Εμφανίζονται 1 - 1 Αποτελέσματα από 1 για την αναζήτηση '"заземленный копланарный волновод"', χρόνος αναζήτησης: 0,46δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Radio Engineering; № 2 (2020); 1-26 ; Радиостроение; № 2 (2020); 1-26 ; 2587-926X

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.radiovega.su/jour/article/view/163/166; Шестопалов В.П. Физические основы миллиметровой и субмиллиметровой техники. Т. 1: Открытые структуры. Киев: Наукова думка, 1985. 213 с.; Евдокимов А.П. Антенны дифракционного излучения // Физические основы приборостроения. 2013. Т. 2. № 1(6). С. 108–124. DOI:10.25210/jfop-1301-108125; Крюков Д.Ю., Останков А.В. Рефлексивный анализ возможностей и основных конструктивно-технических характеристик антенн дифракционного излучения на основе периодических замедляющих структур // Вестник Воронежского гос. техн. ун-та. 2017. Т. 13. №1. С. 95-103.; Honey R. A flush-mounted leaky-wave antenna with predictable patterns // IEEE Trans. on Antennas and Propagation. 1959. Vol. 7. No. 4. Pp. 320–329. DOI:10.1109/TAP.1959.1144703; Ghomi M., Lejay B., Amalric J.L., Baudrand H. Radiation characteristics of uniform and nonuniform dielectric leaky-wave antennas // IEEE Trans. on Antennas and Propagation. 1993. Vol. 41. No. 9. Pp. 1177–1186. DOI:10.1109/8.247743; Sharkawy M.A., Foroozesh A., Kishk A.A., Paknys R. A robust horn ridge gap waveguide launcher for metal strip grating leaky wave antenna // IEEE Trans. on Antennas and Propagation. 2014. Vol. 62. No. 12. Pp. 6019–6026. DOI:10.1109/TAP.2014.2364050; Yang Cai, Zuping Qian, Yingsong Zhang. Design of planar leaky wave antenna fed by substrate integrated waveguide horn // Frequenz. 2017. Vol. 72. No. 1–2. Pp. 33–37. DOI:10.1515/freq-2016-0290; Ke Wu, Deslandes D., Cassivi Y. The substrate integrated circuits – a new concept for high-frequency electronics and optoelectronics // 6th Intern. conf. on telecommunications in modern satellite, cable and broadcasting services: TELSIKS’03 (Nis, Yugoslavia, October 1-3, 2003): Proc. Vol. 1. N.Y.: IEEE, 2003. Pp. P–III. DOI:10.1109/TELSKS.2003.1246173; Feng Xu, Ke Wu. Guided-wave and leakage characteristics of substrate integrated waveguide // IEEE Trans. on Microwave Theory and Techniques. 2005. Vol. 53. No. 1. Pp. 66–73. DOI:10.1109/TMTT.2004.839303; Cassivi Y., Perregrini L., Arcioni P., Bressan M., Ke Wu, Conciauro G. Dispersion characteristics of substrate integrated rectangular waveguide // IEEE Microwave and Wireless Components Letters. 2002. Vol. 12. No. 9. Pp. 333–335. DOI:10.1109/LMWC.2002.803188; Deslandes D., Ke Wu. Single-substrate integration technique of planar circuits and waveguide filters // IEEE Trans. on Microwave Theory and Techniques. 2003. Vol. 51. No. 2. Pp. 593–596. DOI:10.1109/TMTT.2002.807820; Bozzi M., Feng Xu, Deslandes D. Ke Wu. Modeling and design considerations for substrate integrated waveguide circuits and components // 8th Intern. conf. on telecommunications in modern satellite, cable and broadcasting services (Nis, Serbia, September 26-28, 2007): Proc. N.Y.: IEEE, 2007. Pp. P-VII–P-XVI. DOI:10.1109/TELSKS.2007.4375921; Bozzi M., Perregrini L., Ke Wu, Arcioni P. Current and future research trends in substrate integrated waveguide technology // Radioengineering. 2009. Vol. 18. No. 2. Pp. 201-209. Режим доступа: https://www.radioeng.cz/fulltexts/2009/09_02_201_209.pdf (дата обращения 7.06.2020).; Deslandes D. Design equations for tapered microstrip-to-substrate integrated waveguide transitions // IEEE MTT-S intern. microwave symp. (Anaheim, CA, USA, May 23-28, 2010): Proc. N.Y.: IEEE, 2010. DOI:10.1109/MWSYM.2010.5517884; Mahmoud S.F., Antar Y.M.M. Printed leaky wave antennas // Microstrip and printed antennas: new trends, technique and applications. Hoboken: Wiley, 2010. Ch. 13. Pp. 435-462. DOI:10.1002/9780470973370.ch13; Deslandes D., Ke Wu. Analysis and design of current probe transition from grounded coplanar to substrate integrated rectangular waveguides // IEEE Trans. on Microwave Theory and Techniques. 2005. Vol. 53. No. 8. Pp. 2487–2494. DOI:10.1109/TMTT.2005.852778; Kazemi R., Fathy A.E., Songnan Yang, Sadeghzadeh R.A. Development of an ultra wide band GCPW to SIW transition // IEEE radio and wireless symp. (Santa Clara, CA, USA, January 15-18, 2012): Proc. N.Y.: IEEE, 2012. Pp. 171–174. DOI:10.1109/RWS.2012.6175308; Song Lin, Songnan Yang, Fathy A., Elsherbini A. Development of a novel UWB Vivaldi antenna array using SIW technology // Progress in Electromagnetics Research. 2009. Vol. 90. Pp. 369–384. DOI:10.2518/PIER09020503; Songnan Yang, Elsherbini A., Song Lin, Fathy A.E., Kamel A., Elhennawy H. A highly efficient Vivaldi antenna array design on thick substrate and fed by SIW structure with integrated GCPW feed // IEEE Antennas and Propagation Soc. intern. symp. (Honolulu, HI, USA June 9-15, 2007): Proc. N.Y.: IEEE, 2007. Pp. 1985–1988. DOI:10.1109/APS.2007.4395912; Yang Cai, Zuping Qian, Wenquan Cao, Yingsong Zhang, Jun Jin, Liu Yang, Nan Jing. Compact wideband SIW horn antenna fed by elevated-CPW structure // IEEE Trans. on Antennas and Propagation. 2015. Vol. 63. No. 10. Pp. 4551–4557. DOI:10.1109/TAP.2015.2456936; Zhaolong Li, Ke Wu, Denidni T.A. A new approach to integrated horn antenna // 10th intern. symp. on antenna technology and applied electromagnetics (Ottawa, Canada, July 20-23, 2004): Proc. N.Y.: IEEE, 2004. Pp. 535–538. DOI:10.1109/ANTEM.2004.7860646; Hao Wang, Da-Gang Fang, Bing Zhang, Wen-Quan Che. Dielectric loaded substrate integrated waveguide (SIW) H-plane horn antennas // IEEE Trans. on Antennas and Propagation. 2010. Vol. 58. No. 3. Pp. 640–647. DOI:10.1109/TAP.2009.2039298; Lei Wang, Xiaoxing Yin, Shunli Li, Hongxin Zhao, Leilei Liu, Ming Zhang. Phase corrected substrate integrated waveguide H-plane horn antenna with embedded metal-via arrays // IEEE Trans. on Antennas and Propagation. 2014. Vol. 62. No. 4. Pp. 1854–1861. DOI:10.1109/TAP.2014.2298042; Morote M.E., Fuchs B., Mosig J.R. Analytical model of a printed transition for SIW antennas // 6th European conf. on antennas and propagation: EUCAP 2012 (Prague, Czech Republic, March 26-30, 2012): Proc. N.Y.: IEEE, 2012. Pp. 414–417. DOI:10.1109/EuCAP.2012.6206105; Esquius-Morote M., Fuchs B., Zurcher J.-F., Mosig J.R. A printed transition for matching improvement of SIW horn antennas // IEEE Trans. on Antennas and Propagation. 2013. Vol. 61. No. 4. Pp. 1923–1930. DOI:10.1109/TAP.2012.2231923; Esquius-Morote M., Fuchs B., Zurcher J.-F., Mosig J.R. Novel thin and compact H-plane SIW horn antenna // IEEE Trans. on Antennas and Propagation. 2013. Vol. 61. No. 6. Pp. 2911–2920. DOI:10.1109/TAP.2013.2254449; Yang Cai, Zhang Y.-S., Qian Z.-P., Jun Jin, Cao W.-Q. Bandwidth enhancement of SIW horn antenna loaded with air-via perforated dielectric slab // IEEE Antennas and Wireless Propagation Letters. 2014. Vol. 13. Pp. 571–574. DOI:10.1109/LAWP.2014.2312917; Yingsong Zhang, Yang Cai, Hao Chi Zhang, Tao Yang, Weimin Ni, Jun Jin. Broadband implementation of SIW horn antenna with air-via dielectric slab // IEEE 4th Asia-Pacific conf. on antennas and propagation: APCAP 2015 (Kuta, Indonesia, June 30-July 3, 2015): Proc. N.Y.: IEEE, 2015. Pp. 563–567. DOI:10.1109/APCAP.2015.7374489; Xi Chen, Hui Feng Ma, Xia Ying Zou, Wei Xiang Jiang, Tie Jun Cui. Three-dimensional broadband and high-directivity lens antenna made of metamaterials // J. of Applied Physics. 2011. Vol. 110. No. 4. Pp. 044904–044904-8. DOI:10.1063/1.3622596; https://www.radiovega.su/jour/article/view/163