-
1Academic Journal
Συγγραφείς: КлименкоИ.А., Антонов А.А., Шамустакимова А.О., Золотарев В.Н.
Πηγή: Письма в Вавиловский журнал генетики и селекции, Vol 10, Iss 3, Pp 141-150 (2024)
Θεματικοί όροι: козлятник восточный, galega orientalis lam, генетическое разнообразие, srap-маркеры, днк-полиморфизм, генетический паспорт, днк-баркодирование, рестрикционный анализ, Genetics, QH426-470
Περιγραφή αρχείου: electronic resource
Relation: https://pismavavilov.ru/wp-content/uploads/2024/10/003-PVJ_Klimenko_10_3.pdf; https://doaj.org/toc/2686-8482
Σύνδεσμος πρόσβασης: https://doaj.org/article/21de73061baa4dcd96779a045dbdf625
-
2Academic Journal
Συγγραφείς: A. V. Smirnov, A. N. Korablev, I. A. Serova, A. M. Yunusova, A. A. Muravyova, E. S. Valeev, N. R. Battulin, A. В. Смирнов, A. Н. Кораблев, И. А. Серова, A. М. Юнусова, A. А. Муравьёва, E. С. Валеев, Н. Р. Баттулин
Συνεισφορές: This work was supported by the Russian Science Foundation grant No. 24-74-10013.
Πηγή: Vavilov Journal of Genetics and Breeding; Том 29, № 1 (2025); 26-34 ; Вавиловский журнал генетики и селекции; Том 29, № 1 (2025); 26-34 ; 2500-3259 ; 10.18699/vjgb-25-01
Θεματικοί όροι: эмбрионы мыши, pronuclear microinjection, DNA barcoding, transgenic animals, DSB repair, concatemer, homologous recombination (HR), non-homologous end-joining, NHEJ, mouse embryos, пронуклеарная микроинъекция, ДНК-баркодирование, трансгенные животные, репарация двуцепочечных разрывов ДНК, конкатемер, гомологичная рекомбинация, негомологичное соединение концов
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/4473/1911; Abe T., Inoue K., Furuta Y., Kiyonari H. Pronuclear microinjection during S-phase increases the efficiency of CRISPR-Cas9-assisted knockin of large DNA donors in mouse zygotes. Cell Rep. 2020; 31(7):107653. doi:10.1016/j.celrep.2020.107653; Clarke R., Heler R., MacDougall M.S., Yeo N.C., Chavez A., Regan M., Hanakahi L., Church G.M., Marraffini L.A., Merrill B.J. Enhanced bacterial immunity and mammalian genome editing via RNA-polymerase-mediated dislodging of Cas9 from double-strand DNA breaks. Mol Cell. 2018;71(1):42-55.e8. doi:10.1016/j.molcel.2018.06.005; Cock P.J.A., Antao T., Chang J.T., Chapman B.A., Cox C.J., Dalke A., Friedberg I., Hamelryck T., Kauff F., Wilczynski B., De Hoon M.J.L. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25(11):1422-1423. doi:10.1093/bioinformatics/btp163; Cock P.J.A., Fields C.J., Goto N., Heuer M.L., Rice P.M. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 2010;38(6): 1767-1771. doi:10.1093/nar/gkp1137; Dai J., Cui X., Zhu Z., Hu W. Non-homologous end joining plays a key role in transgene concatemer formation in transgenic zebrafish embryos. Int J Biol Sci. 2010;6(7):756-768. doi:10.7150/ijbs.6.756; Danner E., Lebedin M., De La Rosa K., Kühn R. A homology independent sequence replacement strategy in human cells using a CRISPR nuclease. Open Biol. 2021;11(1):200283. doi:10.1098/rsob.200283; Gurtan A.M., Lu V., Bhutkar A., Sharp P.A. In vivo structure-function analysis of human Dicer reveals directional processing of precursor miRNAs. RNA. 2012;18(6):1116-1122. doi:10.1261/rna.032680.112; Harms D.W., Quadros R.M., Seruggia D., Ohtsuka M., Takahashi G., Montoliu L., Gurumurthy C.B. Mouse genome editing using the CRISPR/Cas system. Curr Protoc Hum Genet. 2014;83:15.7.1-15.7.27. doi:10.1002/0471142905.hg1507s83; Jinek M., Jiang F., Taylor D.W., Sternberg S.H., Kaya E., Ma E., Anders C., Hauer M., Zhou K., Lin S., Kaplan M., Iavarone A.T., Charpentier E., Nogales E., Doudna J.A. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 2014;343(6176):1247997. doi:10.1126/science.1247997; Maggio I., Holkers M., Liu J., Janssen J.M., Chen X., Gonçalves M.A.F.V. Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells. Sci Rep. 2014;4(1):5105. doi:10.1038/srep05105; Mali P., Yang L., Esvelt K.M., Aach J., Guell M., DiCarlo J.E., Norville J.E., Church G.M. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823-826. doi:10.1126/science.1232033; Maltseva E.A., Vasil’eva I.A., Moor N.A., Kim D.V., Dyrkheeva N.S., Kutuzov M.M., Vokhtantsev I.P., Kulishova L.M., Zharkov D.O., Lavrik O.I. Cas9 is mostly orthogonal to human systems of DNA break sensing and repair. PLoS One. 2023;18(11):e0294683. doi:10.1371/journal.pone.0294683; Nishimasu H., Ran F.A., Hsu P.D., Konermann S., Shehata S.I., Dohmae N., Ishitani R., Zhang F., Nureki O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 2014;156(5): 935-949. doi:10.1016/j.cell.2014.02.001; Reginato G., Dello Stritto M.R., Wang Y., Hao J., Pavani R., Schmitz M., Halder S., Morin V., Cannavo E., Ceppi I., Braunshier S., Acharya A., Ropars V., Charbonnier J.-B., Jinek M., Nussenzweig A., Ha T., Cejka P. HLTF disrupts Cas9-DNA post-cleavage complexes to allow DNA break processing. Nat Commun. 2024;15(1):5789. doi:10.1038/s41467-024-50080-y; Richardson C.D., Ray G.J., DeWitt M.A., Curie G.L., Corn J.E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. 2016;34(3):339-344. doi:10.1038/nbt.3481; Rohan R.M., King D., Frels W.I. Direct sequencing of PCR-amplified junction fragments from tandemly repeated transgenes. Nucleic Acids Res. 1990;18(20):6089-6095. doi:10.1093/nar/18.20.6089; Sakuma T., Nakade S., Sakane Y., Suzuki K.-I.T., Yamamoto T. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc. 2016;11(1):118-133. doi:10.1038/nprot.2015.140; Schimmel J., Kool H., Van Schendel R., Tijsterman M. Mutational signatures of non‐homologous and polymerase theta‐mediated end-joining in embryonic stem cells. EMBO J. 2017;36(24):3634-3649. doi:10.15252/embj.201796948; Smirnov A., Fishman V., Yunusova A., Korablev A., Serova I., Skryabin B.V., Rozhdestvensky T.S., Battulin N. DNA barcoding reveals that injected transgenes are predominantly processed by homologous recombination in mouse zygote. Nucleic Acids Res. 2020; 48(2):719-735. doi:10.1093/nar/gkz1085; Stephenson A.A., Raper A.T., Suo Z. Bidirectional degradation of DNA cleavage products catalyzed by CRISPR/Cas9. J Am Chem Soc. 2018;140(10):3743-3750. doi:10.1021/jacs.7b13050; Suzuki K., Tsunekawa Y., Hernandez-Benitez R., Wu J., Zhu J., Kim E.J., Hatanaka F., Yamamoto M., Araoka T., Li Z., Kurita M., Hishida T., Li M., Aizawa E., Guo S., Chen S., Goebl A., Soligalla R.D., Qu J., Jiang T., Fu X., Jafari M., Esteban C.R., Berggren W.T., Lajara J., Nuñez-Delicado E., Guillen P., Campistol J.M., Matsuzaki F., Liu G.-H., Magistretti P., Zhang K., Callaway E.M., Zhang K., Belmonte J.C.I. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 2016; 540(7631):144-149. doi:10.1038/nature20565; Taheri-Ghahfarokhi A., Taylor B.J.M., Nitsch R., Lundin A., Cavallo A.-L., Madeyski-Bengtson K., Karlsson F., Clausen M., Hicks R., Mayr L.M., Bohlooly-Y.M., Maresca M. Decoding non-random mutational signatures at Cas9 targeted sites. Nucleic Acids Res. 2018; 46(16):8417-8434. doi:10.1093/nar/gky653; Takeo T., Nakagata N. Combination medium of cryoprotective agents containing l-glutamine and methyl-β-cyclodextrin in a preincubation medium yields a high fertilization rate for cryopreserved C57BL/6J mouse sperm. Lab Anim. 2010;44(2):132-137. doi:10.1258/la.2009.009074; Takeo T., Nakagata N. Reduced glutathione enhances fertility of frozen/thawed C57BL/6 mouse sperm after exposure to methyl-beta-cyclodextrin. Biol Reprod. 2011;85(5):1066-1072. doi:10.1095/biolreprod.111.092536; Takeo T., Hoshii T., Kondo Y., Toyodome H., Arima H., Yamamura K., Irie T., Nakagata N. Methyl-beta-cyclodextrin improves fertilizing ability of C57BL/6 mouse sperm after freezing and thawing by facilitating cholesterol efflux from the cells. Biol Reprod. 2008;78(3): 546-551. doi:10.1095/biolreprod.107.065359; https://vavilov.elpub.ru/jour/article/view/4473
-
3Academic Journal
Συγγραφείς: S. Almerekova, S. Abugalieva, N. Mukhitdinov, Ш. С. Альмерекова, С. И. Абугалиева, Н. М. Мухитдинов
Πηγή: Vavilov Journal of Genetics and Breeding; Том 22, № 2 (2018); 285-290 ; Вавиловский журнал генетики и селекции; Том 22, № 2 (2018); 285-290 ; 2500-3259
Θεματικοί όροι: сеть гаплотипов, Oxytropis almaatensis, Oxytropis glabra, DNA barcoding, haplotype network, ДНК-баркодирование
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/1456/1062; Abdulina S.A. Endemic species of the genus Oxytropis DC. in Northern Tien Shan. Bull. Acad. Sci. Kazakh SSR. 1978:66-71. Adams R.P., Turuspekov Y. Taxonomic reassessment of some Central Asian and Himalayan scale-leaved taxa of Juniperus (Cupressaceae) supported by random amplification of polymorphic DNA. Taxon. 1998;47:75-84.; Archambault A., Strömvik M.V. Evolutionary relationships in Oxytropis species, as estimated from the nuclear ribosomal internal transcribed spacer (ITS) sequences point to multiple expansions into the Arctic. Botany. 2012;90:770-779. DOI 10.1139/b2012-023.; Artyukova E.V., Kozyrenko M.M. Phylogenetic relationships of Oxytropis chankaensis Jurtz. and Oxytropis oxyphylla (Pall.) DC. (Fabaceae) inferred from the data of sequencing of the ITS region of the nuclear ribosomal DNA operon and intergenic spacers of the chloroplast genome. Genetika. 2012;48:186-193. DOI 10.1134/ S1022795411110032.; Baitenov M.S. Oxytropis almaatensis Bajt. sp. nova. Flora Kazahstana. T. V. [Flora of Kazakhstan. Vol. V]. Ed. N.V. Pavlov. Alma-Ata: Akademija Nauk Kazakhskoy SSR, 1961;330-410. (in Russian); Bandelt H.J., Forster P., Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999;16(1):37-48.; Doyle J.J., Doyle J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987;19:11-15.; Gao L., Lu P., Jin F., Enhebayaer E., Gao J. TrnL-F sequences analysis and molecular phylogeny of 10 species of Oxytropis. Acta Botanica Boreali-Occidentalia Sinica. 2013;2:266-271.; Genievskaya Y., Abugalieva S., Zhubanysheva A., Turuspekov Y. Morphological description and DNA barcoding study of sand rice (Agriophyllum squarrosum, Chenopodiaceae) collected in Kazakhstan. BMC Plant Biology. 2017;17(Suppl.1):177. DOI 10.1186/ s12870-017-1132-1; Grubov V.I. Plants of Central Asia – Plant Collection from China and Mongolia. Vol. 8b. Legumes, Genus Oxytropis. Enfield Taylor & Francis, 2003. Grudzinskaya L.M., Gemedzhieva N.G., Nelina N.V., Karzhaubekova J.J. Annotirovannyj spisok lekarstvennyh rastenij Kazahstana: Spravochnoe izdanie [Annotated checklist of medicinal plants in Kazakhstan: a reference book]. Almaty, 2014. (in Russian); Jorgensen J.L., Stehlik I., Brochmann C., Conti E. Implications of ITS sequences and RAPD markers for the taxonomy and biogeography of the Oxytropis campestris and O. arctica (Fabaceae) complexes in Alaska. Am. J. Bot. 2003;90(10):1470-1480. DOI 10.3732/ajb.90. 10.1470.; Kholina A.B., Kozyrenko M.M., Artyukova E.V., Sandanov D.V., Andrianova E.A. Phylogenetic relationships of the species of Oxytropis DC. subg. Oxytropis and Phacoxytropis (Fabaceae) from Asian Russia inferred from the nucleotide sequence analysis of the intergenic spacers of the chloroplast genome. Russ. J. Genet. 2016;52(8):780- 793. DOI 10.1134/S1022795416060065.; Kholina A., Kozyrenko M., Artyukova E., Sandanov D., Selyutina I., Chimitov D. Plastid DNA variation of the endemic species Oxytropis glandulosa Turcz. (Fabaceae). Turkish J. Bot. 2017;42(1):38-50. DOI 10.3906/bot-1706-11.; Leigh J.W., Bryant D. PopART full-feature software for haplotype network construction. Methods Ecol. Evol. 2015;6(9):1110-1116. DOI 10.1111/2041-210X.12410.; Li X., Yang Y., Henry R.J., Rossetto M., Wang Y., Chen S. Plant DNA barcoding from gene to genome. Biol. Rev. 2015;90:157-166. DOI 10.1111/brv.12104.; Librado P., Rozas J. DnaSP v5 a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451- 1452.; Lu P., Gao L., Jin F., Enhebayaer E. Molecular phylogeny of 10 species of Oxytropis based on psbA-trnH sequences. Acta Bot. Yunnanica. 2014;3:279-284. DOI 10.1093/bioinformatics/btp187. DOI 10.7677/ynzwyj201413135.; Malyshev L. Diversity of the genus Oxytropis in Asian Russia. Turczaninowia. 2008a;11(4):5-141. Malyshev L.I. Phenetics of the subgenera and sections in the genus Oxytropis DC. (Fabaceae) bearing on ecology and phylogeny. Contemp. Probl. Ecol. 2008b;1(4):440-444. DOI 10.1134/ S1995425508040073.; National Center for Biotechnology Information. U.S. National Library of Medicine, Rockville Pike, 1988. https //www.ncbi.nlm.nih.gov. Accessed 2 August 2017. Saitou N., Nei M. The neighbor-joining method. A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4:406-425.; Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6 Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013;30(12):2725-2729. DOI 10.1093/molbev/mst197.; Techen N., Parveen I., Pan Z., Khan I. DNA barcoding of medicinal plant material for identification. Curr. Opin. Biotechnol. 2014;25:103- 110. DOI 10.1016/j.copbio.2013.09.010.; Tekpinar A., Erkul S.K., Aytac Z., Kaya Z. Phylogenetic relationships among native Oxytropis species in Turkey using the trnL intron, trnL-F IGS, and trnV intron cpDNA regions. Turkish J. Bot. 2016; 40(5):472-479. DOI 10.3906/bot-1506-45.; The Red Book of the Republic of Kazakhstan. Almaty: ArtPrint XXI, 2014. Turuspekov Y., Abugalieva S. Plant DNA barcoding project in Kazakhstan. Genome. 2015;58(5):290.; Turuspekov Y., Abugalieva S., Ermekbayev K., Sato K. Genetic characterization of wild barley populations (Hordeum vulgare ssp. spontaneum) from Kazakhstan based on genome wide SNP analysis. Breed. Sci. 2014;64(4):399-403. DOI 10.1270/jsbbs.64.399.; Turuspekov Y., Adams R.P., Kearney C.M. Genetic diversity in three perennial grasses from the Semipalatinsk nuclear testing region of Kazakhstan after long-term radiation exposure. Biochem. Syst. Ecol. 2002;30(9):809-817. DOI 10.1016/S0305-1978(02)00021-2.; White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: a Guide to Methods and Applications. 1990;18(1): 315-322.; https://vavilov.elpub.ru/jour/article/view/1456