Showing 1 - 20 results of 110 for search '"долговременная память"', query time: 0.88s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Source: Sormovo Readings- 2025: scientific and educational space, realities and prospects for improving the quality of education; 320-322 ; Сормовские чтения-2025: научно-образовательное пространство, реалии и перспективы повышения качества образования; 320-322

    File Description: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907965-24-9; https://phsreda.com/e-articles/10694/Action10694-126537.pdf; Нурова М.А. Классификация видов памяти, их характеристика / М.А. Нурова, Л.В. Мамедова // Вестник науки и образования. – 2020. – №21–1 (99) [Электронный ресурс]. – Режим доступа: https://cyberleninka.ru/article/n/klassifikatsiya-vidov-pamyati-ih-harakteristika (дата обращения: 11.02.2025).; Петрова В.Г. Психология умственно отсталых школьников / В.Г. Петрова, И.В. Белякова. – 2018. – 102 с.; Черных Л.А. Особенности кратковременной памяти детей младшего школьного возраста с легкой умственной отсталостью / Л.А. Черных, Н.А. Перебейнос // Auditorium. – 2019. – №2 (22) [Электронный ресурс]. – Режим доступа: https://cyberleninka.ru/article/n/osobennosti-kratkovremennoy-pamyati-detey-mladshego-shkolnogo-vozrasta-s-legkoy-umstvennoy-otstalostyu (дата обращения: 11.02.2025).; Кочнева Н.Ю. Особенности памяти младших школьников с нарушениями интеллекта / Н.Ю. Кочнева // Научный Лидер. – 2022. – №8 (53). – С. 51–54. – EDN JIYORV.; Кочнева Н.Ю. Коррекция и развитие образной памяти у младших школьников с умеренной умственной отсталостью / Н.Ю. Кочнева // Психолого-педагогическое сопровождение лиц с ограниченными возможностями здоровья в инклюзивном и специальном образовании: сборник материалов Всероссийского научно-образовательного форума (Биробиджан, 9 ноября 2022 года). – Биробиджан: Приамурский государственный университет им. Шолом-Алейхема, 2023. – С. 262–267. – EDN VNTXCD.; Федорова Н.В. Особенности развития зрительной памяти у детей с легкой степенью умственной отсталости / Н.В. Федорова // Фундаментальные и прикладные научные исследования: инноватика в современном мире: сборник научных статей по материалам X Международной научно-практической конференции (Уфа, 21 марта 2023 года). – В 3 ч. Ч. 3. – Уфа: Вестник науки, 2023. – С. 69–73. – EDN YWTAFI.; https://phsreda.com/article/126537/discussion_platform

  5. 5
    Academic Journal

    Source: Vavilov Journal of Genetics and Breeding; Том 28, № 5 (2024); 476-486 ; Вавиловский журнал генетики и селекции; Том 28, № 5 (2024); 476-486 ; 2500-3259 ; 10.18699/vjgb-24-52

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4229/1854; Arendt T., Ueberham U., Janitz M. Non-coding transcriptome in brain aging. Aging. 2017;9(9):1943-1944. DOI 10.18632/aging.101290; Ashley J., Cody B., Lucia D., Fradkin L.G., Budnik V., Thomson T. Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell. 2018;172(1-2):262-274. DOI 10.1016/j.cell.2017.12.022; Bachiller S., Del-Pozo-Martín Y., Carrion A.M. L1 retrotransposition alters the hippocampal genomic landscape enabling memory formation. Brain Behav. Immun. 2017;64:65-70. DOI 10.1016/j.bbi.2016.12.018; Baek S.J., Ban H.J., Park S.M., Lee B., Choi Y., Baek Y., Lee S., Cha S. Circulating microRNAs as potential diagnostic biomarkers for poor sleep quality. Nat. Sci. Sleep. 2021;13:1001-1012. DOI 10.2147/NSS.S311541; Baillie J.K., Barnett M.W., Upton K.R., Gerhardt D.J., Richmond T.A., De Sapio F., Brennan P.M., Rizzu P., Smith S., Fell M., Talbot R.T., Gustincich S., Freeman T.C., Mattick J.S., Hume D.A., Heutink P., Carninci P., Jeddeloh J.A., Faulkner G.J. Somatic retrotransposition alters the genetic landscape of the human brain. Nature. 2011; 479(7374):534-537. DOI 10.1038/nature10531; Barak B., Shvarts-Serebro I., Modai S., Gilam A., Okun E., Michaelson D.M., Mattson M.P., Shomron N., Ashery U. Opposing actions of environmental enrichment and Alzheimer’s disease on the expression of hippocampal microRNA in mouse models. Transl. Psychiatry. 2013;3(9):e304. DOI 10.1038/tp.2013.77; Barros-Viegas A.T., Carmona V., Ferreiro E., Guedes J., Cardoso A.M., Cunha P., de Almeida L.P., de Oliveira C.R., de Magalhaes J.P., Peca J., Cardoso A.L. miRNA-31 improves cognition and abolishes amyloid-β pathology by targeting APP and BACE1 in an animal model of Alzheimer’s disease. Mol. Ther. Nucleic. Acids. 2020;19: 1219-1236. DOI 10.1016/j.omtn.2020.01.010; Bersten D.C., Wright J.A., McCarthy P.J., Whitelaw M.L. Regulation of the neuronal transcription factor NPAS4 by REST and microRNAs. Biochim. Biophys. Acta. 2014;1839(1):13-24. DOI 10.1016/j.bbagrm.2013.11.004; Boese A.S., Saba R., Campbell K., Majer A., Medina S., Burton L., Booth T.F., Chong P., Westmacott G., Dutta S.M., Saba J.A., Booth S.A. MicroRNA abundance is altered in synaptoneurosomes during prion disease. Mol. Cell. Neurosci. 2016;71:13-24. DOI 10.1016/j.mcn.2015.12.001; Bottero V., Potashkin J.A. Meta-analysis of gene expression changes in the blood of patients with mild cognitive impairment and Alzheimer’s disease dementia. Int. J. Mol. Sci. 2019;20(21):5403. DOI 10.3390/ijms20215403; Butler A.A., Johnston D.R., Kaur S., Lubin F.D. Long noncoding RNA NEAT1 mediates neuronal histone methylation and age-related me mory impairment. Sci. Signal. 2019;12(588):eaaw9277. DOI 10.1126/scisignal.aaw9277; Buurstede J.C., van Weert L.T.C.M., Coucci P., Gentenaar M., Viho E.M.G., Koorneef L.L., Schoonderwoerd R.A., Lanooij S.D., Moustakas I., Balog J., Mei H., Kielbasa S.M., Campolongo P., Roozendaal B., Meijer O.C. Hippocalmpal glucocorticoid target genes associated with enhancement of memory consolidation. Eur. J. Neurosci. 2022;55(9-10):2666-2683. DOI 10.1111/ejn.15226; Cai Y., Sun Z., Jia H., Luo H., Ye X., Wu Q., Xiong Y., Zhang W., Wan J. Rpph1 upregulates CDC42 expression and promotes hippocampal neuron dendritic spine formation by competing with miR-330-5p. Front. Mol. Neurosci. 2017;10:27. DOI 10.3389/fnmol.2017.00027; Campillos M., Doerks T., Shah P.K., Bork P. Computational characterization of multiple Gag-like human proteins. Trends Genet. 2006; 22(11):585-589. DOI 10.1016/j.tig.2006.09.006; Capitano F., Camon J., Licursi V., Ferretti V., Maggi L., Scianni M., Vecchio G.D., Rinaldi A., Mannironi C., Limatola C., Presutti C., Mele A. MicroRNA-335-5p modulates spatial memory and hippocampal synaptic plasticity. Neurobiol. Learn. Mem. 2017;139:63-68. DOI 10.1016/j.nlm.2016.12.019; Chalertpet K., Pin-On P., Aporntewan C., Patchsung M., Ingrungruanglert P., Israsena N., Mutirangura A. Argonaute 4 as an effector protein in RNA-directed DNA methylation in human cells. Front. Genet. 2019;10:645. DOI 10.3389/fgene.2019.00645; Chen S., Cai D., Pearce K., Sun P.Y., Roberts A.C., Glanzman D.L. Reinstatement of long-term memory following erasure of its behavioral and synaptic expression in Aplysia. eLife. 2014;3:e03896. DOI 10.7554/eLife.03896; Chen W., Qin C. General hallmarks of microRNAs in brain evolution and development. RNA Biol. 2015;12(7):701-708. DOI 10.1080/15476286.2015.1048954; Chesnokova E., Beletskiy A., Kolosov P. The role of transposable elements of the human genome in neuronal function and pathology. Int. J. Mol. Sci. 2022;23(10):5847. DOI 10.3390/ijms23105847; Chou M.Y., Hu M.C., Chen P.Y., Hsu C.L., Lin T.Y., Tan M.J., Lee C.Y., Kuo M.F., Huang P.H., Wu V.C., Yang S.H., Fan P.C., Huang H.Y., Akbarian S., Loo T.H., Stewart C.L., Huang H.P., Gau S.S., Huang H.S. RTL1/PEG11 imprinted in human and mouse brain mediates anxiety-like and social behaviors and regulates neuronal excitability in the locus coeruleus. Hum. Mol. Genet. 2022;31(18): 3161-3180. DOI 10.1093/hmg/ddac110; Cobeta I.M., Stadler C.B., Li J., Yu P., Thor S., Benito-Sipos J. Specification of Drosophila neuropeptidergic neurons by the splicing component brr2. PLoS Genet. 2018;14(8):e1007496. DOI 10.1371/journal.pgen.1007496; Cohen J.E., Lee P.R., Fields R.D. Systematic identification of 3′-UTR regulatory elements in activity-dependent mRNA stability in hippocampal neurons. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2014; 369(1652):20130509. DOI 10.1098/rstb.2013.0509; Cosín-Tomás M., Antonell A., Lladó A., Alcolea D., Fortea J., Ezquerra M., Lleó A., Martí M.J., Pallàs M., Sanchez-Valle R., Molinuevo J.L., Sanfeliu C., Kaliman P. Plasma miR-34a-5p and miR-545-3p as early biomarkers of Alzheimer’s disease: potential and limitations. Mol. Neurobiol. 2017;54(7):5550-5562. DOI 10.1007/s12035-016-0088-8; Coufal N.G., Garcia-Perez J.L., Peng G.E., Yeo G.W., Mu Y., Lovci M.T., Morell M., O’Shea K.S., Moran J.V., Gage F.H. L1 retro-transposition in human neural progenitor cells. Nature. 2009; 460(7259):1127-1131. DOI 10.1038/nature08248; Cui X., Zhang R., Yang Y., Wu E., Tang Y., Zhao Z., Li C., Yang L., Teng X., Ye Y., Cui Y., Xu F., Su Z., Wang D., Zhang D., Yang Y., Sun J., Luo J., Zhang S., Chen R., Xi J.J. Identification and characterization of long non-coding RNA Carip in modulating spatial learning and memory. Cell. Rep. 2022;38(8):110398. DOI 10.1016/j.celrep.2022.110398; Dakterzada F., Benitez I.D., Targa A., Llado A., Torres G., Romero L., de Gonzalo-Calvo D., Moncusi-Moix A., Tort-Merino A., Huerto R., Sánchez-de-la-Torre M., Barbé F., Piñol-Ripoll G. Reduced levels of miR-342-5p in plasma are associated with worse cognitive evolution in patients with mild Alzheimer’s disease. Front. Aging Neurosci. 2021;13:705989. DOI 10.3389/fnagi.2021.705989; Di Palo A., Siniscalchi C., Crescente G., De Leo I., Fiorentino A., Pacifico S., Russo A., Potenza N. Effect of cannabidiolic acid, N-transcaffeoyltyramine and cannabisin B from hemp seeds on microRNA expression in human neural cells. Curr. Issues Mol. Biol. 2022; 44(10):5106-5116. DOI 10.339/cimb44100347; Dlakić M., Mushegian A. Prp8, the pivotal protein of the spliseosomal catalytic center, evolved from a retroelement – encoded reverse transcriptase. RNA. 2011;17(5):799-808. DOI 10.1261/rna.2396011; Dong Z., Gu H., Guo Q., Liang S., Xue J., Yao F., Liu X., Li F., Liu H., Sun L., Zhao K. Profiling of serum exosome miRNA reveals the potential of a miRNA panel as diagnostic biomarker for Alzheimer’s disease. Mol Neurobiol. 2021;58(7):3084-3094. DOI 10.1007/s12035-021-02323-y; Dong Z., Gu H., Guo Q., Liu X., Li F., Liu H., Sun L., Ma H., Zhao K. Circulating small extracellular vesicle-derived miR-342-5p ameliorates beta-amyloid formation via targeting beta-site APP cleaving enzyme 1 in Alzheimer’s disease. Cells. 2022;11(23):3830. DOI 10.3390/cells11233830; El Hajjar J., Chatoo W., Hanna R., Nkanza P., Tetrault N., Tse Y.C., Wong T.P., Abdouh M., Bernier G. Heterochromatic genome instability and neurodegeneration sharing similarities with Alzheimer’s disease in old Bmi1+/− mice. Sci. Rep. 2019;9(1):594. DOI 10.1038/s41598-018-37444-3; Espadas I., Wingfield J., Grinman E., Ghosh I., Chanda K., Nakahata Y., Bauer K., Raveendra B., Kiebler M., Yasuda R., Rangaraju V., Puthanveettil S. SLAMR, a synaptically targeted lncRNA, facilitates the consolidation of contextual fear memory. Res. Sq. [Preprint]. 2023;rs.3.rs-2489387. DOI 10.21203/rs.3.rs-2489387/v1; Eysert F., Coulon A., Boscher E., Vreulx A.C., Flaig A., Mendes T., Hughes S., Grenier-Boley B., Hanoulle X., Demiautte F., Bauer C., Marttinen M., Takalo M., Amouyel P., Desai S., Pike I., Hiltunen M., Chécler F., Farinelli M., Delay C., Malmanche N., Hébert S.S., Dumont J., Kilinc D., Lambert J., Chapuis J. Alzheimer’s genetic risk factor FERMT2 (Kindlin-2) controls axonal growth and synaptic plasticity in an APP-dependent manner. Mol. Psychiatry. 2021; 26(10):5592-5607. DOI 10.1038/s41380-020-00926-w; Grinkevich L.N. The role of microRNAs in learning and long-term memory. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020;24(8):885-896. DOI 10.18699/VJ20.687 (in Russian); Grundman J., Spencer B., Sarsoza F., Rissman R.A. Transcriptome analyses reveal tau isoform-driven changes in transposable element and gene expression. PLoS One. 2021;16(9):e0251611. DOI 10.1371/journal.pone.0251611; Gu Q.H., Yu D., Hu Z., Liu X., Yang Y., Luo Y., Zhu J., Li Z. miR-26a and miR-384-35p are required for LTP maintenance and spine enlargement. Nat. Commun. 2015;6:6789. DOI 10.1038/ncomms7789; Guo R., Fan G., Zhang J., Wu C., Du Y., Ye H., Li Z., Wang L., Zhang Z., Zhang L., Zhao Y., Lu Z. A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of Alzheimer’s disease. J. Alzheimers Dis. 2017;60(4):1365-1377. DOI 10.3233/JAD-170343; Hajjri S.N., Sadigh-Eteghad S., Mehrpour M., Moradi F., Shanehbandi D., Mehdizadeh M. Beta-amyloid-dependent mirnas as circulating biomarkers in Alzheimer’s disease: a preliminary report. J. Mol. Neurosci. 2020;70(6):871-877. DOI 10.1007/s12031-020-01511-0; Hanna R., Flamier A., Barabino A., Bernier G. G-quadruplexes originating from evolutionary conserved L1 elements interfere with neuronal gene expression in Alzheimer’s disease. Nat. Commun. 2021; 12(1):1828. DOI 10.1038/s41467-021-22129-9; Hegde A.N., Smith S.G. Recent developments in transcriptional and translational regulation underlying long-term synaptic plasticity and memory. Learn. Mem. 2019;26(9):307-317. DOI 10.1101/lm.048769.118; Henriques A.D., Machado-Silva W., Leite R.E.P., Suemoto C.K., Leite K.R.M., Srougi M., Pereira A.C., Jacob-Filho W., Nóbrega O.T.; Brazilian Aging Brain Study Group. Genome-wide profiling and predicted significance of post-mortem brain microRNA in Alzheimer’s disease. Mech. Ageing Dev. 2020;191:111352. DOI 10.1016/j.mad.2020.111352; Hong H., Li Y., Su B. Identification of circulating miR-125b as a potential biomarker of Alzheimer’s disease in APP/PS1 transgenic mouse. J. Alzheimers Dis. 2017;59(4):1449-1458. DOI 10.3233/JAD-170156; Honson D.D., Macfarlan T.S. A lncRNA-like role for LINE1s in development. Dev. Cell. 2018;46(20):132-134. DOI 10.1016/j.devcel.2018.06.022; Hu L., Zhang R., Yuan Q., Gao Y., Yang M.Q., Zhang C., Huang J., Sun Y., Yang W., Yang J.Y., Min Z.L., Cheng J., Deng Y., Hu X. The emerging role of microRNA-4487/6845-3p in Alzherimer’s disease pathologies is induced by Aβ25-35 triggered in SH-SY5Y cell. BMC Syst. Biol. 2018;12(Suppl. 7):119. DOI 10.1186/s12918-018-0633-3; Huang W., Li S., Hu Y.M., Yu H., Luo F., Zhang Q., Zhu F. Implication of the env gene of the human endogenous retrovirus W family in the expression of BDNF and DRD3 and development of recent-onset schizophrenia. Schizophr. Bull. 2011;37(5):988-1000. DOI 10.1093/schbul/sbp166; Jarome T.J., Lubin F.D. Epigenetic mechanisms of memory formation and reconsolidation. Neurobiol. Learn. Mem. 2014;115:116-127. DOI 10.1016/j.nlm.2014.08.002; Johnson R., Guigo R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA. 2014;20(7): 959-976. DOI 10.1261/rna.044560.114; Ju M., Yang L., Zhu J., Chen Z., Zhang M., Yu J., Tian Z. MiR-664-2 impacts pubertal development in a precocious-puberty rat model through targeting the NMDA receptor-1†. Biol. Reprod. 2019; 100(6):1536-1548. DOI 10.1093/biolre/ioz044; Kaltschmidt B., Kaltschmidt C. NF-KappaB in lont-term memory and structural plasticity in the adult mammalian brain. Front. Mol. Neurosci. 2015;8:69. DOI 10.3389/fnmol.2015.00069; Kaneko-Ishino T., Ishino F. Evolution of brain functions in mammals and LTR retrotransposon-derived genes. Uirusu. 2016;66(1):11-20. DOI 10.2222/jsv.66.11; Kopera H.C., Moldovan J.B., Morrish T.A., Garcia-Perez J.L., Moran J.V. Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase. Proc. Natl. Acad. Sci. USA. 2011;108(51):20345-20350. DOI 10.1073/pnas.1100275108; Kurnosov A.A., Ustyugova S.V., Nazarov V.I., Minervina A.A., Komkov A.Y., Shugay M., Pogorelyy M.V., Khodosevich K.V., Mamedov I.Z., Lebedev Y.B. The evidence for increased L1 activity in the site of human adult brain neurogenesis. PLoS One. 2015;10(2): e0117854. DOI 10.1371/journal.pone.0117854; Lapp H.E., Hunter R.G. The dynamic genome: transposons and environmental adaptation in the nervous system. Epigenomics. 2016; 8(2):237-249. DOI 10.2217/epi.15.107; Lau P., Bossers K., Janky R., Salta E., Frigerio C.S., Barbash S., Rothman R., Sierksma A.S., Thathiah A., Greenberg D., Papadopoulou A.S., Achsel T., Ayoubi T., Soreq H., Verhaagen J., Swaab D.F., Aerts S., Strooper B.D. Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol. Med. 2013; 5(10):1613-1634. DOI 10.1002/emmm.201201974; Leal G., Comprido D., Duarte C.B. BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology. 2014;76(Pt. C): 639-656. DOI 10.1016/j.neuropharm.2013.04.005; Levine R.B. Changes in neuronal circuits during insect metamorphosis. J. Exp. Biol. 1984;112:27-44. DOI 10.1242/jeb.112.1.27; Li L., Miao M., Chen J., Liu Z., Li W., Qiu Y., Xu S., Wang Q. Role of Ten eleven translocation-2 (Tet2) in modulating neuronal morphology and cognition in a mouse model of Alzheimer’s disease. J. Neurochem. 2021;157(4):993-1012. DOI 10.1111/jnc.15234; Linker S.B., Randolph-Moore L., Kottilil K., Qiu F., Jaeger B.N., Barron J., Gage F.H. Identification of bona fide B2 SINE retrotransposon transcription through single-nucleus RNA-seq of the mouse hippocampus. Genome Res. 2020;30(11):1643-1654. DOI 10.1101/gr.262196.120; Lipsky R.H. Epigenetic mechanisms regulating learning and long-term memory. Int. J. Dev. Neurosci. 2013;31(6):353-358. DOI 10.1016/j.ijdevneu.2012.10.110; Liu Q.Y., Chang M.N.V., Lei J.X., Koukiekolo R., Smith B., Zhang D., Ghribi O. Identification of microRNAs involved in Alzheimer’s progression using a rabbit model of the disease. Am. J. Neurodegener. Dis. 2014;3(1):33-44; Lu L., Dai W., Zhu X., Ma T. Analysis of serum miRNAs in Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 2021;36: 15333175211021712. DOI 10.1177/15333175211021712; Lu X., Sachs F., Ramsay L., Jacques P.É., Göke J., Bourque G., Ng H.H. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 2014; 21(4):423-425. DOI 10.1038/nsmb.2799; Lugli G., Cohen A.M., Bennett D.A., Shah R.C., Fields C.J., Hernandez A.G., Smalheiser N.R. Plasma exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers. PLoS One. 2015;10(10):e0139233. DOI 10.1371/journal.pone.0139233; Maag J.L.V., Panja D., Sporild I., Patil S., Koczorowski D.C., Bramham C.R., Dinger M.E., Wibrand K. Dynamic expression of long noncoding RNAs and repeat elements in synaptic plasticity. Front. Neurosci. 2015;9:351. DOI 10.3389/fnins.2015.00351; Mager D.L., Stoye J.P. Mammalian endogenous retroviruses. Micro-biol. Spectr. 2014;3(1):MDNA3-0009-2014. DOI 10.1128/microbiolspec. MDNA3-0009-2014; Mainigi M., Rosenzweig J.M., Lei J., Mensah V., Thomaier L., Talbot Jr. C.C., Olalere D., Ord T., Rozzah R., Johnston M., Burd I. Peri-implantation hormonal milieu: elucidating mechanisms of adverse neurodevelopmental outcomes. Reprod. Sci. 2016;23(6):785-794. DOI 10.1177/1933719115618280; Majumder P., Chanda K., Das D., Singh B.K., Charkrabarti P., Jana N.R., Mukhopadhyay D. A nexus of miR-1271, PAX4 and ALK/RYK influences the cytoskeletal architectures in Alzheimer’s disease and type 2 diabetes. Biochem. J. 2021;478(17):3297-3317. DOI 10.1042/BCJ20210175; Michely J., Kraft S., Muller U. miR-12 and miR-124 contribute to defined early phases of long-lasting and transient memory. Sci. Rep. 2017;7(1):7910. DOI 10.1038/s41598-017-08486-w; Miller C.A., Gavin C.F., White J.A., Parrish R.R., Honasoge A., Yancey C.R., Rivera I.M., Rubio M.D., Rumbaugh G., Sweatt J.D. Cor tical DNA methylation maintains remote memory. Nat. Neurosci. 2010;13(6):664-666. DOI 10.1038/nn.2560; Munin V.A., Olenko E.S. Theories of memory formation mechanisms. Psykhosomaticheskiye i Integrativnye Issledovaniya = Psychosomatic and Integrative Research. 2022;8(2):3 (in Russian); Muotri A.R., Chu V.T., Marchetto M.C., Deng W., Moran J.V., Gage F.H. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature. 2005;435(7044):903-910. DOI 10.1038/nature03663; Muotri A.R., Marchetto M.C., Coufal N.G., Oefner R., Yeo G., Nakashima K., Gage F.H. L1 retrotransposition in neurons is modulated by MeCP2. Nature. 2010;468(7322):443-446. DOI 10.1038/nature09544; Mustafin R.N., Khusnutdinova E.K. Non-coding parts of genomes as the basis of epigenetic heredity. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(6):742-749. DOI 10.18699/VJ17.30-o (in Russian); Mustafin R.N., Khusnutdinova E.K. Epigenetic hypothesis of the role of peptides in aging. Adv. Gerontol. 2018;8(3):200-209. DOI 10.1134/S2079057018030128; Mustafin R.N., Khusnutdinova E.K. The role of transposons in epigenetic regulation of ontogenesis. Russ. J. Dev. Biol. 2018;49(2):61-78. DOI 10.1134/S1062360418020066; Mustafin R.N., Khusnutdinova E.K. The role of transposable elements in the ecological morphogenesis under influence of stress. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(4):380-389. DOI 10.18699/VJ19.506 (in Russian); Noyes N.C., Phan A., Davis R.L. Memory suppressor genes: Modulating acquisition, consolidation, and forgetting. Neuron. 2021; 109(20):3211-3227. DOI 10.1016/j.neuron.2021.08.001; Ortega-de San Luis C., Ryan T.J. Understanding the physical basis of memory: Molecular mechanisms of the engram. J. Biol. Chem. 2022;298(5):101866. DOI 10.1016/j.jbc.2022.101866; Pan W., Hu Y., Wang L., Jing L. Circ_0003611 acts as a miR-885-5p sponge to aggravate the amyloid-β-induced neuronal injury in Alzheimer’s disease. Metab. Brain Dis. 2022;37(4):961-971. DOI 10.1007/s11011-022-00912-x; Pandya N.J., Wang C., Costa V., Lopatta P., Meier S., Zampeta F.I., Punt A.M., Mientjes E., Grossen P., Distler T., Tzouros M., Martí Y., Banfai B., Patsch C., Rasmussen S., Hoener M., Berrera M., Kremer T., Dunkley T., Ebeling M., Distel B., Elgersma Y., Jagasia R. Secreted retrovirus-like GAG-domain-containing protein PEG10 is regulated by UBE3A and is involved in Angelman syndrome pathophysiology. Cell Rep. Med. 2021;2(8):100360. DOI 10.1016/j.xcrm.2021.100360; Parsons M.J., Grimm C., Paya-Cano J.L., Fernandes C., Liu L., Phi-lip V.M., Chesler E.J., Nietfeld W., Lehrach H., Schalkwyk L.C. Genetic variation in hippocampal microRNA expression differences in C57BL/6 J X DBA/2 J (BXD) recombinant inbred mouse strains. BMC Genomics. 2012;13:476. DOI 10.1186/1471-2164-13-476; Pastuzyn E.D., Day C.E., Kearns R.B., Kyrke-Smith M., Taibi A.V., McCormick J., Yoder N., Belnap D.M., Erlendsson S., Morado D.R., Briggs J.A.G., Feschotte C., Shepherd J.D. The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell. 2018;172(1-2):275-288.e18. DOI 10.1016/j.cell.2017.12.024; Patel A.A., Ganepola G.A.P., Rutledge J.R., Chang D.H. The potential role of dysregulated miRNAs in Alzheimer’s disease pathogenesis and progression. J. Alzheimers Dis. 2019;67(4):1123-1145. DOI 10.3233/JAD-181078; Perrat P.N., DasGupta S., Wang J., Theurkauf W., Weng Z., Rosbash M., Waddell S. Transposon-driven genomic heterogeneity in the Drosophila brain. Science. 2013;340(6128):91-95. DOI 10.1126/science.1231965; Pisopo P., Albani D., Castellano A.E., Forloni G., Confaloni A. Frontotemporal lobar degeneration and microRNAs. Front. Aging Neurosci. 2016;8:17; Puig-Parnau I., Garcia-Brito S., Faghihi N., Gubern C., Aldavert-Vera L., Segura-Torres P., Huguet G., Kadar E. Intracranial self-stimulation modulates levels of SIRT1 protein and neural plasticity-related microRNAs. Mol. Neurobiol. 2020;57(6):2551-2562. DOI 10.1007/s12035-020-01901-w; Qin Z., Han X., Ran J., Guo S., Lv L. Exercise-mediated alteration of miR-192-5p is associated with cognitive improvement in Alzheimer’s disease. Neuroimmunomodulation. 2022;29(1):36-43. DOI 10.1159/000516928; Raheja R., Regev K., Healy B.C., Mazzola M.A., Beynon V., Von Glehn F., Paul A., Diaz-Cruz C., Gholipour T., Glanz B.I., Kivisakk P., Chitnis T., Weiner H.L., Berry J.D., Gandhi R. Correlating serum microRNAs and clinical parameters in amyotrophic lateral sclerosis. Muscle Nerve. 2018;58(2):261-269. DOI 10.1002/mus.26106; Rahman M.R., Islam T., Zaman T., Shahjaman M., Karim M.R., Huq F., Quinn J.M.W., Holsinger R.M.D., Gov E., Moni M.A. Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer’s disease: Insights from a systems biomedicine perspective. Genomics. 2020;112(2):1290-1299. DOI 10.1016/j.ygeno.2019.07.018; Ramirez P., Zuniga G., Sun W., Beckmann A., Ochoa E., DeVos S.L., Hyman B., Chiu G., Roy E.R., Cao W., Orr M., Buggia-Prevot V., Ray W.J., Frost B. Pathogenic tau accelerates aging-associated activation of transposable elements in the mouse central nervous system. Prog. Neurobiol. 2022;208:102181. DOI 10.1016/j.pneurobio.2021.102181; Ramsay L., Marchetto M.C., Caron M., Chen S.H., Busche S., Kwan T., Pastinen T., Gage F.H., Bourque G. Conserved expression of transposon-derived non-coding transcripts in primate stem cells. BMC Genomics. 2017;18(1):214-226. DOI 10.1186/s12864-017-3568-y; Rodic N., Burns K.H. Long interspersed element-1 (LINE-1): passenger or driver in human neoplasms. PLoS Genetics. 2013;9(3): e1003402. DOI 10.1371/journal.pgen.1003402; Ryan B., Logan B.J., Abraham W.C., Williams J.M. MicroRNAs, miR-23a-3p and miR-151-3p, are regulated in dentate gyrus neuropil following induction of long-term potentiation in vivo. PLoS One. 2017;12(1):e0170407. DOI 10.1371/journal.pone.0170407; Ryan T.J., Roy D.S., Pignatelli M., Arons A., Tonegawa S. Memory. Engram cells retain memory under retrograde amnesia. Science. 2015;348(6238):1007-1013. DOI 10.1126/science.aaa5542; Samaddar S., Banejee S. Far from the nuclear crowd: Cytoplasmic lncRNA and their implications in synaptic plasticity and memory. Neurobiol. Learn. Mem. 2021;185:107522. DOI 10.1016/j.nlm.2021.107522; Samadian M., Gholipour M., Hajiesmaeili M., Taheri M., Ghafouri-Fard S. The eminent role of microRNAs in the pathogenesis of Alzheimer’s disease. Front. Aging Neurosci. 2021;13:641080. DOI 10.3389/fnagi.2021.641080; Satoh J., Kino Y., Niida S. MicroRNA-Seq data analysis pipeline to identify blood biomarkers for Alzheimer’s disease from public data. Biomark. Insight. 2015;10:21-31. DOI 10.4137/BMI.S25132; Schipper H.M., Maes O.C., Chertkow H.M., Wang E. MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul. Syst. Bio. 2007;1:263-274. DOI 10.4137/grsb.s361; Schonrock N., Ke Y.D., Humphreys D., Staufenbiel M., Ittner L.M., Preiss T., Götz J. Neuronal microRNA deregulation in response to Alzheimer’s disease amyloid-β. PLoS One. 2010;5(6):e11070. DOI 10.1371/journal.pone.0011070; Shomrat T., Levin M. An automated training paradigm reveals long-term memory in planarians and its persistence through head regeneration. J. Exp. Biol. 2013;216(Pt. 20):3799-3810. DOI 10.1242/jeb.087809; Sierksma A., Lu A., Salta E., Vanden Eynden E., Callaerts-Vegh Z., D’Hooge R., Blum D., Buée L., Fiers M., De Stooper B. Deregulation of neuronal miRNAs induced by amyloid-β or TAU pathology. Mol. Neurodegener. 2018;13(1):54. DOI 10.1186/s13024-018-0285-1; Singer T., McConnell M.J., Marchetto M.C.N., Coufal N.G., Gage F.H. LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes. Trends Neurosci. 2010;33(8):345-354. DOI 10.1016/j.tins.2010.04.001; Song S., Pan Y., Li H., Zhen H. MiR-1202 exerts neuroprotective effects on OGD/R induced inflammation in HM cell by negatively regulating Rab1a involved in TLR4/NF-κB signaling pathway. Neurochem. Res. 2020;45(5):1120-1129. DOI 10.1007/s11064-020-02991-7; Sun C., Liu J., Duan F., Cong L., Qi X. The role of the microRNA regulatory network in Alzheimer’s disease: a bioinformatics analysis. Arch. Med. Sci. 2021;18(1):206-222. DOI 10.5114/aoms/80619; Sun W., Samimi H., Gamez M., Zare H., Frost B. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat. Neurosci. 2018;21(8):1038-1048. DOI 10.1038/s41593-018-0194-1; Sun X., Deng Y., Ge P., Peng Q., Soufiany I., Zhu L., Duan R. Diminazene ameliorates neuroinflammation by suppression of astrocytic miRNA-224-5p/NLRP3 axis in Alzheimer’s disease model. J. Inflamm. Res. 2023;16:1639-1652. DOI 10.2147/JIR.S401385; Tan L., Yu J.T., Tan M.S., Liu Q.Y., Wang H.F., Zhang W., Jiang T., Tan L. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease. J. Alzheimers Dis. 2014;40(4):1017-1027. DOI 10.3233/JAD-132144; Tan X., Luo Y., Pi D., Xia L., Li Z., Tu Q. MiR-340 reduces the accumulation of amyloid-β through targeting BACE1 (β-site amyloid precursor protein cleaving enzyme 1) in Alzheimer’s disease. Curr. Neurovasc. Res. 2020;17(1):86-92. DOI 10.2174/1567202617666200117103931; Tan Y., Yu D., Busto G.U., Wilson C., Davis R.L. Wnt signaling is required for long-term memory formation. Cell Rep. 2013;4(6):1082-1089. DOI 10.1016/j.celrep.2013.08.007; Tang C.Z., Yang J.T., Liu Q.H., Wang Y.R., Wang W.S. Up-regulated miR-192-5p expression rescues cognitive impairment and restores neural function in mice with depression via the Fbln2-mediated TGF-β1 signaling pathway. FASEB J. 2019;33(1):606-618. DOI 10.1096/fj.201800210RR; Upton K., Gerhardt D.J., Jesuadian J.S., Richardson S.R., Sanchez-Luque F.J., Bodea G.O., Ewing A.D., Salvador-Palomeque C., van der Knaap M.S., Brennan P.M., Vanderver A., Faulkner G.J. Ubiquitous L1 mosaicism in hippocampal neurons. Cell. 2015;161(2):228-239. DOI 10.1016/j.cell.2015.03.026; Van Meter M., Kashyap M., Rezazadeh S., Geneva A.J., Morello T.D., Seluanov A., Gorbunova V. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat. Commun. 2014;5:5011. DOI 10.1038/ncomms6011; Vatsa N., Kumar V., Singh B.K., Kumar S.S., Sharma A., Jana N.R. Down-regulation of miRNA-708 promotes aberrant calcium signaling by targeting neuronatin in a mouse model of angelman syndrome. Front. Mol. Neurosci. 2019;12:35. DOI 10.3389/fnmol.2019.00035; Wang T., Zhao W., Liu Y., Yang D., He G., Wang Z. MicroRNA-511-3p regulates Aβ1-40 induced decreased cell viability and serves as a candidate biomarker in Alzheimer’s disease. Exp. Gerontol. 2023;178: 112195. DOI 10.1016/j.exger.2023.112195; Wei G., Qin S., Li W., Chen L., Ma F. MDTE DB: a database for microRNAs derived from Transposable element. IEEE/ACM Trans. Comput. Biol. Bioinform. 2016;13(6):1155-1160. DOI 10.1109/TCBB.2015.2511767; Weng H.R., Taing K., Chen L., Penney A. EZH2 methyltransferase regulates neuroinflammation and neuropathic pain. Cells. 2023;12(7): 1058. DOI 10.3390/cells12071058; Wibrand K., Pai B., Siripornmongcolchai T., Bittins M., Berentsen B., Ofte M.L., Weigel A., Skaftnesmo K.O., Bramham C.R. MicroRNA regulation of the synaptic plasticity-related gene Arc. PLoS One. 2012;7(7):e41688. DOI 10.1371/journal.pone.0041688; Wolf G., Yang P., Füchtbauer A.C., Füchtbauer E.M., Silva A.M., Park C., Wu W., Nielsen A.L., Pedersen F.S., Macfarlan T.S. The KRAB zinc finger protein ZFP809 is required to initiate epigenetic silencing of endogenous retroviruses. Genes Dev. 2015;29(5):538-554. DOI 10.1101/gad.252767.114; Xu X.F., Wang Y.C., Zong L., Wang X.L. miR-151-5p modulates APH1a expression to participate in contextual fear memory formation. RNA Biol. 2019;16(3):282-294. DOI 10.1080/15476286.2019.1572435; Xu X., Gu D., Xu B., Yang C., Wang L. Circular RNA circ_0005835 promotes neural stem cells proliferation and differentiate to neuron and inhibits inflammatory cytokines levels through miR-576-ep in Alzheimer’s disease. Environ. Sci. Pollut. Res. Int. 2022;29(24):35934-35943. DOI 10.1007/s11356-021-17478-3; Yaqub A., Mens M.M.J., Klap J.M., Weverling G.J., Klaser P., Brakenhoff J.P.J., Roshchupkin G.V., Ikram M.K., Ghanbari M., Ikram M.A. Genome-wide profiling of circulatory microRNAs associated with cognition and dementia. Alzheimers Dement. 2023;19(4):1194-1203. DOI 10.1002/alz.12752; Yuen S.C., Liang X., Zhu H., Jia Y., Leung S. Prediction of differentially expressed microRNAs in blood as potential biomarkers for Alzheimer’s disease by meta-analysis and adaptive boosting ensemble learning. Alzheimers Res. Ther. 2021;13(1):126. DOI 10.1186/s13195-021-00862-z; Zhang C., Lu J., Liu B., Cui Q., Wang Y. Primate-specific miR-603 is implicated in the risk and pathogenesis of Alzheimer’s disease. Aging. 2016;8(2):272-290. DOI 10.18632/aging.100887; Zhang H., Li J., Ren J., Sun S., Ma S., Zhang W., Yu Y., Cai Y., Yan K., Li W., Hu B., Chan P., Zhao G.G., Belmonte J.C.I., Zhou Q., Qu J., Wang S., Liu G.H. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell. 2021;12(9):695-716. DOI 10.1007/s13238-021-00852-9; Zhang W.J., Huang Y.Q., Fu A., Chen K.Z., Li S.J., Zhang Q., Zou G.J., Liu Y., Su J.Z., Zhou S.F., Liu J.W., Li F., Bi F.F., Li C.Q. The retrotransposition of L1 is involved in the reconsolidation of contextual fear memory in mice. CNS Neurol. Disord. Drug Targets. 2021; 20(3):273-284. DOI 10.2174/1871527319666200812225509; Zhao X., Wang S., Sun W. Expression of miR-28-3p in patients with Alzheimer’s disease before and after treatment and its clinical value. Exp. Ther. Med. 2020;20(3):2218-2226. DOI 10.3892/etm.2020.8920; Zheng D., Sabbagh J.J., Blair L.J., Darling A.L., Wen X., Dickey C.A. MicroRNA-511 binds to FKBP5 mRNA, which encodes a chaperone protein, and regulates neuronal differentiation. J. Biol. Chem. 2016;291(34):1797-1806. DOI 10.1074/jbc.M116.727941; Zhou Q.G., Liu M.Y., Lee H.W., Ishikawa F., Devkota S., Shen X.R., Jin X., Wu H.Y., Liu Z., Liu X., Jin X., Zhou H.H., Ro E.J., Zhang J., Zhang Y., Lin Y.H., Suh H., Zhu D.Y. Hippocampal TERT regulates spatial memory formation through modulation of neural development. Stem Cell Reports. 2017;9(2):543-556. DOI 10.1016/j.stemcr.2017.06.014; https://vavilov.elpub.ru/jour/article/view/4229

  6. 6
  7. 7
    Academic Journal

    Source: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 20, № 3 (2023); 27-37 ; Вестник анестезиологии и реаниматологии; Том 20, № 3 (2023); 27-37 ; 2541-8653 ; 2078-5658

    File Description: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/812/636; Андрющенко А. В., Дробижев М. Ю., Добровольский А. В. Сравнительная оценка шкал CES-D, BDI и HADS(D) в диагностике депрессий в общемедицинской практике // Журнал неврологии и психиатрии им. С. С. Корсакова. – 2003. – № 5. – С. 11–18.; Насреддин З. Монреальская шкала оценки когнитивных функций – Мока-тест (от англ. Montreal Cognitive Assessmnet, сокращенно МоСА): пер. с англ. О. В. Посохина, А. Ю. Смирнова. – 2004. – URL: www.mocatest.org.; Овезов А., Пантелеева М. В., Князев А. В., Луговой А. В., Брагина С. В. Когнитивная дисфункция и общая анестезия: от патогенеза к профилактике и коррекции // Неврология, нейропсихиатрия, психосоматика. – Т. 8, № 3. – С. 101–105. Doi:10.14412/2074-2711-2016-3-101-105.; Проценко Д. Н. Международные рекомендации по лечению возбуждения и делирия у взрослых пациентов отделений реанимации и интенсивной терапии // Медицинский алфавит. – 2014. – Т. 2, № 9. – С. 27–30.; Chen X., Zheng X., Cai J. et al. Effect of Anesthetics on Functional Connectivity of Developing Brain // Front. Hum. Neurosci. – 2022. – Vol. 11. – P. 16:853816. Doi:10.3389/fnhum.2022.853816.; Evered L. A., Chan M. T. V., Han R. Anaesthetic depth and delirium after major surgery: a randomised clinical trial // Br. J. Anaesth. – 2021. – Vol. 127, № 5. – P. 704–712. Doi:10.1016/j.bja.2021.07.021.; Iggena D., Maier P. M., Häußler S. M. et al. Post-encoding modulation of spatial memory consolidation by propofol // Cortex. – 2022. – Vol. 156. – P. 1–12. Doi:10.1016/j.cortex.2022.08.004.; Jia L., Wang W., Luo Y. et al. Inhibition of PARP-1 participates in the mechanisms of propofol-induced amnesia in mice and human // Brain Res. – 2016. – Vol. 1637. – P. 137–145. Doi:10.1016/j.brainres.2016.02.031.; Linassi F., Obert D. P., Maran E. et al. Implicit Memory and Anesthesia: A Systematic Review and Meta-Analysis // Life (Basel). – 2021. – Vol. 11, № 8. – P. 850. Doi:10.3390/life11080850.; Marco C. Awareness during emergence from anesthesia: Features and future research directions // World J. Clin. Cases. – 2020. – Vol. 2, № 8. – P. 245–254. Doi:10.12998/wjcc.v8.i2.245.; Moon D. U., Esfahani-Bayerl N., Finke C. et al. Propofol modulates early memory consolidation in humans // Eneuro. – 2020. – Vol. 3, № 7. – P. 1–29. Doi:10.1523/ENEURO.0537-19.2020.; Nagashima K., Zorumski C. F., Izumi Y. Propofol inhibits long-term potentiation but not long-term depression in rat hippocampal slices // Anesthesiology. – 2005. – Vol. 103, № 2. – P. 318–326. Doi:10.1097/00000542-200508000-00015.; Pryor K. O., Root J. C., Mehta M. et al. Effect of propofol on the medial temporal lobe emotional memory system: a functional magnetic resonance imaging study in human subjects // Br. J. Anaesth. – 2015. – Vol. 115, Suppl. 1. – P. 104–113. Doi:10.1093/bja/aev038.; Reul J. M., de Kloet E. R. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation // Endocrinology. – 1985. – Vol. 117, № 6. – Р. 2505–2511. Doi:10.1210/endo-117-6-2505. PMID: 2998738.; Rolls E. T. The cingulate cortex and limbic systems for emotion, action and memory // Brain Struct. Funct. – 2019. – Vol. 9, № 224. – P. 3001–3018. Doi:10.1007/s00429-019-01945-2.; Runyan J. D., Moore A. N., Dash P. K. Coordinating what we’ve learned about memory consolidation: Revisiting a unified theory // Neurosci. Biobehav. Rev. – 2019. – Vol. 100. – P. 77–84. Doi:10.1016/j.neubiorev.2019.02.010.; Shinone Y., Higuchi S., Sasaki M. et al. Changes in brain activation induced by visual stimulus during and after propofol conscious sedation: a functional MRI study // NeuroReport. – 2016. – Vol. 27, № 17. – P. 1256–1260. Doi:10.1097/WNR.0000000000000688.; Singh A., Brenna C. T. A., Broad J. et al. The Effects of Dexmedetomidine on perioperative neurocognitive outcomes after cardiac surgery: a systematic review and meta-analysis of randomized controlled trials // Ann. Surg. – 2022. – Vol. 275, № 5. – P. 864–871. Doi:10.1097/SLA.0000000000005196.; Sohn H. M., Na H. S., Lim D. et al. Immediate retrograde amnesia induced by midazolam: a prospective, nonrandomized cohort study // Int. J. Clin. Pract. – 2021. – P. e14745. Doi:10.1111/ijcp.14745.; Standarts for basic anesthetic monitoring / American Society of Anesthesiologists. – 2020. URL: https://www.asahq.org/standards-andguidelines/standards-for-basic-anesthetic-monitoring.; Takamatsu I., Sekiguchi M., Wada K. et al. Propofol-mediated impairment of CA1 long-term potentiation in mouse hippocampal slices // Neurosci Lett. – 2005. – Vol. 389, № 3. – Р. 129–132. Doi:10.1016/j.neulet.2005.07.043.; Timofeev I., Chauvette S. Sleep, anesthesia and plasticity // Neuron. – 2018. – Vol. 97, № 6. – Р. 1200–1202. Doi:10.1016/j.neuron.2018.03.013.; Veselis R. A., Pryor K. O., Reinsel R. A. et al. Propofol and midazolam inhibit conscious memory processes very soon after encoding: an event-related potential study of familiarity and recollection in volunteers // Anesthesiology. – 2009. – Vol. 110, № 2. – P. 295–312. Doi:10.1097/ALN.0b013e3181942ef0.; Yan J., Gao C., Wang Y. et al. ED50 for intravenous midazolam-induced amnesia and its duration in surgical patients // Ann. Ital. Chir. – 2021. – Vol. 92. – P. 406–411. PMID: 34524117.; Yang W., Chini M., Pöpplau J. A. et al. Anesthetics fragment hippocampal network activity, alter spine dynamics, and affect memory consolidation // PLoS Biol. – 2021. – Vol. 19, № 4. – Р. e3001146. Doi:10.1371/journal.pbio.3001146.; Zhang J., Zhang X., Jiang W. Propofol impairs spatial memory consolidation and prevents learning-induced increase in hippocampal matrix metalloproteinase-9 levels in rat // Neuroreport. – 2013. – Vol. 24, № 15. – P. 831–836. Doi:10.1097/WNR.0b013e328364fe69.

  8. 8
  9. 9
  10. 10
    Academic Journal

    Source: Russian Psychological Journal; Vol. 19 No. 3 (2022); 56-73 ; Российский психологический журнал; Том 19 № 3 (2022); 56-73 ; 2411-5789 ; 1812-1853 ; 10.21702/w655551

    File Description: application/pdf

  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Contributors: This work was supported by the Program of Fundamental Research of State Academies for 2013–2020 (GP-14, section 63)

    Source: Vavilov Journal of Genetics and Breeding; Том 24, № 8 (2020); 885-896 ; Вавиловский журнал генетики и селекции; Том 24, № 8 (2020); 885-896 ; 2500-3259 ; 10.18699/VJ20.67

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2849/1458; Ai J., Sun L.H., Che H., Zhang R., Zhang T.Z., Wu W.C., Su X.L., Chen X., Yang G., Li K., Wang N., Ban T., Bao Y.N., Guo F., Niu H.F., Zhu Y.L., Zhu X.Y., Zhao S.G., Yang B.F. MicroRNA195 protects against dementia induced by chronic brain hypoperfusion via its anti-amyloidogenic effect in rats. J. Neurosci. 2013;33(9):3989-4001. DOI 10.1523/JNEUROSCI.1997-12.2013. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6619292.; Aksoy-Aksel A., Zampa F., Schratt G. MicroRNAs and synaptic plasticity – a mutual relationship. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014;369(1652):20130515. DOI 10.1098/rstb.2013.0515. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142036.; Aquino-Jarquin G. Emerging role of CRISPR/Cas9 technology for microRNAs editing in cancer research. Cancer Res. 2017;77(24): 6812-6817. DOI 10.1158/0008-5472.CAN-17-2142. https://cancerres.aacrjournals.org/content/77/24/6812.long.; Aten S., Hansen K.F., Snider K., Wheaton K., Kalidindi A., Garcia A., Alzate-Correa D., Hoyt K.R., Obrietan K. miR-132 couples the circadian clock to daily rhythms of neuronal plasticity and cognition. Learn. Mem. 2018;25(5):214-229. DOI 10.1101/lm.047191.117. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5903403.; Baby N., Alagappan N., Dheen S.T., Sajikumar S. MicroRNA-134-5p inhibition rescues long-term plasticity and synaptic tagging/capture in an Aβ(1-42)-induced model of Alzheimer’s disease. Aging Cell. 2020;19(1):e13046. DOI 10.1111/acel.13046. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974725.; Baek S., Hwan C., Kim J. Ebf3-miR218 regulation is involved in the development of dopaminergic neurons. Brain Res. 2014;1587: 23-32. DOI 10.1016/j.brainres.2014.08.059. https://pubmed.ncbi.nlm.nih.gov/25192643.; Banks S.A., Pierce M.L., Soukup G.A. Sensational microRNAs: neurosensory roles of the microRNA-183 family. Mol. Neurobiol. 2020;57(1):358-371. DOI 10.1007/s12035-019-01717-3. https://link.springer.com/article/10.1007%2Fs12035-019-01717-3.; Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215-233. DOI 10.1016/j.cell.2009.01.002. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794896.; Benito E., Kerimoglu C., Ramachandran B., Pena-Centeno T., Jain G., Stilling R.M., Islam M.R., Capece V., Zhou Q., Edbauer D., Dean C., Fischer A. RNA-dependent intergenerational inheritance of enhanced synaptic plasticity after environmental enrichment. Cell Rep. 2018;23(2):546-554. DOI 10.1016/j.celrep.2018.03.059. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912949.; Berger S.L. The complex language of chromatin regulation during transcription. Nature. 2007;447(7143):407-412. DOI 10.1038/nature 05915. https://pubmed.ncbi.nlm.nih.gov/17522673.; Beveridge N.J., Gardiner E., Carroll A.P., Tooney P.A., Cairns M.J. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol. Psychiatry. 2010;15(12):1176-1189. DOI 10.1038/mp.2009.84. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990188.; Bicker S., Khudayberdiev S., Weiss K., Zocher K., Baumeister S., Schratt G. The DEAH-box helicase DHX36 mediates dendritic localization of the neuronal precursor-microRNA-134. Genes Dev. 2013;27(9):991-996. DOI 10.1101/gad.211243.112. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656329.; Bitetti A., Mallory A.C., Golini E., Carrieri C., Carreño Gutiérrez H., Perlas E., Pérez-Rico Y.A., Tocchini-Valentini G.P., Enright A.J., Norton W.H.J., Mandillo S., O’Carroll D., Shkumatava A. MicroRNA degradation by a conserved target RNA regulates animal behavior. Nat. Struct. Mol. Biol. 2018;25(3):244-251. DOI 10.1038/s41594-018-0032-x. https://pubmed.ncbi.nlm.nih.gov/29483647.; Cao T., Zhen X.C. Dysregulation of miRNA and its potential therapeutic application in schizophrenia. CNS Neurosci. Ther. 2018; 24(7):586-597. DOI 10.1111/cns.12840.; Chen W., Qin C. General hallmarks of microRNAs in brain evolution and development. RNA Biol. 2015;12(7):701-708. DOI 10.1080/15476286.2015.1048954. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4615839.; Cheng Y., Wang Z.M., Tan W., Wang X., Li Y., Bai B., Li Y., Zhang S.F., Yan H.L., Chen Z.L., Liu C.M., Mi T.W., Xia S., Zhou Z., Liu A., Tang G.B., Liu C., Dai Z.J., Wang Y.Y., Wang H., Wang X., Kang Y., Lin L., Chen Z., Xie N., Sun Q., Xie W., Peng J., Chen D., Teng Z.Q., Jin P. Partial loss of psychiatric risk gene miR137 in mice causes repetitive behavior and impairs sociability and learning via increased Pde10a. Nat. Neurosci. 2018;21(12):1689-1703. DOI 10.1038/s41593-018-0261-7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261680.; Chmielarz P., Konovalova J., Najam S.S., Alter H., Piepponen T.P., Erfle H., Sonntag K.C., Schütz G., Vinnikov I.A., Domanskyi A. Dicer and microRNAs protect adult dopamine neurons. Cell Death Dis. 2017;8(5):e2813. DOI 10.1038/cddis.2017.214. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520729.; Danka Mohammed C.P., Park J.S., Nam H.G., Kim K. MicroRNAs in brain aging. Mech. Ageing Dev. 2017;168:3-9. DOI 10.1016/j.mad.2017.01.007. https://pubmed.ncbi.nlm.nih.gov/28119001.; Dias B.G., Goodman J.V., Ahluwalia R., Easton A.E., Andero R., Ressler K.J. Amygdala-dependent fear memory consolidation via miR-34a and notch signaling. Neuron. 2014;83(4):906-918. DOI 10.1016/j.neuron.2014.07.019. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4172484.; Dimmeler S., Nicotera P. MicroRNAs in age-related diseases. EMBO Mol. Med. 2013;5(2):180-190. DOI 10.1002/emmm.201201986. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569636.; Fiorenza A., Barco A. Role of Dicer and the miRNA system in neuronal plasticity and brain function. Neurobiol. Learn. Mem. 2016; 135:3-12. DOI 10.1016/j.nlm.2016.05.001. https://pubmed.ncbi.nlm.nih.gov/27163737.; Fiorenza A., Lopez-Atalaya J.P., Rovira V., Scandaglia M., GeijoBarrientos E., Barco A. Blocking miRNA biogenesis in adult forebrain neurons enhances seizure susceptibility, fear memory, and food intake by increasing neuronal responsiveness. Cereb. Cortex. 2016;26:1619-1633. DOI 10.1093/cercor/bhu332. https://pubmed.ncbi.nlm.nih.gov/25595182.; Fischer A. Epigenetic memory: the Lamarckian brain. EMBO J. 2014;33(9):945-967. DOI 10.1002/embj.201387637. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4193930.; Gaine M.E., Chatterjee S., Abel T. Sleep deprivation and the epigenome. Front. Neural Circuits. 2018;12:14. DOI 10.3389/fncir.2018.00014. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5835037.; Gantier M.P., McCoy C.E., Rusinova I., Saulep D., Wang D., Xu D., Irving A.T., Behlke M.A., Hertzog P.J., Mackay F., Williams B.R. Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res. 2011;39(13):5692-5703. DOI 10.1093/nar/gkr148. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3141258.; Gao J., Wang W.Y., Mao Y.W., Gräff J., Guan J.S., Pan L., Mak G., Kim D., Su S.C., Tsai L.H. Anovel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature. 2010;466(7310):1105- 1109. DOI 10.1038/nature09271. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928875.; Griggs E.M., Young E.J., Rumbaugh G., Miller C.A. MicroRNA-182 regulates amygdala-dependent memory formation. Version 2. J. Neurosci. 2013;33(4):1734-1740. DOI 10.1523/JNEUROSCI.2873-12.2013. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711533.; Grinkevich L.N. Epigenetics and long-term memory formation. Rossiyskiy Fiziologicheskiy Zhurnal im. I.M. Sechenova = I.M. Sechenov Physiological Journal. 2012;98(5):553-574. https://pubmed.ncbi.nlm.nih.gov/22838191/ (in Russian); Grinkevich L.N. Influence of PLL treatment on the long-term memory formation in Helix mollusk. Meditsynskiy Akademicheskiy Zhurnal = Medical Academic Journal. 2019;19(4):87-92. DOI 10.17816/MAJ19080. https://journals.eco-vector.com/MAJ/article/view/19080. (in Russian); Gu Q.H., Yu D., Hu Z., Liu X., Yang Y., Luo Y., Zhu J., Li Z. miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement. Nat. Commun. 2015;6:6789. DOI 10.1038/ncomms7789. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4403380.; Gu X., Xu Y., Xue W.Z., Wu Y., Ye Z., Xiao G., Wang H.L. Interplay of miR-137 and EZH2 contributes to the genome-wide redistribution of H3K27me3 underlying the Pb-induced memory impairment. Cell Death Dis. 2019;10(9):671. DOI 10.1038/s41419-019-1912. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739382.; Hansen K.F., Sakamoto K., Wayman G.A., Impey S., Obrietan K. Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory. PLoS One. 2010;5(11):e15497. DOI 10.1371/journal.pone.0015497. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993964.; Havekes R., Abel T. The tired hippocampus: the molecular impact of sleep deprivation on hippocampal function. Curr. Opin. Neu¬ robiol. 2017;44:13-19. DOI 10.1016/j.conb.2017.02.005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511071.; He L., Hannon G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004;5(7):522-531. DOI 10.1038/nrg1379. https://pubmed.ncbi.nlm.nih.gov/15211354.; Hébert S.S., Papadopoulou A.S., Smith P., Galas M.C., Planel E., Silahtaroglu A.N., Sergeant N., Buée L., De Strooper B. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum. Mol. Genet. 2010;19(20):3959-3969. DOI 10.1093/hmg/ddq311. https://pubmed.ncbi.nlm.nih.gov/20660113.; Hirosawa M., Fujita Y., Parr C.J.C., Hayashi K., Kashida S., Hotta A., Woltjen K., Saito H. Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch. Nucleic Acids Res. 2017;45(13):e118. DOI 10.1093/nar/gkx309. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570128.; Hoffmann M.D., Aschenbrenner S., Grosse S., Rapti K., Domenger C., Fakhiri J., Mastel M., Börner K., Eils R., Grimm D., Niopek D. Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR protein. Nucleic Acids Res. 2019;47(13):e75. DOI 10.1093/nar/gkz271. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648350.; Hu T., Zhou F.J., Chang Y.F., Li Y.S., Liu G.C., Hong Y., Chen H.L., Xiyang Y.B., Bao T.H. miR21 is associated with the cognitive improvement following voluntary running wheel exercise in TBI mice. J. Mol. Neurosci. 2015;57(1):114-122. DOI 10.1007/s12031-015-0584-8. https://pubmed.ncbi.nlm.nih.gov/26018937.; Hu Z., Li Z. miRNAs in synapse development and synaptic plasticity. Curr. Opin. Neurobiol. 2017;45:24-31. DOI 10.1016/j.conb.2017.02.014. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5554733.; Hu Z., Yu D., Gu Q.H., Yang Y., Tu K., Zhu J., Li Z. miR-191 and miR-135 are required for long-lasting spine remodelling associated with synaptic long-term depression. Nat. Commun. 2014;5: 3263. DOI 10.1038/ncomms4263. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951436.; Hu Z., Zhao J., Hu T., Luo Y., Zhu J., Li Z. miR-501-3p mediates the activity-dependent regulation of the expression of AMPA receptor subunit GluA1. J. Cell Biol. 2015;208(7):949-959. DOI 10.1083/jcb.201404092. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4384731.; Inukai S., de Lencastre A., Turner M., Slack F. Novel microRNAs differentially expressed during aging in the mouse brain. PLoS One. 2012;7:e40028. DOI 10.1371/journal.pone.0040028. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402511.; Jawaid A., Woldemichael B.T., Kremer E.A., Laferriere F., Gaur N., Afroz T., Polymenidou M., Mansuy I.M. Memory decline and its reversal in aging and neurodegeneration involve miR-183/96/182 biogenesis. Mol. Neurobiol. 2019;56(5):3451-3462. DOI 10.1007/s12035-018-1314-3. https://pubmed.ncbi.nlm.nih.gov/30128653.; Jessop P., Toledo-Rodriguez M. Hippocampal TET1 and TET2 expression and DNA hydroxymethylation are affected by physical exercise in aged mice. Front. Cell Dev. Biol. 2018;6:45. DOI 10.3389/fcell.2018.00045. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5922180.; John B., Enright A.J., Aravin A., Tuschl T., Sander C., Marks D.S. Human microRNA targets. PLoS Biol. 2004;2(11):e363. DOI 10.1371/journal.pbio.0020363. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC521178.; Jovasevic V., Corcoran K.A., Leaderbrand K., Yamawaki N., Guedea A.L., Chen H.J., Shepherd G.M., Radulovic J. GABAergic mechanisms regulated by miR-33 encode state-dependent fear. Nat. Neurosci. 2015;18(9):1265-1271. DOI 10.1038/nn.4084. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880671.; Kandel E. Small neuron systems. In: The Brain. Scientific American, 1979.; Kandel E. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol. Brain. 2012;5(14):1-12. DOI 10.1186/1756-6606-5-1426. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514210.; Karabulut S., Korkmaz Bayramov K., Bayramov R., Ozdemir F., Topaloglu T., Ergen E., Yazgan K., Taskiran A.S., Golgeli A. Effects of post-learning REM sleep deprivation on hippocampal plasticity-related genes and microRNA in mice. Behav. Brain Res. 2019;361:7-13. DOI 10.1016/j.bbr.2018.12.045. https://pubmed.ncbi.nlm.nih.gov/30594545.; Kim S., Kaang B.K. Epigenetic regulation and chromatin remodeling in learning and memory. Exp. Mol. Med. 2017;49(1):e281. DOI 10.1038/emm.2016.140. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291841.; Konopka W., Kiryk A., Novak M., Herwerth M., Parkitna J.R., Wawrzyniak M., Kowarsch A., Michaluk P., Dzwonek J., Arnsperger T., Wilczynski G., Merkenschlager M., Theis F.J., Köhr G., Kaczmarek L., Schütz G. MicroRNA loss enhances learning and memory in mice. J. Neurosci. 2010;30(44):14835-14842. DOI 10.1523/JNEUROSCI.3030-10.2010. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6633640.; Korneev S.A., Vavoulis D.V., Naskar S., Dyakonova V.E., Kemenes I., Kemenes G. A CREB2-targeting microRNA is required for long-term memory after single-trial learning. Sci. Rep. 2018; 8(1):3950. DOI 10.1038/s41598-018-22278-w. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5834643.; Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843-854. DOI 10.1016/0092-8674(93)90529-y. https://pubmed.ncbi.nlm.nih.gov/8252621.; Lee S.T., Chu K., Jung K.H., Kim J.H., Huh J.Y., Yoon H., Park D.K., Lim J.Y., Kim J.M., Jeon D., Ryu H., Lee S.K., Kim M., Roh J.K. miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann. Neurol. 2012;72:269-277. DOI 10.1002/ana.23588. https://pubmed.ncbi.nlm.nih.gov/22926857.; Lesseur C., Paquette A.G., Marsit C.J. Epigenetic regulation of infant neurobehavioral outcomes. Med. Epigenet. 2014;2(2):71-79. DOI 10.1159/000361026. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4116357.; Leung A.K.L. The whereabouts of microRNA actions: cytoplasm and beyond. Trends Cell Biol. 2015;25(10):601-610. DOI 10.1016/j.tcb.2015.07.005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610250.; Lewis B.P., Shih I.-H., Jones-Rhoades M.W., Bartel D.P., Burge C.B. Prediction of mammalian microRNA targets. Cell. 2003;115(7): 787-798. DOI 10.1016/s0092-8674(03)01018-3. https://pubmed.ncbi.nlm.nih.gov/14697198.; Lin Q., Ponnusamy R., Widagdo J., Choi J.A., Ge W., Probst C., Buckley T., Lou M., Bredy T.W., Fanselow M.S., Ye K., Sun Y.E. MicroRNA-mediated disruption of dendritogenesis during a critical period of development influences cognitive capacity later in life. Proc. Natl. Acad. Sci. USA. 2017;114(34):9188-9193. DOI 10.1073/pnas.1706069114. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576812.; Liu E.Y., Cali C.P., Lee E.B. RNA metabolism in neurodegenerative disease. Dis. Model. Mech. 2017;10(5):509-518. DOI 10.1242/dmm.028613. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5451173.; Lugli G., Larson J., Martone M.E., Jones Y., Smalheiser N.R. Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J. Neurochem. 2005;94(4):896-905. DOI 10.1111/j.1471-4159.2005.03224.x. https://pubmed.ncbi.nlm.nih.gov/16092937.; Malmevik J., Petri R., Knauff P., Brattas P.L., Akerblom M., Jakobsson J. Distinct cognitive effects and underlying transcriptome changes upon inhibition of individual miRNAs in hippocampal neurons. Sci. Rep. 2016;6:19879. DOI 10.1038/srep19879. https:// www.ncbi.nlm.nih.gov/pmc/articles/PMC4728481.; Mathew R.S., Tatarakis A., Rudenko A., Johnson-Venkatesh E.M., Yang Y.J., Murphy E.A., Todd T.P., Schepers S.T., Siuti N., Martorell A.J., Falls W.A., Hammack S.E., Walsh C.A., Tsai L.H., Umemori H., Bouton M.E., Moazed D.A. microRNA negative feedback loop downregulates vesicle transport and inhibits fear memory. eLife. 2016;5:e22467. DOI 10.7554/eLife.22467. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293492.; McNeill E., Van Vactor D. MicroRNAs shape the neuronal landscape. Neuron. 2012;75(3):363-379. DOI 10.1016/j.neuron.2012.07.005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3441179.; Nilsson E.K., Boström A.E., Mwinyi J., Schiöth H.B. Epigenomics of total acute sleep deprivation in relation to genome-wide DNA methylation profiles and RNA expression. OMICS. 2016;20(6): 334-342. DOI 10.1089/omi.2016.0041. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926204.; Nudelman A.S., DiRocco D.P., Lambert T.J., Garelick M.G., Le J., Nathanson N.M., Storm D.R. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus. 2010;20(4):492-498. DOI 10.1002/hipo.20646. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847008.; Paul S., Reyes P.R., Garza B.S., Sharma A. MicroRNAs and child neuropsychiatric disorders: a brief review. Neurochem. Res. 2020;45(2):232-240. DOI 10.1007/s11064-019-02917-y. https://pubmed.ncbi.nlm.nih.gov/31773374.; Rajasethupathy P., Fiumara F., Sheridan R., Betel D., Puthanveettil S.V., Russo J.J., Sander C., Tuschl T., Kandel E. Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron. 2009;63(6): 803-817. DOI 10.1016/j.neuron.2009.05.029. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875683.; Ramakrishna S., Muddashetty R.S. Emerging role of microRNAs in dementia. J. Mol. Biol. 2019;431(9):1743-1762. DOI 10.1016/j.jmb.2019.01.046. https://pubmed.ncbi.nlm.nih.gov/30738891.; Reinhart B.J., Slack F.J., Basson M., Pasquinelli A.E., Bettinger J.C., Rougvie A.E., Horvitz H.R., Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403(6772):901-906. DOI 10.1038/35002607. https://pubmed.ncbi.nlm.nih.gov/10706289.; Saus E., Soria V., Escaramis G., Vivarelli F., Crespo J.M., Kagerbauer B., Menchón J.M., Urretavizcaya M., Gratacòs M., Estivill X. Genetic variants and abnormal processing of pre-miR182, a circadian clock modulator, in major depression patients with late insomnia. Hum. Mol. Genet. 2010;19(20):4017-4025. DOI 10.1093/hmg/ddq316. https://pubmed.ncbi.nlm.nih.gov/20656788.; Selbach M., Schwanhäusser B., Thierfelder N., Fang Z., Khanin R., Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455(7209):58-63. DOI 10.1038/nature07228. https://pubmed.ncbi.nlm.nih.gov/18668040.; Shen J., Li Y., Qu C., Xu L., Sun H., Zhang J. The enriched environment ameliorates chronic unpredictable mild stress-induced depressive-like behaviors and cognitive impairment by activating the SIRT1/miR-134 signaling pathway in hippocampus. J. Affect Disord. 2019;248:81-90. DOI 10.1016/j.jad.2019.01.031. https://pubmed.ncbi.nlm.nih.gov/30716615.; Siegert S., Seo J., Kwon E.J., RudenkoA., Cho S., Wang W., Flood Z., Martorell A.J., Ericsson M., Mungenast A.E., Tsai L.H. The schizophrenia risk gene product miR-137 alters presynaptic plasticity. Nat. Neurosci. 2015;18(7):1008-1016. DOI 10.1038/nn.4023. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506960.; Sim S.E., Lim C.S., Kim J.I., Seo D., Chun H., Yu N.K., Lee J., Kang S.J., Ko H.G., Choi J.H., Kim T., Jang E.H., Han J., Bak M.S., Park J.E., Jang D.J., Baek D., Lee Y.S., Kaang B.K. The brain-enriched microRNA miR-9-3p regulates synaptic plasticity and memory. J. Neurosci. 2016;36(33):8641-8652. DOI 10.1523/JNEUROSCI.0630-16.2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601897.; Smalheiser N.R. The RNA-centred view of the synapse: non-coding RNAs and synaptic plasticity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014;369(1652):20130504. DOI 10.1098/rstb.2013.0504. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142025.; Smith A.C.W., Kenny P.J. MicroRNAs regulate synaptic plasticity underlying drug addiction. Genes Brain Behav. 2018;17(3): e12424. DOI 10.1111/gbb.12424. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837931.; Sweatt J.D. Neural plasticity and behavior – sixty years of conceptual advances. J. Neurochem. 2016;139(Suppl.2):179-199. DOI 10.1111/jnc.13580. https://pubmed.ncbi.nlm.nih.gov/26875778.; Vetere G., Barbato C., Pezzola S., Frisone P., Aceti M., Ciotti M., Cogoni C., Ammassari-Teule M., Ruberti F. Selective inhibition of miR-92 in hippocampal neurons alters contextual fear memory. Hippocampus. 2014;24(12):1458-1465. DOI 10.1002/hipo.22326. https://pubmed.ncbi.nlm.nih.gov/24990518.; Wang C.N., Wang Y.J., Wang H., Song L., Chen Y., Wang J.L., Ye Y., Jiang B. The anti-dementia effects of Donepezil involve miR-206- 3p in the hippocampus and cortex. Biol. Pharm. Bull. 2017;40(4): 465-472. DOI 10.1248/bpb.b16-00898. https://pubmed.ncbi.nlm.nih.gov/28123152.; Wang X., Liu D., Huang H.Z., Wang Z.H., Hou T.Y., Yang X., Pang P., Wei N., Zhou Y.F., Dupras M.J., Calon F., Wang Y.T., Man H.Y., Chen J.G., Wang J.Z., Hébert S.S., Lu Y., Zhu L.Q. A novel microRNA-124/PTPN1 signal pathway mediates synaptic and memory deficits in Alzheimer’s disease. Biol. Psychiatry. 2018;83(5):395-405. DOI 10.1016/j.biopsych.2017.07.023. https://pubmed.ncbi.nlm.nih.gov/28965984.; Wingo T.S., Yang J., Fan W., Min Canon S., Gerasimov E.S., Lori A., Logsdon B., Yao B., Seyfried N.T., Lah J.J., LeveyA.I., Boyle P.A., Schneider J.A., De Jager P.L., Bennett D.A., Wingo A.P. Brain microRNAs associated with late-life depressive symptoms are also associated with cognitive trajectory and dementia. NPJ Genom. Med. 2020;5:6. DOI 10.1038/s41525-019-0113-8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7004995.; Woldemichael B.T., Jawaid A., Kremer E.A., Gaur N., Krol J., Marchais A., Mansuy I.M. The microRNA cluster miR-183/96/182 contributes to long-term memory in a protein phosphatase 1-dependent manner. Nat. Commun. 2016;7:12594. DOI 10.1038/ncomms12594. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5007330.; Wu Y.Y., Kuo H.C. Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases. J. Biomed. Sci. 2020;27(1):49. DOI 10.1186/s12929-020-00636-z. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140545.; Yan H.L., Sun X.W., Wang Z.M., Liu P.P., Mi T.W., Liu C., Wang Y.Y., He X.C., Du H.Z., Liu C.M., Teng Z.Q. MiR-137 deficiency causes anxiety-like behaviors in mice. Front. Mol. Neuro¬ sci. 2019;12:260. DOI 10.3389/fnmol.2019.00260. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831983.; Yang Y., Shu X., Liu D., Shang Y., Wu Y., Pei L., Xu X., Tian Q., Zhang J., Qian K., Wang Y.X., Petralia R.S., Tu W., Zhu L.Q., Wang J.Z., Lu Y. EPAC null mutation impairs learning and social interactions via aberrant regulation of miR-124 and Zif 268 translation. Neuron. 2012;73(4):774-788. DOI 10.1016/j.neuron.2012.02.003. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3307595.; You Y.H., Qin Z.Q., Zhang H.L., Yuan Z.H., Yu X. MicroRNA-153 promotes brain-derived neurotrophic factor and hippocampal neuron proliferation to alleviate autism symptoms through inhibition of JAK-STAT pathway by LEPR. Biosci. Rep. 2019;39(6): BSR20181904. DOI 10.1042/BSR20181904. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591574.; Zovoilis A., Agbemenyah H.Y., Agis-Balboa R.C., Stilling R.M., Edbauer D., Rao P., Farinelli L., Delalle I., Schmitt A., Falkai P., Bahari-Javan S., Burkhardt S., Sananbenesi F., Fischer A. MicroRNA-34c is a novel target to treat dementias. EMBO J. 2011;30: 4299-4308. DOI 10.1038/emboj.2011.327. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199394.; https://vavilov.elpub.ru/jour/article/view/2849

  15. 15
  16. 16
    Academic Journal

    Source: Science, education, society: trends and prospects; 197-198 ; Наука, образование, общество: тенденции и перспективы развития; 197-198

    File Description: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-6043805-2-9; https://interactive-plus.ru/e-articles/660/Action660-519394.pdf; Полянцева О.И. «Психология для средних медицинских учреждений» учебное пособие/ Полянцева О.И. – изд. 5-е, испр. – Ростов н/Д: Феникс, 2012 – 414 с.; Косенко В.Г. Медицинская психология для медсестер и фельдшеров / В.Г. Косенко, Д.Ф. Смоленко, Т.А. Чебуракова / Серия: Медицина для всех. – Ростов н/Д: Феникс, 2002. – 416 с.

  17. 17
    Academic Journal

    Source: A breakthrough in science: development strategies; 88-93 ; Новое слово в науке: стратегии развития; 88-93

    File Description: text/html

    Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-6043805-6-7; https://interactive-plus.ru/e-articles/662/Action662-519364.pdf; Козаренко В.А. Учебник мнемотехники. – М., 2007. – 360 с.; Челпанов Г.И. О памяти и мнемотехнике. – СПб.: типография И.Н. Скороходова, 1903. – 400 с.; Аткинсон Р. Человеческая память и процесс обучения / пер. с англ.; под общ. ред. Ю.М. Забродина, Б.Ф. Ломова. – М.: Прогресс, 1980. – 500 с.; Будникова Т. Лэпбук «Мнемотехника как прием в обучении детей связной речи» [Электронный ресурс]. – Режим доступа: https://www.maam.ru/detskijsad/mnemotehnika-sredstvo-razvitija-svjaznoi-rechi-doshkolnikov-s-onr.html; Укрепление памяти. Мнемотехнические приёмы [Электронный ресурс]. – Режим доступа: http://www.psyworld.ru/students/texts/uluchshenie_pamyaty.htm

  18. 18
    Academic Journal

    Source: Vavilov Journal of Genetics and Breeding; Том 22, № 5 (2018); 606-610 ; Вавиловский журнал генетики и селекции; Том 22, № 5 (2018); 606-610 ; 2500-3259

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/1597/1107; Abel T., Zukin R.S. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr. Opin. Pharmacol. 2008; 8(1):57-64. DOI 10.1016/j.coph.2007.12.002.; Balaban P.M. Cellular mechanisms of behavioral plasticity in terrestrial snail. Neurosci. Biobehav. Rev. 2002;26(5):597-630.; Bredy T.W., Wu H., Crego C., Zellhoefer J., Sun Y.E., Barad M. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn. Mem. 2007;14(4):268-276. DOI 10.1101/lm.500907.; Danilova A.B., Grinkevich L.N. Inability of juvenile snails for long-term memory formation depends on acetylation status of histone H3 and can be improved by NaB treatment. PLoS One. 2012;7(7):1-8. e41828. DOI 10.1371/journal.pone.0041828.; Danilova A.B., Kharchenko O.A., Shevchenko K.G., Grinkevich L.N. Histone H3 acetylation is asymmetrically induced upon learning in identified neurons of the food aversion network in the mollusk Helix lucorum. Front. Behav. Neurosci. 2010;4(180):1-7.; Dyakonova T.L., Sh.-Rozha K. Effect of FMRFamide on electrical and plastic properties of identified neurons of grape snail. Zhurnal Vysshey Nervnoy Deyatelnosti im. I.P. Pavlova = I.P. Pavlov Journal of Higher Nervous Activity. 1986;36(4):751-759. (in Russian); Dyatlov V.A. Role of calcium ions in processes of serotonin-induced modulation of neuronal response to acetylcholone application in Helix pomatia. Neurophysiology. 1988;5:489-492.; Elekes K., Ude J. An immunogold electron microscopic analysis of FMRFamide-like immunoreactive neurons in the CNS of Helix pomatia: ultrastructure and synaptic connections. J. Neurocytol. 1993; 22(1):1-13.; Gräff J., Tsai L.H. The potential of HDAC inhibitors as cognitive enhancers. Annu. Rev. Pharmacol. Toxicol. 2013;53:311-330. DOI 10.1146/annurev-pharmtox-011112-140216.; Grinkevich L.N. Epigenetics and long-term memory formation. Rossiyskiy Fiziologicheskiy Zhurnal im. I.M. Sechenova = I.M. Sechenov Physiological Journal. 2012;98(5)553-574. (in Russian); Grinkevich L.N. p38 МАРK is involved in the regulation of epigenetic mechanisms of food aversion learning. Bulletin of Experimental Biology and Medicine. 2017;163(4):412-414. DOI 10.1007/s10517017-3816-9.; Grinkevich L.N., Lisachev P.D., Kharchenko O.A., Vasil’ev G.V. Expression of MAP/ERK kinase cascade corresponds to the ability to develop food aversion in terrestrial snail at different stages of ontogenesis. Brain Res. 2008;1187:12-19. DOI 10.1016/j.brainres.2007.08.029.; Grinkevich L.N., Vorobiova O.V. Role of modulatory mediator serotonin in induction of epigenetic processes during long-term memory formation in Helix. Russian Journal of Genetics: Applied Research. 2014;4(6):526-532. DOI 10.1134/S2079059714060094.; Grinkevich L.N., Vorobiova O.V. Opposing roles of serotonin and neuropeptide FMRFamide in the regulation of epigenetic processes involved in the long-term memory. Russian Journal of Genetics: Applied Research. 2017;7(3):273-280. DOI 10.1134/ S2079059717030054.; Guan Z., Giustetto M., Lomvardas S., Kim J.H., Miniaci M.C., Schwartz J.H., Thanos D., Kandel E.R. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell. 2002;111(4): 483-493.; Guan Z., Kim J.H., Lomvardas S., Holick K., Xu S., Kandel E.R., Schwartz J.H. p38 MAP kinase mediates both short-term and long-term synaptic depression in aplysia. J. Neurosci. 2003;23(19):7317-7325.; Hobert O., Johnston R.J., Chang S. Left-right asymmetry in the nervous system: the Caenorhabditis elegans model. Nat. Rev. Neurosci. 2002;3(8):629-640. DOI 10.1038/nrn897.; Kandel E. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol. Brain. 2012;5(14):1-12. DOI 10.1186/1756-6606-5-14.; Kharchenko O.A., Grinkevich V.V., Vorobiova O.V., Grinkevich L.N. Learning-induced lateralized activation of the MAPK/ERK cascade in identified neurons of the food aversion network in the mollusk Helix lucorum. Neurobiol. Learn. Mem. 2010;94:158-166. DOI 10.1016/j.nlm.2010.05.002.; Kim S., Kaang B.K. Epigenetic regulation and chromatin remodeling in learning and memory. Exp. Mol. Med. 2017;49(1):e281. DOI 10.1038/emm.2016.140.; Lenz O., Xiong J., Nelson M.D., Raizen D.M., Williams J.A. FMRFamide signaling promotes stress-induced sleep in Drosophila. Brain Behav. Immun. 2015;47:141-148. DOI 10.1016/j.bbi.2014.12.028.; Levenson J.M., O’Riordan K.J., Brown K.D., Trinh M.A., Molfese D.L., Sweatt J.D. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 2004;279:40545-40559. DOI 10.1074/jbc.M402229200.; Levenson J.M., Sweatt J.D. Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation. Cell Mol. Life Sci. 2006;63:1009-1016. DOI 10.1007/s00018-006-6026-6.; Monsey M.S., Ota K.T., Akingbade I.F., Hong E.S., Schafe G.E. Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLoS One. 2011;6(5):e19958. DOI 10.1371/journal.pone.0019958.; Raffa R.B. The action of FMRFamide (Phe-Met-Arg-Phe-NH2) and related peptides on mammals. Peptides. 1988;9(4):915-922.; Rogers L.J., Vallortigara G. From antenna to antenna: lateral shift of olfactory memory recall by honeybees. PLoS One. 2008;3(6):1-5. DOI 10.1371/journal.pone.0002340.; Rőszer T., Bánfalvi G. FMRFamide-related peptides: anti-opiate transmitters acting in apoptosis. Peptides. 2012;34(1):177-185. DOI 10.1016/j.peptides.2011.04.011.; Takase K., Oda S., Kuroda M., Funato H. Monoaminergic and neuropeptidergic neurons have distinct expression profiles of histone deacetylases. PLoS One. 2013;8(3):e58473. DOI 10.1371/journal.pone.0058473.; Telegdy G., Bollók I. Amnesic action of FMRFamide in rats. Neuropeptides. 1987;10(2):157-163.; Zatylny-Gaudin C., Favrel P. Diversity of the RFamide peptide family in mollusks. Front. Endocrinol. (Lausanne). 2014;5(178):1-14. DOI 10.3389/fendo.2014.00178.; Zhen X., Du W., Romano A.G., Friedman E., Harvey J.A. The p38 mitogen-activated protein kinase is involved in associative learning in rabbits. J. Neurosci. 2001;21(15):5513-5529.; Zovkic I.B., Guzman-Karlsson M.C., Sweatt J.D. Epigenetic regulation of memory formation and maintenance. Learn. Mem. 2013;20:6174. DOI 10.1038/npp.2012.79.; https://vavilov.elpub.ru/jour/article/view/1597

  19. 19
  20. 20