Εμφανίζονται 1 - 2 Αποτελέσματα από 2 για την αναζήτηση '"допированные Nd3+"', χρόνος αναζήτησης: 0,49δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Biomedical Photonics; Том 7, № 1 (2018); 4-12 ; 2413-9432 ; 10.24931/2413-9432-2018-7-1

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/213/179; Escudero A., Carrillo-Carrión C., Zyuzin M.V., Parak W.J. Luminescent rare-earth-based nanoparticles: a summarized overview of their synthesis, functionalization, and applications // Top Curr Chem (Cham). – 2016. – Vol. 374(4). – P. 48. https://doi.org/10.1007/s41061-016-0049-8.; Ma D., Xu X., Hu M., et al. Rare-earth-based nanoparticles with simultaneously enhanced near-infrared (NIR)-visible (Vis) and NIR-NIR dual-conversion luminescence for multimodal imaging // Chem Asian J. – 2016. – Vol. 11(7). – P. 1050-1058. http://dx.doi.org/10.1002/asia.201501456.; Li X., Wang R., Zhang F., et al. Nd3+ Sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm // Sci. Rep. – 2013. – Vol. 3. – P. 3536. http://dx.doi.org/10.1038/srep03536.; Wang Z., Zhang P., Yuan Q., et al. Nd³+-sensitized NaLuF₄ luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation // Nanoscale. – 2015. – Vol. 7(42). – P. 17861-17870. http://dx.doi.org/10.1039/C5NR04889C.; Zhong Y., Tian G., Gu Z., et al. Elimination of photon quenching by a transition layer to fabricate a quenching-shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+-sensitized nanoparticles // Adv. Mater. – 2014. – Vol. 26(18). – P. 2831-2837. http://dx.doi.org/10.1002/ adma.201304903.; Zhan Q., Wang B., Wen X., He S. Controlling the excitation of upconverting luminescence for biomedical theranostics: neodymium sensitizing // Opt. Mater. Express. – 2016. – Vol. 6. – P. 1011-1023. https://doi.org/10.1364/OME.6.001011.; Kushida T., Marcos H.M., Geusic J.E. Laser transition cross section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet // Phys. Rev. – 1968. – Vol. 167. – P. 289-291. https://doi.org/10.1103/PhysRev.167.289.; Xu B., Zhang X., Huang W., et al. Nd3+ sensitized dumbbell-like upconversion nanoparticles for photodynamic therapy application // J. Mater. Chem. B. – 2016. – Vol. 4. – P. 2776-2784. http://dx.doi.org/10.1039/C6TB00542J.; Wang Y.F., Liu G.Y., Sun L.D., et al. Nd(3+)-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect // ACS Nano. – 2013. – Vol. 7. – P. 7200-7206. doi:10.1021/nn402601d.; Qin Q.-S., Zhang P.-Z., Sun L.-D., et al. Ultralow-power near-infrared excited neodymium-doped nanoparticles for long-term in vivo bioimaging // Nanoscale. – 2017. – Vol. 9. – P. 4660-4664. http://dx.doi.org/10.1039/C7NR00606C.; Rocha U., Hu J., Rodriguez E.M., Vanetsev A.S., Rähn M., Sammelselg V., Orlovskii Y.V., García Sole J., Jaque D., Ortgies D.H. Subtissue Imaging and Thermal Monitoring of Gold Nanorods through Joined Encapsulation with Nd-Doped Infrared-Emitting Nanoparticles, Small, 2016, Vol. 12, pp. 5394-5400. Available at: http://dx.doi.org/10.1002/smll.201600866; Pichaandi J., Boyer J.-C., Delaney K.R., van Veggel F.C.J.M. Two-pho-evaluation of their performance and potential in bioimaging // J. Phys. Chem. C. – 2011. – Vol. 115. – P. 19054-19064. doi:10.1021/jp206345j.; Zhan Q., He S., Qian J., et al. Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield // Theranostics. – 2013. – Vol. 3. – P. 306-316. doi:10.7150/thno.6007.; Wu R., Zhan Q., Liu H., et al. Optical depletion mechanism of upconverting luminescence and its potential for multi-photon STED-like microscopy // Opt. Express. – 2015. – Vol. 23. – P. 32401-32412. https://doi.org/10.1364/OE.23.032401.; Wang B., Zhan Q., Zhao Y., et al. Visible-to-visible fourphoton ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals // Opt. Express.– 2016. – Vol. 24(2). – A302-A311. https://doi.org/10.1364/OE.24.00A302.; Vanetsev A., Kaldvee K., Puust L., et al. Relation of crystallinity and fluorescent properties of LaF3:Nd3+ nanoparticles synthesized with different water-based techniques. // Chemistry Select. – 2017. – Vol. 2. – P. 4874-4881. http://dx.doi.org/10.1002/slct.201701075.; Shcherbakov A.B., Zholobak N.M., Baranchikov A.E., et al. Cerium fluoride nanoparticles protect cells against oxidative stress // Mater Sci. Eng. C Mater Biol. Appl. – 2015. – Vol. 50. – P. 151-159. https://doi.org/10.1016/j.msec.2015.01.094.; Carnall W.T., Crosswhite Hannah, Crosswhite H.M. Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3. – United States, 1978. doi:10.2172/6417825.; Carnall W.T., Goodman G.L., Rajnak K., Rana R.S. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 // J. Chem. Phys. – 1989. – Vol. 90. – P. 3443. http://dx.doi.org/10.1063/1.455853.; Pollnau M., Gamelin D.R., Luthi S.R., et al. Power dependence of upconversion luminescence in lanthanide and transition-metalion systems // Phys. Rev. B. – 2000. – Vol. 61. – P. 3337-3346. https://doi.org/10.1103/PhysRevB.61.3337.; Jacinto C., Oliveira S.L., Catunda T., et al. Upconversion effect on fluorescence quantum efficiency and heat generation in Nd3+-doped materials // Opt. Express. – 2005. – Vol. 13. – P. 2040-2046. https://doi.org/10.1364/OPEX.13.002040.; Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles // Int. J. Nanomedicine. – 2012. – Vol. 7. – P. 5577-5591. https://doi.org/10.2147/IJN.S36111.; Sojka B., Liskova A., Kuricova M., et al. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes // J. Nanopart. Res. – 2017. – Vol. 19. – P. 68. https://doi.org/10.1007/s11051-0173779-9.

  2. 2
    Academic Journal

    Συνεισφορές: Министерство образования и науки РФ (грант RFMEFI61615X0064).

    Πηγή: Biomedical Photonics; Том 7, № 2 (2018); 25-36 ; 2413-9432 ; 10.24931/2413-9432-2018-7-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pdt-journal.com/jour/article/view/234/188; Issels R., Kampmann E., Kanaar R., Lindner L.H. Hallmarks of hyperthermia in driving the future of clinical hyperthermia as targeted therapy: translation into clinical application // International Journal of Hyperthermia. - 2016. - Vol. 32(1). - P. 89-95. doi:10.3109/02656736.2015.1119317; Chichel A., Skowronek J., Kubaszewska M., Kanikowski M. Hyperthermia - description of a method and a review of clinical applications // Reports of Practical Oncology & Radiotherapy. - 2007. - Vol. 12(5). - P. 267-275. doi:10.1016/S1507-1367(10)60065-X; Myerson R.J., Moros E.G., Diederich C.J., et al. Components of a hyperthermia clinic: recommendations for staffing, equipment, and treatment monitoring // International Journal of Hyperthermia. - 2014. - Vol. 30(1). - P. 1-5. doi:10.3109/02656736.2013.861520; Helmchen F., Denk W. Deep tissue two-photon microscopy // Nature Methods. - 2005. - Vol. 2. - P. 932-940. doi:10.1038/nmeth818; Leitgeb N., Omerspahic A., Niedermayr F. Exposure of non-target tissues in medical diathermy // Bioelectromagnetics. - 2010. - Vol. 31(1). - P. 12-19. doi:10.1002/bem.20521; Kaur P., Aliru M.L., Chadha A.S., Asea A., Krishnan S. Hyperthermia using nanoparticles - promises and pitfalls // International Journal of Hyperthermia. - 2016. - Vol. 32(1). - P. 76-88. doi:10.3109/02656736.2015.1120889; Wust P., Cho C., Hildebrant B., Gellermann J. Thermal monitoring: invasive, minimal-invasive and non-invasive approaches // International Journal of Hyperthermia. - 2006. - Vol. 22(3). - P. 255-262. doi:10.1080/02656730600661149; Rocha U., Hu J., Rodriguez E.M., et al. Subtissue imaging and thermal monitoring of gold nanorods through joined encapsulation with Nd-doped infrared-emitting nanoparticles // Small. - 2016. - Vol. 12(39). - P. 5394-5400. doi:10.1002/smll.201600866; Escudero A., Carrillo-Carrion C., Zyuzin M.V., Parak W.J. Luminescent rare-earth-based nanoparticles: a summarized overview of their synthesis, functionalization, and applications // Top Curr Chem (Cham). - 2016. - Vol. 374(4). - P. 48. doi:10.1007/ s41061-016-0049-8; Carrasco E., del Rosal B., Sanz-Rodriguez F., et al. Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles // Advanced Functional Materials. - 2015. - Vol. 25(4). - P. 615. doi:10.1002/adfm.201403653; Quintanilla M., Benayas A., Naccache R., Vetrone F. Chapter 5. Luminescent nanothermometry with lanthanide-doped nanoparticles in book Thermometry at the Nanoscale: Techniques and Selected Applications. - The Royal Society of Chemistry, 2016. - P. 124-166. doi:10.1039/9781782622031-00124; Wang Z., Zhang P., Yuan Q., et al. Nd3+-sensitized NaLuF4 luminescent nanoparticles for multimodal imaging and temperature sensing under 808 nm excitation // Nanoscale. - 2015. - Vol. 7(42). - P. 17861-17870. doi:10.1039/C5NR04889C; Wawrzynczyk D., Bednarkiewicz A., Nyk M., et al. Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors // Nanoscale. - 2012. - Vol. 4(22). - P. 6959-6961. doi:10.1039/c2nr32203j; Rocha U., Silva C.J., Silva W.F., et al. Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles // ACS Nano. - 2013. - Vol. 7(2). - P. 1188-1199. doi:10.1021/nn304373q; Li X., Wang R., Zhang F., et al. Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm // Sci. Rep. - 2013. - Vol. 3. - P. 3536. doi:10.1038/srep03536; Tian X., Wei X., Chen Y., et al. Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4: Nd3+ // Opt Express. - 2014. - Vol. 22(24). - P. 30333-30345. doi:10.1364/OE.22.030333; Rocha U., Kumar K.U., Jacinto C., et al. Nd3+ doped LaF3 nanoparticles as self-monitored photo-thermal agents // Appl. Phys. Lett. - 2014. - Vol. 104. - 053703. doi:10.1063/1.4862968; Basiev T.T., Dergachev A.Yu., Orlovskii Y.V., Prokhorov A.M. Multiphonon nonradiative relaxation from high- lying levels of Nd3+ ion in fluoride and oxide laser materials // Journal of Luminescence. - 1992. - Vol. 53. - P. 19-23. doi:10.1016/0022- 2313(92)90096-R; Kolesnikov I.E., Kalinichev A.A., Kurochkin M.A., et al. New strategy for thermal sensitivity enhancement of Nd 3+-based ratiometric luminescence thermometers // Journal of Luminescence. - 2017. - Vol. 192. - P. 40-46. doi:10.1016/j.jlumin.2017.06.024; Samsonova E., Popov A., Vanetsev A., et al. Energy transfer kinetics probe for OH- quenchers in the YPO4:Nd3+ nanocrystals suitable for imaging in the biological tissue transparency window // Physical Chemistry Chemical Physics. - 2014. - Vol. 16. - P. 26806-26815. doi:10.1039/C4CP03774J; Levenberg K. A method for the solution of certain non-linear problems in least squares // Quarterly of Applied Mathematics. - 1944. - Vol. 2. - P. 164-168. doi:10.1090/qam/10666; Marquardt D.W. An algorithm for least-squares estimation of nonlinear parameters // Journal of the Society for Industrial and Applied Mathematics. 1963. - Vol. 11(2). - P. 431-441. doi:10.1137/0111030; Guillot-Noel O., Kahn-Harari A., Viana B., et al. Optical spectra and crystal field calculations of Nd3+ doped Zircon-type YMO4 laser hosts (M= V, P, As) // Journal of Physics: Condensed Matter. - 1998. - Vol. 10(29). - P. 6491-6503. doi:10.1088/0953-8984/10/29/009; Rai V.K., Rai S.B. A comparative study of FIR and FL based temperature sensing schemes: an example of Pr3+ // Applied Physics B. - 2007. - Vol. 87. - P. 323-325. doi:10.1007/s00340-007-2592-z; Balabhadra S., Debasu M.L., Brites C.D.S., et al. Boosting the sensitivity of Nd3+-based luminescent nanothermometers // Nanoscale. - 2015. - Vol. 7. - P. 17261-17267. doi:10.1039/C5NR05631D; Kolesnikov I.E., Kalinichev A.A., Kurochkin M.A., et al. YVO4:Nd3+ nanophosphors as NIR-to-NIR thermal sensors in wide temperature range // Scientific Reports. - 2017. - Vol. 7. - 18002. doi:10.1038/s41598-017-18295-w; Kaldvee K., Nefedova A.V., Fedorenko S.G., et al. Approaches to contactless optical thermometer in the NIR spectral range based on Nd3+ doped crystalline nanoparticles // Journal of Luminescence. - 2017. - Vol. 183. - P. 478-485.; Jacques S.L. Origins of tissue optical properties in the UVA, visible and NIR regions // Advances in Optical Imaging and Photon Migration. - 1996. - Vol. 2. - P. 364-370.