Showing 1 - 20 results of 122 for search '"долгосрочное планирование"', query time: 0.63s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Contributors: The present study is a component of a PhD dissertation focusing on the subject of long-term production planning in open-pit mines. Financial support for this research has been provided by the Scientific Research Projects Unit of Istanbul Technical University., Настоящее исследование является составной частью кандидатской диссертации, посвященной теме долгосрочного планирования добычи на открытых горных работах. Финансовую поддержку этому исследованию оказал Отдел научно-исследовательских проектов Стамбульского технического университета.

    Source: Mining Science and Technology (Russia); Vol 9, No 2 (2024); 74-84 ; Горные науки и технологии; Vol 9, No 2 (2024); 74-84 ; 2500-0632

    File Description: application/pdf

    Relation: https://mst.misis.ru/jour/article/view/760/436; https://mst.misis.ru/jour/article/view/760/437; Caccetta L., Hill S. An application of branch and cut to open pit mine scheduling. Journal of Global Optimization. 2003;27:349–365. https://doi.org/10.1023/A:1024835022186; Lerchs H., Grossmann I. F. Optimum design of open-pit mines. Transactions, C.I.M. 1965;LXVIII:17–24.; Dagdelen K., Johnson T. B. Optimum open-pit mine production scheduling by Lagrangian parameterization. In: Proceedings of the 19th APCOM. 1984;127–142.; Elkington T., Durham R. Integrated open pit pushback selection and production capacity optimization. Journal of Mining Science. 2011;47:177–190. https://doi.org/10.1134/S1062739147020055; Kumral M. Production planning of mines: optimization of block sequencing and destination. International Journal of Mining, Reclamation, and Environment. 2012;26(2):93–103. https://doi.org/10.1080/17480930.2011.644474; Jélvez E., Morales N., Askari-Nasab H. A new model for automated pushback selection. Computers & Operations Research. 2020;115:104456. https://doi.org/10.1016/j.cor.2018.04.015; Tolwinski B., Underwood R. An algorithm to estimate the optimal evaluation of an open-pit mine. In: Proceedings of the 23rd International Symposium on the Application of Computers and Operations Research in the Mineral Industries. 1992;399–409.; Picard J. C. Maximal closure of a graph and applications to combinatorial problems. Management Science. 1976;22(11):1268–1272. https://doi.org/10.1287/mnsc.22.11.1268; Tachefine B., Soumis F. Maximal closure on a graph with resource constraints. Computers & Operations Research. 1997;24(10):981–990. https://doi.org/10.1016/S0305-0548(97)00008-7; Chandran B. G., Hochbaum D. S. A computational study of the pseudoflow and push-relabel algorithms for the maximum flow problem. Operations Research. 2009;57(2):358–376. https://doi.org/10.1287/opre.1080.0572; Hochbaum D. S. The pseudoflow algorithm: A new algorithm for the maximum-flow problem Operations Research. 2008;56(4):992–1009. https://doi.org/10.1287/opre.1080.0524; Hochbaum D. S., Chen A. Performance analysis and best implementations of old and new algorithms for the open- pit mining problem. Operations Research. 2000;48(6):894–914. https://doi.org/10.1287/opre.48.6.894.12392; Muoz G., Espinoza D., Goycoolea M. et al. A study of the Bienstock-Zuckerberg algorithm: applications in mining and resource-constrained project scheduling. Computational Optimization and Applications. 2018;69(2):501–534. https://doi.org/10.1007/s10589-017-9946-1; Paithankar A., Chatterjee S. Open-pit mine production schedule optimization using a hybrid of maximum-flow and genetic algorithms. Applied Soft Computing. 2019;81:105507. https://doi.org/10.1016/j.asoc.2019.105507; Ramazan S., Dimitrakopoulos R. Stochastic optimisation of long-term production scheduling for open pit mines with a new integer programming formulation. İn: Dimitrakopoulos R. (ed.) Advances in Applied Strategic Mine Planning. Springer, Cham; 2018. Pp. 139–153. https://doi.org/10.1007/978-3-319-69320-0_11; Montiel L., Dimitrakopoulos R. Optimizing mining complexes with multiple processing and transportation alternatives: An uncertainty-based approach. European Journal of Operational Research. 2015;247(1):166–178. https://doi.org/10.1016/j.ejor.2015.05.002; Alipour A., Khodaiari A. A., Jafari A., Tavakkoli-Moghaddam R. Production scheduling of open-pit mines using genetic algorithms: a case study. International Journal of Management Science and Engineering Management. 2020;15(3):176–183. https://doi.org/10.1080/17509653.2019.1683090; Elsayed S., Sarker R., Essam D., Coello C. C. Evolutionary approach for large-scale mine scheduling. Information Sciences. 2020;523:77–90. https://doi.org/10.1016/j.ins.2020.02.074; Senécal R., Dimitrakopoulos R. Long-term mine production scheduling with multiple processing destinations under mineral supply uncertainty, based on a multi-neighborhood Tabu search. International Journal of Mining, Reclamation, and Environment. 2020;34(7):459–475. https://doi.org/10.1080/17480930.2019.1595902; Tolouei K., Moosavi E., Tabrizi A. H. B. et al. Improving performance of open-pit mine production scheduling problems under grade uncertainty by hybrid algorithms. Journal of Central South University. 2020;27(9):2479–2493. https://doi.org/10.1007/s11771-020-4474-z; Bienstock D., Zuckerberg M. Solving L. P. relaxations of large-scale precedence constrained problems. In: Eisenbrand F., Shepherd F. B. (eds.) Integer Programming and Combinatorial Optimization. IPCO 2010. Lecture Notes in Computer Science. Vol. 6080. Springer, Berlin, Heidelberg; 2010. https://doi.org/10.1007/978-3-642-13036-6_1; Espinoza D., Goycoolea M., Moreno E., Newman A. N. MineLib: a library of open pit problems. Annals of Operations Research. 2013;206:93–114. https://doi.org/10.1007/s10479-012-1258-3; https://mst.misis.ru/jour/article/view/760

  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal

    Source: UPRAVLENIE / MANAGEMENT (Russia); Том 11, № 2 (2023); 137-145 ; Управление; Том 11, № 2 (2023); 137-145 ; 2713-1645 ; 2309-3633

    File Description: application/pdf

    Relation: https://upravlenie.guu.ru/jour/article/view/633/395; Вагин С.Г. (2012). Совершенствование экономических методов управления технологическим развитием промышленности // Вестник Самарского государственного экономического университета. № 9(95). С. 9–17.; Власенкова Т.А., Козырева Ю.Ю. (2021). Цифровизация как основа эффективного ведения сельского хозяйства // Менеджмент в АПК. № 2. С. 11–16.; Данейкин Ю.В. (2022). Теоретические основы и модель развития высокотехнологичных отраслей в современной экономике // Индустриальная экономика. Т. 2, № 5. С.163–172.; Линник Е.А., Крикунов Д.О., Трифонов Г.И., Митрофанов Д.В. (2022). Построение методического аппарата обоснования требований к разработке информационных систем // Воздушно-космические силы. Теория и практика. № 23. С. 34–42.; Петрова К.С. (2022). Корпоративное управление в контексте ESG // Инновации и инвестиции. № 7. С. 48–53.; https://upravlenie.guu.ru/jour/article/view/633

  9. 9
  10. 10
  11. 11
    Academic Journal

    Source: Scientific studies and modern education; 163-166 ; Научные исследования и современное образование; 163-166

    File Description: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-6048183-9-8; https://interactive-plus.ru/e-articles/829/Action829-557499.pdf; Герасимов Б.Н. Проектирование подпроцесса управления затратами организации // Экономика и бизнес: теория и практика. – 2021. – №11–2. – С. 47–54 doi:10.24412/2411–0450–2021–11–2-47–54; Матюшкин Д.А. Проблемы управления затратами в крупном предпринимательстве // Вестник науки. – 2021. – №12 (45). – С.114–123.; Миронова Н.Н. Управление затратами в системе стратегического управления затратами / Н.Н. Миронова, Т.В. Харламова // Вестник НИБ. – 2020. – №40. – С.86–91.; Сорокина С.М. Эволюция системы управления затратами // Вестник ЧелГУ. – 2020. – №2 (436). – С. 272–276 doi:10.24411/1994–2796–2020–10229; Якубов Р.Р. Выбор моделей управления затратами в условиях постпандемии // Научные проблемы водного транспорта. – 2021. – №67. – С. 148–158.

  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal

    Source: Topical issues of law, economic and management; 46-48 ; Актуальные вопросы права, экономики и управления; 46-48

    File Description: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907313-29-3; https://phsreda.com/e-articles/161/Action161-75311.pdf; Фалько С.Г. Контроллинг в процессе внедрения и оптимизации производственных систем // Контроллинг. – 2017. – №1. – С. 2–5.; Кожухова О.С. Концептуальные основы финансового контроллинга // Финансы и кредит. – 2017. – №4. – С. 55–60.; Широков Б.М. Финансовая среда предпринимательства. – М.: Финансы и статистика, 2016. – 496 с.; https://phsreda.com/files/Books/606ee415a80ce.jpeg?req=75311; https://phsreda.com/article/75311/discussion_platform

  18. 18
  19. 19
    Conference

    Relation: Современные технологии принятия решений в цифровой экономике : сборник трудов Всероссийской научно-практической конференции студентов, аспирантов и молодых ученых, 15-17 ноября 2018 г., г. Юрга. — Томск, 2018.; http://earchive.tpu.ru/handle/11683/52033

  20. 20