the context of development and respiratory physiology. Ann Anat. 2016;208:146-150. https://doi.org/10.1016/j.aanat.2016.08.003.; Hamm H, Fabel H, Bartsch W. The surfactant system of the adult lung: physiology and clinical perspectives. Clin Investig. 1992;70(8):637-657. https://doi.org/10.1007/bf00180279.; Clements JA, Avery ME. Lung surfactant and neonatal respiratory distress syndrome. Am J Respir Crit Care Med. 1998;157(4):59-66. https://doi.org/10.1164/ajrccm.157.4.nhlb1-1.; Johansson J, Curstedt T. Molecular structures and interactions of pulmonary surfactant components. Eur J Biochem. 1997;244(3):675-693. https://doi.org/10.1111/j.1432-1033.1997.00675.x.; Goss V, Hunt AN, Postle AD. Regulation of lung surfactant phospholipid synthesis and metabolism. Biochim Biophys Acta. 2013;1831(2):448-458. https://doi.org/10.1016/j.bbalip.2012.11.009.; Van Golde LM, Batenburg JJ, Robertson B. The pulmonary surfactant system: biochemical aspects and functional significance. Physiol Rev. 1988;68(2):374-455. https://doi.org/10.1152/physrev.1988.68.2.374.; Veldhuizen R, Nag K, Orgeig S, Possmayer F. The role of lipids in pulmonary surfactant. Biochim Biophys Acta. 1998;1408(2-3):90-108. https://doi.org/10.1016/s0925-4439(98)00061-1.; Perez-Gil J. Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions. Biochim Biophys Acta. 2008;1778(7-8):1676-1695. https://doi.org/10.1016/j.bbamem.2008.05.003.; Carreto-Binaghi LE, Aliouat el M, Taylor ML. Surfactant proteins, SP-A and SP-D, in respiratory fungal infections: their role in the inflammatory response. Respir Res. 2016;17(1):66. https://doi.org/10.1186/s12931-016-0385-9.; King BA, Kingma PS. Surfactant protein D deficiency increases lung injury during endotoxemia. Am J Respir Cell Mol Biol. 2011;44(5):709-715. https://doi.org/10.1165/rcmb.2009-0436oc.; Гасанов СШ, Мирзоева ИА, Алджанова СБ, Гасымова ЕА, Гулиева ГМ. Современные представления о функциях белков легочного сурфактанта. Медицинские новости. 2019;293(2):44-46. Режим доступа: https://www.mednovosti.by/journal.aspx?article=8599.; Wright JR. Immunomodulatory functions of surfactant. Physiol Rev. 1997;77(4):931-962. https://doi.org/10.1152/physrev.1997.77.4.931.; Greene KE, Wright JR, Steinberg KP, Ruzinski JT, Caldwell E, Wong WB et al. Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am J Respir Crit Care Med. 1999;160(6):1843-1850. https://doi.org/10.1164/ajrccm.160.6.9901117.; Розенберг ОА. Препараты легочного сурфактанта при острых и хронических заболеваниях легких (Часть I). Общая реаниматология. 2014;10(4):51-73. https://doi.org/10.15360/1813-9779-2014-4-51-73.; Morley CJ, Bangham AD, Miller N, Davis JA. Dry artificial lung surfactant and its effect on very premature babies. Lancet. 1981;1(8211):64-68. https://doi.org/10.1016/s0140-6736(81)90002-7.; Deshpande S, Suryawanshi P, Ahya K, Maheshwari R, Gupta S. Surfactant Therapy for Early Onset Pneumonia in Late Preterm and Term Neonates Needing Mechanical Ventilation. J Clin Diagn Res. 2017;11(8):SC09-SC12. https://doi.org/10.7860/jcdr/2017/28523.10520.; Sinha SK, Lacaze-Masmonteil T, Valls i Soler A, Wiswell TE, Gadzinowski J, Hajdu J et al. A multicenter, randomized, controlled trial of lucinactant versus poractant alfa among very premature infants at high risk for respiratory distress syndrome. Pediatrics. 2005;115(4):1030-1038. https://doi.org/10.1542/peds.2004-2231.; Polin RA, Carlo WA, Papile L-A, Tan R, Kumar P, Benitz W et al. Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics. 2014;133(1):156-163. https://doi.org/10.1542/peds.2013-3443.; Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, Te Pas A et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome - 2019 Update. Neonatology. 2019;115(4):432-450. https://doi.org/10.1159/000499361.; Jobe A, Ikegami M. Surfactant for the treatment of respiratory distress syndrome. Am Rev Respir Dis. 1987;136(5):1256-1275. https://doi.org/10.1164/ajrccm/136.5.1256.; Engle WA, Stark AR, Adamkin DH, Batton DG, Bell EF, Bhutani VK et al. Surfactant-replacement therapy for respiratory distress in the preterm and term neonate. Pediatrics. 2008;121(2):419-432. https://doi.org/10.1542/peds.2007-3283.; Розенберг ОА. Легочный сурфактант и его применение при заболеваниях легких. Общая реаниматология. 2007;3(1):66-77. https://doi.org/10.15360/1813-9779-2007-1-66-77.; Затовка ГН, Дугинова СА, Сафаров АА, Нечаева МВ, Блауберг ЕН. Лечение респираторного дистресс-синдрома у новорожденных с применением сурфактанта BL. Анестезиология и реаниматология. 2006;(1):38-43. Режим доступа: https://biosurf.ru/upload/iblock/5ff/5ff2ca83e794d2141406a5163874d03b.pdf.; Eworuke E, Major JM, Gilbert McClain LI. National incidence rates for Acute Respiratory Distress Syndrome (ARDS) and ARDS cause-specific factors in the United States (2006-2014). J Crit Care. 2018;47:192-197. https://doi.org/10.1016/j.jcrc.2018.07.002.; Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3):818-824. https://doi.org/10.1164/ajrccm.149.3.7509706.; Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526-2533. https://doi.org/10.1001/jama.2012.5669.; Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J. 2020;55(4):2000607. https://doi.org/10.1183/13993003.00607-2020.; Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334-1349. https://doi.org/10.1056/nejm200005043421806.; Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol. 2011;6:147-163. https://doi.org/10.1146/annurev-pathol-011110-130158.; Brackenbury AM, Malloy JL, McCaig LA, Yao LJ, Veldhuizen RA, Lewis JF. Evaluation of alveolar surfactant aggregates in vitro and in vivo. Eur Respir J. 2002;19(1):41-46. https://doi.org/10.1183/09031936.02.00211202.; Gunther A, Kalinowski M, Rosseau S, Seeger W. Surfactant incorporation markedly alters mechanical properties of a fibrin clot. Am J Respir Cell Mol Biol. 1995;13(6):712-718. https://doi.org/10.1165/ajrcmb.13.6.7576709.; Baker CS, Evans TW, Randle BJ, Haslam PL. Damage to surfactant-specific protein in acute respiratory distress syndrome. Lancet. 1999;353(9160):1232-1237. https//doi.org/10.1016/s0140-6736(98)09449-5.; Gregory TJ, Longmore WJ, Moxley MA, Whitsett JA, Reed CR, Fowler AA 3rd et al. Surfactant chemical composition and biophysical activity in acute respiratory distress syndrome. J Clin Invest. 1991;88(6):1976-1981. https://doi.org/10.1172/jci115523.; Gunther A, Schmidt R, Harodt J, Schmehl T, Walmrath D, Ruppert C et al. Bronchoscopic administration of bovine natural surfactant in ARDS and septic shock: impact on biophysical and biochemical surfactant properties. Eur Respir J. 2002;19(5):797-804. https://doi.org/10.1183/09031936.02.00243302.; Avdeev SN, Trushenko NV, Chikina SY, Tsareva NA, Merzhoeva ZM, Yaroshetskiy AI et al. Beneficial effects of inhaled surfactant in patients with COVID-19-associated acute respiratory distress syndrome. Respir Med. 2021;185:106489. https://doi.org/10.1016/j.rmed.2021.106489.; Piva S, DiBlasi RM, Slee AE, Jobe AH, Roccaro AM, Filippini M et al. Surfactant therapy for COVID-19 related ARDS: a retrospective case-control pilot study. Respir Res. 2021;22(1):20. https://doi.org/10.1186/s12931-020-01603-w.; Veldhuizen RAW, Zuo YY, Petersen NO, Lewis JF, Possmayer F. The COVID-19 pandemic: a target for surfactant therapy? Expert Rev Respir Med. 2021;15(5):597-608. https://doi.org/10.1080/17476348.2021.1865809.; Авдеев СН, Адамян ЛВ, Алексеева ЕИ, Багненко СФ, Баранов АА, Баранова НН. Профилактика, диагностика и лечение новой коронавирус- ной инфекции (COVID-19): временные методические рекомендации. 2022. 260 с. Режим доступа: https://library.mededtech.ru/rest/documents/COVID-19_V17.; Рута АВ, Лучинина ЕВ, Шелехова ТВ, Зайцева МР, Лучинин ЕА, Бонцевич РА. Влияние преднизолона на биомаркеры воспаления при интерстициальной пневмонии, сопряженной с коронавирусной инфекцией. Актуальные проблемы медицины. 2022;45(2):129-140. https://doi.org/10.52575/2687-0940-2022-45-2-129-140.

  15. 15
  16. 16
    Academic Journal

    Πηγή: Mìžnarodnij Endokrinologìčnij Žurnal, Vol 11, Iss 4.68, Pp 93-101 (2015)
    INTERNATIONAL JOURNAL OF ENDOCRINOLOGY; № 4.68 (2015); 93-101
    Международный эндокринологический журнал-Mìžnarodnij endokrinologìčnij žurnal; № 4.68 (2015); 93-101
    Міжнародний ендокринологічний журнал-Mìžnarodnij endokrinologìčnij žurnal; № 4.68 (2015); 93-101

    Περιγραφή αρχείου: application/pdf

  17. 17
    Academic Journal
  18. 18
    Academic Journal

    Συγγραφείς: Pyrih, L.A.

    Πηγή: Počki, Vol 9, Iss 4, Pp 202-205 (2020)
    KIDNEYS; Vol. 9 No. 4 (2020); 202-205
    Почки-Počki; Том 9 № 4 (2020); 202-205
    Нирки-Počki; Том 9 № 4 (2020); 202-205

    Περιγραφή αρχείου: application/pdf

  19. 19
  20. 20