-
1Academic Journal
Authors: Шереметьева, О.В., Шевцов, Б.М.
Source: Vestnik KRAUNC: Fiziko-Matematičeskie Nauki, Vol 46, Iss 1, Pp 89-101 (2024)
Subject Terms: дробный процесс пуассона, квазистационарный режим, квазиоднородный режим, сейсмический процесс, закон гутенберга-рихтера, время ожидания первого события, функция миттаг-леффлёра, аппроксимация, статистическая модель, дробная модель, fractional poisson process, quasi-stationary regime, quasi-homogeneous regime, seismic process, gutenberg-rihter law, first-passage time, mittag-leffler’s function, approximation, statistical model, fractional model, Science
File Description: electronic resource
-
2Academic Journal
Authors: P. N. Shebalin, П. Н. Шебалин
Contributors: Российский научный фонд, грант (проект 16-17-00093)
Source: Chebyshevskii Sbornik; Том 19, № 4 (2018); 227-242 ; Чебышевский сборник; Том 19, № 4 (2018); 227-242 ; 2226-8383 ; 10.22405/2226-8383-2018-19-4
Subject Terms: нечеткие сравнения, Omori law, Gutenberg-Richter law, law of repeatability of the number of aftershocks, cluster, Discrete Mathematical Analysis, fuzzy sets, fuzzy comparisons, закон Омори, закон Гутенберга-Рихтера, закон повторяемости числа афтершоков, кластер, дискретный математический анализ, нечеткие множества
File Description: application/pdf
Relation: https://www.chebsbornik.ru/jour/article/view/452/389; Baiesi M., Paczuski M. Scale–free networks of earthquakes and aftershocks // Phys. Rev. E. 2004. Vol. 69.; Baranov S., Pavlenko V., Shebalin P. Forecasting aftershock activity: 4. Estimating maximum magnitude of subsequent aftershocks // Izvestiya, Physics of the Solid Earth. 2019. Vol. 55, no. 1.; Baranov S., Shebalin P. Forecasting aftershock activity: 3. B˚ath dynamic law // Izvestiya, Physics of the Solid Earth. 2018. Vol. 54, no. 6. P. 926–932.; Baranov S., Shebalin P. Global statistics of aftershocks of large earthquakes: independence of times and magnitudes // Journal of Volcanology and Seismology. 2018. Vol. 12, no. 6.; Bath M. Lateral inhomogeneities in the upper mantle // Tectonophysics. 1965. Vol. 2. P. 483– 514.; Fuzzy logic algorithms in the analysis of electrotelluric data with reference to monitoring of volcanic activity / Sh.R. Bogoutdinov, S.M. Agayan, A.D. Gvishiani et al. // Izvestiya. Physics of the Solid Earth. 2007. Vol. 43, no. 7. P. 597–609.; Davis S., Frohlich C. Single-link cluster analysis of earthquakes aftershocks: decay laws and regional variations // J. Geophys. Res. 1991. Vol. 96. P. 6335–1350.; Gardner J., Knopoff L. Is the sequence of earthquakes in Southern California with aftershocks removed Poissonian? // Bull. Seismol. Soc. Am. 1974. Vol. 5. P. 1363–1367.; Gordeev E., Fedotov S., Chebrov V. Detailed Seismological Investigations in Kamchatka during the 1961–2011 period: main results // Journal of Volcanology and Seismology. 2013. Vol. 7, no. 1. P. 1–15.; Gutenberg B., Richter C. Seismicity of the Earth. Princeton Univ. Press, 1954.; Algorithm barrier with single learning class for strong earthquake–prone areas recognition / A.D. Gvishiani, S. Agayan, B. Dzeboev, I. Belov // Geoinformatics Research Papers: Proceedings of Geophysical Center RAS. 2017. Vol. 5, no. 1. P. 95.; Gvishiani A., Agayan S., Bogoutdinov S. Fuzzy recognition of anomalies in time series // Doklady Earth Sciences. 2008. Vol. 421, no. 1. P. 838–842.; Mathematical methods of geoinformatics. III. Fuzzy comparisons and recognition of anomalies in time series / A.D. Gvishiani, S.M. Agayan, Sh.R. Bogoutdinov et al. // Cybernetics and Systems Analysis. 2008. Vol. 44, no. 3. P. 309–323.; Recognition of strong earthquake–prone areas with a single learning class / A.D. Gvishiani, S.M. Agayan, B.A. Dzeboev, I.O. Belov // Doklady Earth Sciences. 2017. Vol. 474, no. 1. P. 546–551.; Fuzzy–based clustering of epicenters and strong earthquake–prone areas / A.D. Gvishiani, M.N. Dobrovolsky, S. Agayan, B. Dzeboev // Environmental Engineering and Management Journal. 2013. Vol. 12, no. 1. P. 1–10.; Gvishiani A., Dzeboev B., Agayan S. A new approach to recognition of the strong earthquake– prone areas in the Caucasus // Izvestiya. Physics of the Solid Earth. 2013. Vol. 49, no. 6. P. 747–766.; Gvishiani A., Dzeboev B., Agayan S. Fcazm intelligent recognition system for locating areas prone to strong earthquakes in the Andean and Caucasian mountain belts // Izvestiya. Physics of the Solid Earth. 2016. Vol. 52, no. 4. P. 461–491.; Significant earthquake–prone areas in the Altai–Sayan region / A.D. Gvishiani, B.A. Dzeboev, N.A. Sergeeva et al. // Izvestiya, Physics of the Solid Earth. 2018. Vol. 54, no. 3. P. 406–414.; Formalized clustering and significant earthquake-prone areas in the Crimean peninsula and Northwest Caucasus / A.D. Gvishiani, B.A. Dzeboev, N.A. Sergeeva, A.I. Rybkina // Izvestiya. Physics of the Solid Earth. 2017. Vol. 53, no. 3. P. 353–365.; Kagan Y., Jackson D. Long–term earthquake clustering // Geophys. J. Intern. 1991. Vol. 104. P. 117–133.; Fuzzy logic methods for geomagnetic events detections and analysis / R.G. Kulchinsky, E.P. Kharin, I.P. Shestopalov et al. // Russian Journal of Earth Sciences. 2010. Vol. 11, no. 4. P. 1–6.; Marsan D., Lengline O. A new estimation of the decay of aftershock density with distance to the mainshock // Journal of Geophysical Research: Solid Earth. 2010. Vol. 115, no. B9.; Molchan G., Dmitrieva O. Aftershock identification: methods and new approaches // Geophys. J. Int. 1992. Vol. 109. P. 501–516.; Ogata Y. Statistical models for standard seismicity and detection of anomalies by residual analysis // Tectonophysics. 1989. Vol. 169. P. 159–174.; Ogata Y. Seismicity analysis through point-process modeling; a review // PAGEOPH. 1999. Vol. 155. P. 471–508.; Omori F. On the aftershocks of earthquake // J. Coll. Sci. Imp. Univ. Tokyo. 1894. Vol. 7. P. 111–200.; Reasenberg P. Second-order moment of Central California seismicity, 1969-1982 // J. Geophys. Res. 1985. Vol. 90. P. 5479–5495.; Reasenberg P., Jones L. Earthquake hazard after a mainshock in California // Science. 1989. Vol. 242. P. 1173–1176.; Savage W. Microearthquake clustering near Fairview Peak, Nevada, and in the Nevada Seismic Zone // J. Geophys. Res. 1972. Vol. 77, no. 35. P. 7049–7056.; Shebalin P., Baranov S., Dzeboev B. The law of the repeatability of the number of aftershocks // Doklady Earth Sciences. 2018. Vol. 481, no. 1. P. 963–966.; Smirnov V. Prognostic anomalies of seismic regime: methodical basis of data preprocessing // Geofisicheskiye Issledovaniya. 2009. Vol. 10, no. 2. P. 7–22.; Utsu T. A statistical study on the occurrence of aftershocks // Geophys. Mag. 1961. Vol. 30. P. 521–605.; Clustering analysis of seismicity and aftershock identification / I. Zaliapin, A. Gabrielov, V. Keilis-Borok, H. Wong // Phys. Rev. Lett. 2008. Vol. 101, no. 1. P. 1–4.; Zaliapin I., Ben-Zion Y. Earthquake clusters in Southern California I: Identification and stability // Journal of Geophysical Research: Solid Earth. 2013. Vol. 118, no. 6. P. 2847–2864.; Zaliapin I., Ben-Zion Y. A global classification and characterization of earthquake clusters // Geophysical Journal International. 2016. Vol. 207, no. 1. P. 608–634.; Zhuang J. Y., Ogata K., Vere-Jones D. Stochastic declustering of space–time earthquake occurrences // J. Am. Stat. Assoc. 2002. Vol. 97. P. 369–380.; Automatic fuzzy–logic recognition of anomalous activity on long geophysical records: application to electric signals associated with the volcanic activity of La Fournaise volcano (R´eunion island) / J. Zlotnicki, J.L. LeMouel, A. Gvishiani et al. // Earth and Planetary Science Letters. 2005. Vol. 234, no. 1–2. P. 261–278.; https://www.chebsbornik.ru/jour/article/view/452
-
3Academic Journal
Authors: E. A. Gorbunova, S. I. Sherman, Е. А. Горбунова, С. И. Шерман
Contributors: д.ф.-м.н. М.В. Родкин, РФФИ
Source: Geodynamics & Tectonophysics; Том 7, № 2 (2016); 303-314 ; Геодинамика и тектонофизика; Том 7, № 2 (2016); 303-314 ; 2078-502X
Subject Terms: Центральная Азия, Gutenberg‐Richter law, strong earthquake, seismic hazard, Central Asia, закон Гутенберга‐Рихтера, сильное землетрясение, сейсмическая опасность
File Description: application/pdf
Relation: https://www.gt-crust.ru/jour/article/view/259/220; Atlas of Seismotectonics in Central Asia, 2013. Beijing, 129 p.; Båth M., 1981. Earthquake recurrence of a particular type. Pure and Applied Geophysics 119 (5), 1063–1076. http://dx.doi.org/10.1007/BF00878970.; Davison Jr. F.C., Scholz C.H., 1985. Frequency-moment distribution of earthquakes in the Aleutian arc: a test of the characteristic earthquake model. Bulletin of the Seismological Society of America 75 (5), 1349–1361.; Gatinsky Yu.G., Vladova G.L., Prokhorova T.V., Rundkvist D.V., 2011. Geodynamics of Central Asia and prediction of catastrophic earthquakes. Prostranstvo i Vremya (Space and Time) (3), 124–134 (in Russian) [Гатинский Ю.Г., Владова Г.Л., Прохорова Т.В., Рундквист Д.В. Геодинамика Центральной Азии и прогноз катастрофических землетрясений // Пространство и время. 2011. № 3. С. 124–134].; Gusev A.A., Shumilina L.S., 2004. Recurrence of Kamchatka strong earthquakes on a scale of moment magnitudes. Izvestiya, Physics of the Solid Earth 40 (3), 206–215.; Gutenberg B., Richter C.F., 1944. Frequency of earthquakes in California. Bulletin of the Seismological Society of America 34 (4), 185–188.; Ioganson L.I., 2012. 105 deg E.l. Zone — New Type of the Geodynamic Boundaries? Prostranstvo i Vremya (Space and Time) 1 (1), 1–7 (in Russian) [Иогансон Л.И. Зона 105 градуса в.д. – новый тип геодинамических границ? //Пространство и время. 2012. Т. 1. № 1. С. 1–7]. Available from: http://www.j-spacetime.com/actual%20content/t1v1/1106.php (last accessed June 7, 2016).; Komarov Yu.V., Belichenko V.G., Misharina L.A., Petrov P.A., 1978. The Verkhoyano-Birmanskaya junction zone of Central and East-Asian structures (VEBIRS zone). In: VEBIRS Trans-Asian Continental Zone. East Siberian Division of the Siberian Branch, USSR Acad. Sci., Irkutsk, p. 5–24 (in Russian) [Комаров Ю.В., Беличенко В.Г., Мишарина Л.А., Петров П.А. Верхояно-Бирманская зона сочленения центрально- и восточноазиатских структур (зона ВЕБИРС) // Трансазиатская континентальная зона ВЕБИРС (оперативная информация). Иркутск: Восточно-Сибирский филиал СО АН СССР, 1978. С. 5–24].; Kuzmin Yu.O., 2004. Recent Geodynamics of Fault Zones. Izvestiya, Physics of the Solid Earth 40 (10), 868–882.; Kuzmin Yu.O., Zhukov V.S., 2004. Recent geodynamics and variations of physical properties of rocks. Publishing House of the Moscow State Mining University, Moscow, 262 p. (in Russian) [Кузьмин Ю.О., Жуков В.С. Современная геодинамика и вариации физических свойств горных пород. М.: Изд-во Московского государственного горного университета, 2004. 262 с.].; Kuznetsova K.I., 1974. Features of earthquake recurrence curves and behavior of rock masses. In: Regional studies of seismic regime. Shtinnitsa, Kishinev, p. 100–108 (in Russian) [Кузнецова К.И. Особенности графика повторяемости землетрясений и поведение горных масс // Региональные исследования сейсмического режима. Кишинев: Штинница, 1974. С. 100–108].; National Earthquake Information Center (NEIC), 2016. Available from: http://earthquake.usgs.gov/ (last accessed June 7, 2016).; Pacheco J.F., Scholz C.H., Sykes L.R., 1992. Changes in frequency–size relationship from small to large earthquakes. Nature 355 (6355), 71–73. http://dx.doi.org/10.1038/355071a0.; Page M.T., Alderson D., Doyle J., 2011. The magnitude distribution of earthquakes near Southern California faults. Journal of Geophysical Research 116 (B12), B12309. http://dx.doi.org/10.1029/2010JB007933.; Papadopoulos G.A., Skafida H.G., Vassiliou I.T., 1993. Nonlinearity of the magnitude-frequency relation in the Hellenic Arc-Trench System and the characteristic earthquake model. Journal of Geophysical Research 98 (B10), 17737–17744. http://dx.doi.org/10.1029/93JB00559.; Pisarenko V.F., Rodkin M.V., 2004. Heavy-tailed Distributions in Disaster Analysis. Computational seismology, vol. 38. GEOS, Moscow, 240 p. (in Russian) [Писаренко В.Ф., Родкин М.В. Распределение с тяжелыми хвостами: приложения к анализу катастроф. Вычислительная сейсмология. Вып. 38. М.: ГЕОС, 2004. 242 с.].; Pshennikov K.V., 1965. The Mechanism of Occurrence of Aftershocks and Nonelastic Properties of the Earth's Crust. Nauka, Moscow, 86 p. (in Russian) [Пшенников К.В. Механизм возникновения афтершоков и неупругие свойства земной коры. М.: Наука, 1965. 86 с.].; Purcaru G., 1975. A new magnitude-frequency relation for earthquakes and a classification of relation types. Geophysical Journal of the Royal Astronomical Society 42 (1), 61–79. http://dx.doi.org/10.1111/j.1365-246X.1975.tb05850.x.; Riznichenko Yu.V., 1985. Problems of Seismology. Selected Works. Nauka, Moscow, 408 p. (in Russian) [Ризниченко Ю.В. Проблемы сейсмологии. Избранные труды. М: Наука, 1985. 408 с.].; Rodkin M.V., Pisarenko V.F., Ngo Thi Lu, Rukavishnikova Т.А., 2014. On potential representations of the distribution law of rare strongest earthquakes. Geodynamics & Tectonophysics 5 (4), 893–904 (in Russian) [Родкин М.В., Писаренко В.Ф., Лы Н., Рукавишникова Т.А. О возможных реализациях закона распределения редких сильнейших землетрясений // Геодинамика и тектонофизика. 2014. Т. 5. № 4. С. 893–904]. http://dx.doi.org/10.5800/GT-2014-5-4-0161.; Sherman S.I., 2014. Seismic Process and the Forecast of Earthquakes: Tectonophysical Conception. Academic Publishing House “Geo”, Novosibirsk, 359 p. (in Russian) [Шерман С.И. Сейсмический процесс и прогноз землетрясений: тектонофизическая концепция. Новосибирск: Академическое издательство «Гео», 2014. 359 с.].; Sherman S.I., Berzhinsky Yu.A., Pavlenov V.A., Aptikaev F.F., 2003. Regional Scales of Seismic Intensity. New Scale Applied to Pribaikalie. Publishing House of SB RAS, Department “Geo”, Novosibirsk, 189 p. (in Russian) [Шерман С.И., Бержинский Ю.А., Павленов В.А., Аптикаев Ф.Ф. Региональные шкалы сейсмической интенсивности. Опыт создания шкалы для Прибайкалья. Новосибирск: Изд-во СО РАН, филиал «Гео», 2003. 189 с.].; Sherman S.I., Bornyakov S.A., Buddo V.Yu., 1983. Areas of Dynamic Influence of Faults (Modelling Results). Nauka, Novosibirsk, 110 p. (in Russian) [Шерман С.И., Борняков С.А., Буддо В.Ю. Области динамического влияния разломов (результаты моделирования). Новосибирск: Наука. СО АН СССР, 1983. 110 с.].; Sherman S.I., Ma Jin, Gorbunova Е.А., 2015. Recent strong earthquakes in Central Asia: regular tectonophysical features of locations in the structure and geodynamics of the lithosphere. Part 1. Main geodynamic factors predetermining locations of strong earthquakes in the structure of the lithosphere in Central Asia. Geodynamics & Tectonophysics 6 (4), 409–436. http://dx.doi.org/10.5800/GT-2015-6-4-0188.; Sherman S.I., Seminsky K.Zh., Cheremnykh A.V., 2005a. Fault-block tectonics of Central Asia: experience of tectonophysical analysis. In: K.G. Levi, S.I. Sherman (Eds.), Top problems of recent geodynamics of Central Asia. Publishing House of SB RAS, Novosibirsk. P. 135–165 (in Russian) [Шерман С.И., Семинский К.Ж., Черемных А.В. Разломно-блоковая тектоника Центральной Азии: опыт тектонофизического анализа // Актуальные вопросы современной геодинамики Центральной Азии / Ред. К.Г. Леви, С.И. Шерман. Новосибирск: Изд-во СО РАН. 2005. С. 135–165].; Sherman S.I., Sorokin A.P., Savitskii V.A., 2005b. New methods for the classification of seismoactive lithospheric faults based on the index of seismicity. Doklady Earth Sciences 401A (3), 413–416.; Stirling M.W., Wesnousky S.G., Shimazaki K., 1996. Fault trace complexity, cumulative slip, and the shape of the magnitude-frequency distribution for strike-slip faults: a global survey. Geophysical Journal International 124 (3), 833–868. http://dx.doi.org/10.1111/j.1365-246X.1996.tb05641.x.; Trifonov V.G., Karakhanyan A.S., 2004. Geodynamics and History of Civilizations. Nauka, Moscow, 668 p. (in Russian) [Трифонов В.Г., Караханян А.С. Геодинамика и история цивилизаций. М.: Наука, 2004. 668 с.].; Ulomov V.I., 1999. Seismogeodynamics and seismic zoning of North Eurasia. Vulkanologiya i Seismologiya (Journal of Volcanology and Seismology) (4–5), 6–22 (in Russian) [Уломов В.И. Сейсмогеодинамика и сейсмическое районирование Северной Евразии // Вулканология и сейсмология. 1999. № 4–5. С. 6–22].; Ulomov V.I., Shumilina L.S., 1999. Set of General Seismic Zoning Maps of the Russian Federation – OSR-97. Scale 1:8000000. Explanatory Note and a List of Cities and Towns Located in Regions of Seismic Hazard. UIPE, Moscow, 57 p. (in Russian) [Уломов В.И., Шумилина Л.С. Комплект карт общего сейсмического районирования территории Российской Федерации – ОСР-97. Масштаб 1:8000000. Объяснительная записка и список городов и населенных пунктов, расположенных в сейсмоопасных районах. М.: ОИФЗ, 1999. 57 с.].; Vostrikov G.A., 1994. Relationship Between Recurrence Plot Parameters, Seismic Flow and Earthquake Source. GIN RAS, Moscow, 292 p. (in Russian) [Востриков Г.А. Связь параметров графика повторяемости, сейсмического течения и очага землетрясения. М.: ГИН РАН, 1994. 292 с.].; Wesnousky S.G., Scholz C.H., Shimazaki K., Matsuda T., 1983. Earthquake frequency distribution and the mechanics of faulting. Journal of Geophysical Research 88 (B11), 9331–9340. http://dx.doi.org/10.1029/JB088iB11p09331.; Wesnousky S.G., Scholz C.H., Shimazaki K., Matsuda T., 1984. Integration of geological and seismological data for the analysis of seismic hazard: A case study of Japan. Bulletin of the Seismological Society of America 74 (2), 687–708.; Zhalkovsky N.D., 1988. Earthquake recurrence law and some of its consequences. Institute of Geology and Geophysics, Siberian Branch of the USSR Acad. Sci., Novosibirsk, 29 p. (in Russian) [Жалковский Н.Д. Закон повторяемости землетрясений и некоторые его следствия. Новосибирск: ИГиГ СО АН СССР, 1988. 29 с.].
-
4Academic Journal
Authors: Г.Д. Етирмишли, С.Э. Кязымова, Ш.К. Исламова
Source: Геология и геофизика Юга России, Vol 5, Iss 3 (2015)
Subject Terms: закон Гутенберга-Рихтера, закон повторяемости землетрясений, наклон графика повторяемости, сумма сейсмической энергии, Gutenberg-Richter law, recurrence law, Geology, QE1-996.5
File Description: electronic resource
-
5Academic Journal
Authors: Баранов, С.
Subject Terms: АФТЕРШОКИ, СЕЙСМИЧЕСКАЯ АКТИВНОСТЬ, СЕЙСМИЧЕСКОЕ ЗАТИШЬЕ, ПРЕДВЕСТНИК СИЛЬНЫХ СОБЫТИЙ, ЗАКОН ГУТЕНБЕРГА – РИХТЕРА, ETAS-МОДЕЛЬ, GUTENBERG – RICHTER LAW
File Description: text/html
-
6Academic Journal
Authors: Popova, A.V., Sheremetyeva, O.V., Sagitova, R.N.
Source: Vestnik KRAUNC: Fiziko-Matematičeskie Nauki, Iss 2 (2012)
Subject Terms: статистические методы, векторные данные, распределение Бингхама, закон Гутенберга – Рихтера, statistical methods, vector data, distribution Binghama, law Gutenberg – Richter, Science
File Description: electronic resource
-
7Academic Journal
Authors: Попова, Ася, Шереметьева, Ольга, Сагитова, Раиса
Subject Terms: СТАТИСТИЧЕСКИЕ МЕТОДЫ, ВЕКТОРНЫЕ ДАННЫЕ, РАСПРЕДЕЛЕНИЕ БИНГХАМА, ЗАКОН ГУТЕНБЕРГА РИХТЕРА
File Description: text/html
-
8Academic Journal
Source: Геология и геофизика Юга России, Vol 5, Iss 3 (2015)
-
9Academic Journal
Source: Фундаментальные исследования.
Subject Terms: 01 natural sciences, АФТЕРШОКИ, СЕЙСМИЧЕСКАЯ АКТИВНОСТЬ, СЕЙСМИЧЕСКОЕ ЗАТИШЬЕ, ПРЕДВЕСТНИК СИЛЬНЫХ СОБЫТИЙ, ЗАКОН ГУТЕНБЕРГА – РИХТЕРА, ETAS-МОДЕЛЬ, GUTENBERG – RICHTER LAW, 0105 earth and related environmental sciences
File Description: text/html
-
10Academic Journal
Source: Вестник КРАУНЦ. Физико-математические науки.
Subject Terms: СТАТИСТИЧЕСКИЕ МЕТОДЫ, ВЕКТОРНЫЕ ДАННЫЕ, РАСПРЕДЕЛЕНИЕ БИНГХАМА, ЗАКОН ГУТЕНБЕРГА РИХТЕРА
File Description: text/html
-
11Academic Journal
Source: Физическая мезомеханика.
File Description: text/html
-
12