-
1Academic Journal
Source: Journal of Bioinformatics and Genomics, Vol 25, Iss 3 (2024)
Subject Terms: long non-coding rnas, genetic variants, head and neck paraganglioma, high-throughput sequencing, QH426-470, высокопроизводительное секвенирование, параганглиома головы и шеи, длинные некодирующие рнк, long non-coding RNAs, длинные некодирующие РНК, генетические варианты, Genetics, экзом, exome
-
2Academic Journal
Authors: A. O. Sherbacheva, D. M. Sibirtsev, N. N. Savin, Ya. V. Rumyantseva, A. E. Brazhkina, V. M. Kachalova, A. V. Mamay, D. D. Tipteva, Yu. V. Khitrina, N. G. Zhukov, R. A. Izotov, E. R. Yuldasheva, Ya. A. Anokhina, А. О. Щербачева, Д. М. Сибирцев, Н. Н. Савин, Я. В. Румянцева, А. Е. Бражкина, В. М. Качалова, А. В. Мамай, Д. Д. Типтева, Ю. В. Хитрина, Н. Г. Жуков, Р. А. Изотов, Э. Р. Юлдашева, Я. А. Анохина
Source: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347
Subject Terms: онкогинекология, EVs, exosomes, gynecological cancers, cervical cancer, endometrial cancer, ovarian cancer, biomarkers, microRNAs, long non-coding RNAs, diagnosis, prognosis, gynecologic oncology, ВВ, экзосомы, гинекологические опухоли, рак шейки матки, рак эндометрия, рак яичников, биомаркеры, микроРНК, длинные некодирующие РНК, диагностика, прогнозирование
File Description: application/pdf
Relation: https://www.gynecology.su/jour/article/view/2514/1357; Жилина Н.И., Шрамко С.В. Злокачественные новообразования женских репродуктивных органов в динамике 2011–2020 на примере Новокузнецка. Социальные аспекты здоровья населения. 2022;68(3):11. https://doi.org/10.21045/2071-5021-2022-68-3-11.; Zhu B., Gu H., Mao Z. et al. Global burden of gynaecological cancers in 2022 and projections to 2050. J Glob Health. 2024;14:04155. https://doi.org/10.7189/jogh.14.04155.; Кононова Г.А., Жуйкова Л.Д., Ананина О.А. и др. Рак репродуктивной системы у женщин Республики Тыва. Эпидемиологические особенности. Сибирский онкологический журнал. 2024;23(3):5–14. https://doi.org/10.21294/1814-4861-2024-23-3-5-14.; Чернобровкина А.Е. Заболеваемость злокачественными новообразованиями женской половой сферы населения Санкт-Петербурга. Здоровье населения и среда обитания – ЗНиСО. 2022;1(1):29–35. https://doi.org/10.35627/2219-5238/2022-30-1-29-35.; Александрова Л.М., Грецова О.П., Петрова Г.В. и др. Выявление злокачественных новообразований молочной железы и органов женской репродуктивной системы при диспансеризации определенных групп взрослого населения. Профилактическая медицина. 2016;19(3):4–11. https://doi.org/10.17116/profmed20161934-11.; Краевая Е.Е., Силачев Д.Н., Безнощенко О.С. и др. Влияние внеклеточных везикул фолликулярной жидкости на коагуляционный гемостаз яичника. Проблемы репродукции. 2020;26(2):18–26. https://doi.org/10.17116/repro20202602118.; Rafieezadeh D., Rafieezadeh A. Extracellular vesicles and their therapeutic applications: a review article (part1). Int J Physiol Pathophysiol Pharmacol. 2024;16(1):1–9. https://doi.org/10.62347/QPAG5693.; Zeng Y., Qiu Y., Jiang W. et al. Biological features of extracellular vesicles and challenges. Front Cell Dev Biol. 2022;10:816698. https://doi.org/10.3389/fcell.2022.816698.; Fusco C., De Rosa G., Spatocco I. et al. Extracellular vesicles as human therapeutics: a scoping review of the literature. J Extracell Vesicles. 2024;13(5):e12433. https://doi.org/10.1002/jev2.12433.; Zheng M., Hou L., Ma Y. et al. Exosomal let-7d-3p and miR-30d-5p as diagnostic biomarkers for non-invasive screening of cervical cancer and its precursors. Mol Cancer. 2019;18(1):76. https://doi.org/10.1186/s12943-019-0999-x.; Jiang L., Huang Q., Chang J. et al. MicroRNA HSA-miR-125a-5p induces apoptosis by activating p53 in lung cancer cells. Exp Lung Res. 2011;37(7):387–98. https://doi.org/10.3109/01902148.2010.492068.; Bi Q., Tang S., Xia L. et al. Ectopic expression of MiR-125a inhibits the proliferation and metastasis of hepatocellular carcinoma by targeting MMP11 and VEGF. PLoS One. 2012;7(6):e40169. https://doi.org/10.1371/journal.pone.0040169.; Lv A., Tu Z., Huang Y. et al. Circulating exosomal miR-125a-5p as a novel biomarker for cervical cancer. Oncol Lett. 2021;21(1):54. https://doi.org/10.3892/ol.2020.12316.; Wang X., Tang S., Le S.Y. et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One. 2008;3(7):e2557. https://doi.org/10.1371/journal.pone.0002557.; Yao Q., Xu H., Zhang Q.Q. et al. MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells. Biochem Biophys Res Commun. 2009;388(3):539–42. https://doi.org/10.1016/j.bbrc.2009.08.044.; Liu J., Sun H., Wang X. et al. Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Int J Mol Sci. 2014;15(1):758–73. https://doi.org/10.3390/ijms15010758.; Zhang J., Liu S.C., Luo X.H. et al. Exosomal long noncoding RNAs are differentially expressed in the cervicovaginal lavage samples of cervical cancer patients. J Clin Lab Anal. 2016;30(6):1116–21. https://doi.org/10.1002/jcla.21990.; Yang L., Bai H.-S., Deng Y., Fan L. High MALAT1 expression predicts a poor prognosis of cervical cancer and promotes cancer cell growth and invasion. Eur Rev Med Pharmacol Sci. 2015;19(17):3187–93.; Kim H.J., Lee D.W., Yim G.W. et al. Long non-coding RNA HOTAIR is associated with human cervical cancer progression. Int J Oncol. 2015;46(2):521–30. https://doi.org/10.3892/ijo.2014.2758.; Zhang J., Yao T., Wang Y. et al. Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol Ther. 2016;17(1):104–13. https://doi.org/10.1080/15384047.2015.1108496.; Liang L.J., Yang Y., Wei W.F. et al. Tumor-secreted exosomal Wnt2B activates fibroblasts to promote cervical cancer progression. Oncogenesis. 2021;10(3):30. https://doi.org/10.1038/s41389-021-00319-w.; Someya M., Hasegawa T., Tsuchiya T. et al. Predictive value of an exosomal microRNA-based signature for tumor immunity in cervical cancer patients treated with chemoradiotherapy. Med Mol Morphol. 2023;56(1):38–45. https://doi.org/10.1007/s00795-022-00338-5.; Zhou C.F., Ma J., Huang L. et al. Correction to: cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene. 2022;41(8):1231–33. https://doi.org/10.1038/s41388-021-02165-x.; Zhou C., Wei W., Ma J. et al. Cancer-secreted exosomal miR-1468-5p promotes tumor immune escape via the immunosuppressive reprogramming of lymphatic vessels. Mol Ther. 2021;29(4):1512–28. https://doi.org/10.1016/j.ymthe.2020.12.034.; Zhou C., Zhang Y., Yan R. et al. Exosome-derived miR-142-5p remodels lymphatic vessels and induces IDO to promote immune privilege in the tumour microenvironment. Cell Death Differ. 2021;28(2):715–29. https://doi.org/10.1038/s41418-020-00618-6.; Ding X.Z., Zhang S.Q., Deng X.L., Qiang J.H. Serum exosomal lncRNA DLX6-AS1 is a promising biomarker for prognosis prediction of cervical cancer. Technol Cancer Res Treat. 2021;20:1533033821990060. https://doi.org/10.1177/1533033821990060.; Guo Y., Wang X., Wang K., He Y. Appraising the value of serum and serum-derived exosomal LncRNA-EXOC7 as a promising biomarker in cervical cancer. Clin Lab. 2020;66(7). https://doi.org/10.7754/Clin.Lab.2019.191203.; Qiu J.J., Sun S.G., Tang X.Y. et al. Extracellular vesicular Wnt7b mediates HPV E6-induced cervical cancer angiogenesis by activating the β-catenin signaling pathway. J Exp Clin Cancer Res. 2020;39(1):260. https://doi.org/10.1186/s13046-020-01745-1.; Shi Y, Wang W, Yang B, Tian H. ATF1 and RAS in exosomes are potential clinical diagnostic markers for cervical cancer. Cell Biochem Funct. 2017;35(7):477–83. https://doi.org/10.1002/cbf.3307.; Zhang L., Li H., Yuan M. et al. Cervical cancer cells-secreted exosomal microRNA-221-3p promotes invasion, migration and angiogenesis of microvascular endothelial cells in cervical cancer by down-regulating MAPK10 expression. Cancer Manag Res. 2019;11:10307–19. https://doi.org/10.2147/CMAR.S221527.; Wang W., Wu L., Tian J. et al. Cervical cancer cells-derived extracellular vesicles containing microRNA-146a-5p affect actin dynamics to promote cervical cancer metastasis by activating the Hippo-YAP signaling pathway via WWC2. J Oncol. 2022;2022:4499876. https://doi.org/10.1155/2022/4499876.; Yan X., Zhang S., Jia J. et al. Exosomal MiR-423-3p inhibits macrophage M2 polarization to suppress the malignant progression of cervical cancer. Pathol Res Pract. 2022;235:153882. https://doi.org/10.1016/j.prp.2022.153882.; Jiang L., Hong L., Yang W. et al. Co-expression network analysis of the lncRNAs and mRNAs associated with cervical cancer progression. Arch Med Sci. 2019;15(3):754–64. https://doi.org/10.5114/aoms.2019.84740.; Huang X., Liu X., Du B. et al. LncRNA LINC01305 promotes cervical cancer progression through KHSRP and exosome-mediated transfer. Aging (Albany NY). 2021;13(15):19230–42. https://doi.org/10.18632/aging.202565.; Hu Y., Sun X., Mao C. et al. Upregulation of long noncoding RNA TUG1 promotes cervical cancer cell proliferation and migration. Cancer Med. 2017;6(2):471–82. https://doi.org/10.1002/cam4.994.; Lei L., Mou Q. Exosomal taurine up-regulated 1 promotes angiogenesis and endothelial cell proliferation in cervical cancer. Cancer Biol Ther. 2020;21(8):717–25. https://doi.org/10.1080/15384047.2020.1764318.; Mo Y., Liang Z., Lan L. et al. Extracellular vesicles derived from cervical cancer cells carrying MCM3AP-AS1 promote angiogenesis and tumor growth in cervical cancer via the miR-93/p21 axis. Exp Cell Res. 2023;428(2):113621. https://doi.org/10.1016/j.yexcr.2023.113621.; Bhat A., Yadav J., Thakur K. et al. Transcriptome analysis of cervical cancer exosomes and detection of HPVE6*I transcripts in exosomal RNA. BMC Cancer. 2022;22(1):164. https://doi.org/10.1186/s12885-022-09262-4.; Acevedo-Sánchez V., Martínez-Ruiz R.S., Aguilar-Ruíz S.R. et al. Quantitative proteomics for the identification of differentially expressed proteins in the extracellular vesicles of cervical cancer cells. Viruses. 2023;15(3):702. https://doi.org/10.3390/v15030702.; Zhou L., Wang W., Wang F. et al. Plasma-derived exosomal miR-15a-5p as a promising diagnostic biomarker for early detection of endometrial carcinoma. Mol Cancer. 2021;20(1):57. https://doi.org/10.1186/s12943-021-01352-4.; Fan X., Cao M., Liu C. et al. Three plasma-based microRNAs as potent diagnostic biomarkers for endometrial cancer. Cancer Biomark. 2021;31(2):127–38. https://doi.org/10.3233/CBM-200972.; Daugaard I., Sanders K.J., Idica A. et al. miR-151a induces partial EMT by regulating E-cadherin in NSCLC cells. Oncogenesis. 2017;6(7):e366. https://doi.org/10.1038/oncsis.2017.66.; Hu H., Jiang L., Kang X. et al. Extracellular vesicles derived from lung cancer cells promote the progression of lung cancer by delivering miR-151a-5p. Exp Cell Res. 2023;425(1):113526. https://doi.org/10.1016/j.yexcr.2023.113526.; Fan X., Zou X., Liu C. et al. MicroRNA expression profile in serum reveals novel diagnostic biomarkers for endometrial cancer. Biosci Rep. 2021;41(6):BSR20210111. https://doi.org/10.1042/BSR20210111.; Jing L., Hua X., Yuanna D. et al. Exosomal miR-499a-5p inhibits endometrial cancer growth and metastasis via targeting VAV3. Cancer Manag Res. 2020;12:13541–52. https://doi.org/10.2147/CMAR.S283747.; Zhang N., Wang Y., Liu H., Shen W. Extracellular vesicle encapsulated microRNA-320a inhibits endometrial cancer by suppression of the HIF1α/VEGFA axis. Exp Cell Res. 2020;394(2):112113. https://doi.org/10.1016/j.yexcr.2020.112113.; Fan J.T., Zhou Z.Y., Luo Y.L. et al. Exosomal lncRNA NEAT1 from cancer-associated fibroblasts facilitates endometrial cancer progression via miR-26a/b-5p-mediated STAT3/YKL-40 signaling pathway. Neoplasia. 2021;23(7):692–703. https://doi.org/10.1016/j.neo.2021.05.004.; Seagle B.L., Alexander A.L., Lantsman T., Shahabi S. Prognosis and treatment of positive peritoneal cytology in early endometrial cancer: matched cohort analyses from the National Cancer Database. Am J Obstet Gynecol. 2018;218(3):329.e1–329.e15. https://doi.org/10.1016/j.ajog.2017.11.601.; Roman-Canal B., Moiola C.P., Gatius S. et al. EV-associated miRNAs from peritoneal lavage are a source of biomarkers in endometrial cancer. Cancers (Basel). 2019;11(6):839. https://doi.org/10.3390/cancers11060839.; Xu H., Gong Z., Shen Y. et al. Circular RNA expression in extracellular vesicles isolated from serum of patients with endometrial cancer. Epigenomics. 2018;10(2):187–97. https://doi.org/10.2217/epi-2017-0109.; Wakabayashi I., Marumo M., Ekawa K., Daimon T. Differences in serum and plasma levels of microRNAs and their time-course changes after blood collection. Pract Lab Med. 2024;39:e00376. https://doi.org/10.1016/j.plabm.2024.e00376.; Cheng L., Sun X., Scicluna B.J. et al. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int. 2014;86(2):433–44. https://doi.org/10.1038/ki.2013.502.; Whitehouse J.S., Weigelt J.A. Diagnostic peritoneal lavage: a review of indications, technique, and interpretation. Scand J Trauma Resusc Emerg Med. 2009;17:13. https://doi.org/10.1186/1757-7241-17-13.; Mariscal J., Fernandez-Puente P., Calamia V. et al. Proteomic characterization of epithelial-like extracellular vesicles in advanced endometrial cancer. J Proteome Res. 2019;18(3):1043–53. https://doi.org/10.1021/acs.jproteome.8b00750.; Herrero C., de la Fuente A., Casas-Arozamena C. et al. Extracellular vesicles-based biomarkers represent a promising liquid biopsy in endometrial cancer. Cancers (Basel). 2019;11(12):2000. https://doi.org/10.3390/cancers11122000.; Li B.L., Lu W., Qu J.J. et al. Loss of exosomal miR-148b from cancer-associated fibroblasts promotes endometrial cancer cell invasion and cancer metastasis. J Cell Physiol. 2019;234(3):2943–53. https://doi.org/10.1002/jcp.27111.; Srivastava A., Moxley K., Ruskin R. et al. A non-invasive liquid biopsy screening of urine-derived exosomes for miRNAs as biomarkers in endometrial cancer patients. AAPS J. 2018;20(5):82. https://doi.org/10.1208/s12248-018-0220-y.; Li F., Liang A., Lv Y. et al. MicroRNA-200c inhibits epithelial-mesenchymal transition by targeting the BMI-1 gene through the phospho-AKT pathway in endometrial carcinoma cells in vitro. Med Sci Monit. 2017;23:5139–49. https://doi.org/10.12659/msm.907207.; Liu Y., Sánchez-Tilló E., Lu X. et al. The ZEB1 transcription factor acts in a negative feedback loop with miR200 downstream of Ras and Rb1 to regulate Bmi1 expression. J Biol Chem. 2014;289(7):4116–25. https://doi.org/10.1074/jbc.M113.533505.; Song Y., Wang M., Tong H. et al. Plasma exosomes from endometrial cancer patients contain LGALS3BP to promote endometrial cancer progression. Oncogene. 2021;40(3):633–46. https://doi.org/10.1038/s41388-020-01555-x.; Sommella E., Capaci V., Aloisio M. et al. A label-free proteomic approach for the identification of biomarkers in the exosome of endometrial cancer serum. Cancers (Basel). 2022;14(24):6262. https://doi.org/10.3390/cancers14246262.; Wang J., Gong X., Yang L. et al. Loss of exosomal miR-26a-5p contributes to endometrial cancer lymphangiogenesis and lymphatic metastasis. Clin Transl Med. 2022;12(5):e846. https://doi.org/10.1002/ctm2.846.; Maida Y., Takakura M., Nishiuchi T. et al. Exosomal transfer of functional small RNAs mediates cancer-stroma communication in human endometrium. Cancer Med. 2016;5(2):304–14. https://doi.org/10.1002/cam4.545.; Gu X., Shi Y., Dong M. еt al. Exosomal transfer of tumor-associated macrophage-derived hsa_circ_0001610 reduces radiosensitivity in endometrial cancer. Cell Death Dis. 2021;12(9):818. https://doi.org/10.1038/s41419-021-04087-8.; Ding D.C., Chen W., Wang J.H., Lin S.Z. Association between polycystic ovarian syndrome and endometrial, ovarian, and breast cancer: a population-based cohort study in Taiwan. Medicine (Baltimore). 2018;97(39):e12608. https://doi.org/10.1097/MD.0000000000012608.; Che X., Jian F., Chen C. et al. PCOS serum-derived exosomal miR-27a-5p stimulates endometrial cancer cells migration and invasion. J Mol Endocrinol. 2020;64(1):1–12. https://doi.org/10.1530/JME-19-0159.; Zhao M., Mishra L., Deng C.X. The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci. 2018;14(2):111–23. https://doi.org/10.7150/ijbs.23230.; Xiao L., He Y., Peng F. et al. Endometrial cancer cells promote M2-like macrophage polarization by delivering exosomal miRNA-21 under hypoxia condition. J Immunol Res. 2020;2020:9731049. https://doi.org/10.1155/2020/9731049.; Peres L.C., Cushing-Haugen K.L., Köbel M. et al. Invasive epithelial ovarian cancer survival by histotype and disease stage. J Natl Cancer Inst. 2019;111(1):60–8. https://doi.org/10.1093/jnci/djy071.; McAlarnen L.A., Gupta P., Singh R. et al. Extracellular vesicle contents as non-invasive biomarkers in ovarian malignancies. Mol Ther Oncolytics. 2022;26:347–59. https://doi.org/10.1016/j.omto.2022.08.005.; Li L., Zhang F., Zhang J. et al. Identifying serum small extracellular vesicle microRNA as a noninvasive diagnostic and prognostic biomarker for ovarian cancer. ACS Nano. 2023;17(19):19197–210. https://doi.org/10.1021/acsnano.3c05694.; Wang W., Jo H., Park S. et al. Integrated analysis of ascites and plasma extracellular vesicles identifies a miRNA-based diagnostic signature in ovarian cancer. Cancer Lett. 2022;542:215735. https://doi.org/10.1016/j.canlet.2022.215735.; Meng X., Müller V., Milde-Langosch K. et al. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget. 2016;7(13):16923–35. https://doi.org/10.18632/oncotarget.7850.; Kim S., Choi M.C., Jeong J.Y. et al. Serum exosomal miRNA-145 and miRNA-200c as promising biomarkers for preoperative diagnosis of ovarian carcinomas. J Cancer. 2019;10(9):1958–67. https://doi.org/10.7150/jca.30231.; Su Y.Y., Sun L., Guo Z.R. et al. Upregulated expression of serum exosomal miR-375 and miR-1307 enhance the diagnostic power of CA125 for ovarian cancer. J Ovarian Res. 2019;12(1):6. https://doi.org/10.1186/s13048-018-0477-x.; Pan C., Stevic I., Müller V. et al. Exosomal microRNAs as tumor markers in epithelial ovarian cancer. Mol Oncol. 2018;12(11):1935–48. https://doi.org/10.1002/1878-0261.12371.; Xiong J., He X., Xu Y. et al. MiR-200b is upregulated in plasma-derived exosomes and functions as an oncogene by promoting macrophage M2 polarization in ovarian cancer. J Ovarian Res. 2021;14(1):74. https://doi.org/10.1186/s13048-021-00826-9.; Cappellesso R., Tinazzi A., Giurici T. et al. Programmed cell death 4 and microRNA 21 inverse expression is maintained in cells and exosomes from ovarian serous carcinoma effusions. Cancer Cytopathol. 2014;122(9):685–93. https://doi.org/10.1002/cncy.21442.; Cao J., Zhang Y., Mu J. et al. Exosomal miR-21-5p contributes to ovarian cancer progression by regulating CDK6. Hum Cell. 2021;34(4):1185–96. https://doi.org/10.1007/s13577-021-00522-2.; Mitra A., Yoshida-Court K., Solley T.N. et al. Extracellular vesicles derived from ascitic fluid enhance growth and migration of ovarian cancer cells. Sci Rep. 2021;11(1):9149. https://doi.org/10.1038/s41598-021-88163-1.; Zhou J., Gong G., Tan H. et al. Urinary microRNA-30a-5p is a potential biomarker for ovarian serous adenocarcinoma. Oncol Rep. 2015;33(6):2915–23. https://doi.org/10.3892/or.2015.3937.; Ying X., Wu Q., Wu X. et al. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget. 2016;7(28):43076–87. https://doi.org/10.18632/oncotarget.9246.; Yunusova N., Dzhugashvili E., Yalovaya A. et al. Comparative analysis of tumor-associated microRNAs and tetraspanines from exosomes of plasma and ascitic fluids of ovarian cancer patients. Int J Mol Sci. 2022;24(1):464. https://doi.org/10.3390/ijms24010464.; Xu Y., Xu L., Zheng J. et al. MiR-101 inhibits ovarian carcinogenesis by repressing the expression of brain-derived neurotrophic factor. FEBS Open Bio. 2017;7(9):1258–66. https://doi.org/10.1002/2211-5463.12257.; Lai Y., Dong L., Jin H. et al. Exosome long non-coding RNA SOX2-OT contributes to ovarian cancer malignant progression by miR-181b-5p/SCD1 signaling. Aging (Albany NY). 2021;13(20):23726–38. https://doi.org/10.18632/aging.203645.; Ma R., Ye X., Cheng H. et al. Tumor-derived exosomal circRNA051239 promotes proliferation and migration of epithelial ovarian cancer. Am J Transl Res. 2021;13(3):1125–39.; Yamamoto C.M., Oakes M.L., Murakami T. et al. Comparison of benign peritoneal fluid- and ovarian cancer ascites-derived extracellular vesicle RNA biomarkers. J Ovarian Res. 2018;11(1):20. https://doi.org/10.1186/s13048-018-0391-2.; Keserű J.S., Soltész B., Lukács J. et al. Detection of cell-free, exosomal and whole blood mitochondrial DNA copy number in plasma or whole blood of patients with serous epithelial ovarian cancer. J Biotechnol. 2019;298:76–81. https://doi.org/10.1016/j.jbiotec.2019.04.015.; Szajnik M., Derbis M., Lach M. et al. Exosomes in plasma of patients with ovarian carcinoma: potential biomarkers of tumor progression and response to therapy. Gynecol Obstet (Sunnyvale). 2013;Suppl 4:3. https://doi.org/10.4172/2161-0932.S4-003.; Czystowska-Kuzmicz M., Sosnowska A., Nowis D. et al. Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat Commun. 2019;10(1):3000. https://doi.org/10.1038/s41467-019-10979-3.; Lai H., Guo Y., Tian L. et al. Protein panel of serum-derived small extracellular vesicles for the screening and diagnosis of epithelial ovarian cancer. Cancers (Basel). 2022;14(15):3719. https://doi.org/10.3390/cancers14153719.; Trinidad C.V., Pathak H.B., Cheng S. et al. Lineage specific extracellular vesicle-associated protein biomarkers for the early detection of high grade serous ovarian cancer. Sci Rep. 2023;13(1):18341. https://doi.org/10.1038/s41598-023-44050-5.; Yokoi A., Ukai M., Yasui T. et al. Identifying high-grade serous ovarian carcinoma-specific extracellular vesicles by polyketone-coated nanowires. Sci Adv. 2023;9(27):eade6958. https://doi.org/10.1126/sciadv.ade6958.; Zhang P., Zhou X., He M. et al. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat Biomed Eng. 2019;3(6):438–51. https://doi.org/10.1038/s41551-019-0356-9.; Kong L., Xu F., Yao Y. et al. Ascites-derived CDCP1+ extracellular vesicles subcluster as a novel biomarker and therapeutic target for ovarian cancer. Front Oncol. 2023;13:1142755. https://doi.org/10.3389/fonc.2023.1142755.; Gupta P., Kadamberi I.P., Mittal S. et al. Tumor derived extracellular vesicles drive T cell exhaustion in tumor microenvironment through sphingosine mediated signaling and impacting immunotherapy outcomes in ovarian cancer. Adv Sci (Weinh). 2022;9(14):e2104452. https://doi.org/10.1002/advs.202104452.; Li N., Lin G., Zhang Y. et al. Exosome-related protein CRABP2 is upregulated in ovarian carcinoma and enhances cell proliferation. Discov Oncol. 2022;13(1):33. https://doi.org/10.1007/s12672-022-00492-3.; Dorayappan K.D.P, Gardner M.L., Hisey C.L. et al. A microfluidic chip enables isolation of exosomes and establishment of their protein profiles and associated signaling pathways in ovarian cancer. Cancer Res. 2019;79(13):3503–13. https://doi.org/10.1158/0008-5472.CAN-18-3538.; Vaksman O., Tropé C., Davidson B., Reich R. Exosome-derived miRNAs and ovarian carcinoma progression. Carcinogenesis. 2014;35(9):2113–20. https://doi.org/10.1093/carcin/bgu130.; Filippov-Levy N., Cohen-Schussheim H., Tropé C.G. et al. Expression and clinical role of long non-coding RNA in high-grade serous carcinoma. Gynecol Oncol. 2018;148(3):559–66. https://doi.org/10.1016/j.ygyno.2018.01.004.; Qiu J.J., Lin X.J., Tang X.Y. et al. Exosomal metastasis-associated lung adenocarcinoma transcript 1 promotes angiogenesis and predicts poor prognosis in epithelial ovarian cancer. Int J Biol Sci. 2018;14(14):1960–73. https://doi.org/10.7150/ijbs.28048.; Asare-Werehene M., Hunter R.A., Gerber E. et al. The application of an extracellular vesicle-based biosensor in early diagnosis and prediction of chemoresponsiveness in ovarian cancer. Cancers (Basel). 2023;15(9):2566. https://doi.org/10.3390/cancers15092566.; Gerber E., Asare-Werehene M., Reunov A. et al. Predicting chemoresponsiveness in epithelial ovarian cancer patients using circulating small extracellular vesicle-derived plasma gelsolin. J Ovarian Res. 2023;16(1):14. https://doi.org/10.1186/s13048-022-01086-x.; Li W., Lu Y., Yu X. et al. Detection of exosomal tyrosine receptor kinase B as a potential biomarker in ovarian cancer. J Cell Biochem. 2019;120(4):6361–9. https://doi.org/10.1002/jcb.27923.; Yokoi A., Yoshioka Y., Hirakawa A. et al. A combination of circulating miRNAs for the early detection of ovarian cancer. Oncotarget. 2017;8(52):89811–23. https://doi.org/10.18632/oncotarget.20688.; Jo A., Green A., Medina J.E. et al. High-throughput profiling of extracellular vesicles for earlier ovarian cancer detection. Adv Sci (Weinh). 2023;10(27):e2301930. https://doi.org/10.1002/advs.202301930.; Yoshimura A., Sawada K., Nakamura K. et al. Exosomal miR-99a-5p is elevated in sera of ovarian cancer patients and promotes cancer cell invasion by increasing fibronectin and vitronectin expression in neighboring peritoneal mesothelial cells. BMC Cancer. 2018;18(1):1065. https://doi.org/10.1186/s12885-018-4974-5.; Kobayashi M., Sawada K., Nakamura K. et al. Exosomal miR-1290 is a potential biomarker of high-grade serous ovarian carcinoma and can discriminate patients from those with malignancies of other histological types. J Ovarian Res. 2018;11(1):81. https://doi.org/10.1186/s13048-018-0458-0.; Au Yeung C.L., Co N.N., Tsuruga T. et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 2016;7:11150. https://doi.org/10.1038/ncomms11150.; Wang C., Wang J., Shen X. et al. LncRNA SPOCD1-AS from ovarian cancer extracellular vesicles remodels mesothelial cells to promote peritoneal metastasis via interacting with G3BP1. J Exp Clin Cancer Res. 2021;40(1):101. https://doi.org/10.1186/s13046-021-01899-6.; Cheng L., Zhang K., Qing Y. et al. Proteomic and lipidomic analysis of exosomes derived from ovarian cancer cells and ovarian surface epithelial cells. J Ovarian Res. 2020;13(1):9. https://doi.org/10.1186/s13048-020-0609-y.; Černe K., Kelhar N., Resnik N. et al. Characteristics of extracellular vesicles from a high-grade serous ovarian cancer cell line derived from a platinum-resistant patient as a potential tool for aiding the prediction of responses to chemotherapy. Pharmaceuticals (Basel). 2023;16(6):907. https://doi.org/10.3390/ph16060907.; Gao Q., Fang X., Chen Y. et al. Exosomal lncRNA UCA1 from cancer-associated fibroblasts enhances chemoresistance in vulvar squamous cell carcinoma cells. J Obstet Gynaecol Res. 2021;47(1):73–87. https://doi.org/10.1111/jog.14418.; https://www.gynecology.su/jour/article/view/2514
-
3Academic Journal
Authors: Kovaleva O.V., Podlesnaya P.A., Kudinova E.S., Rashidova M.A., Mochalnikova V.V., Gratchev A.N.
Contributors: The research was carried out at the expense of a grant from the Russian Science Foundation (grant No. 24-15-00356, https://rscf.ru/project/24-15-00356)., Исследование выполнено за счет гранта Российского научного фонда (грант № 24-15-00356, https://rscf.ru/project/24-15-00356).
Source: Advances in Molecular Oncology; Vol 11, No 4 (2024); 93-101 ; Успехи молекулярной онкологии; Vol 11, No 4 (2024); 93-101 ; 2413-3787 ; 2313-805X
Subject Terms: esophageal squamous cell carcinoma, non-coding RNAs, lncRNA, microenvironment, macrophages, плоскоклеточный рак пищевода, некодирующие РНК, длинные некодирующие РНК, микроокружение, макрофаг
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/732/374; https://umo.abvpress.ru/jour/article/view/732
-
4Academic Journal
Contributors: The work was performed without external funding, Работа выполнена без спонсорской поддержки
Source: Advances in Molecular Oncology; Vol 11, No 1 (2024); 22-30 ; Успехи молекулярной онкологии; Vol 11, No 1 (2024); 22-30 ; 2413-3787 ; 2313-805X
Subject Terms: melanoma of the skin, MAPK, BRAF, autophagy, melanocyte-inducing transcription factor, microRNAs, long non-coding RNAs, меланома кожи, аутофагия, меланоцитиндуцирующий транскрипционный фактор, микроРНк, длинные некодирующие РНК
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/646/335; https://umo.abvpress.ru/jour/article/view/646
-
5Academic Journal
Authors: S. V. Timofeeva, A. O. Sitkovskaya, S. Yu. Filippova, T. V. Chembarova, I. A. Nоvikova, O. I. Kit, L. N. Vashchenko, S. M. Babieva, S. M. Bakulina, E. E. Kechedzhieva, E. A. Andreiko, S. S. Mezentsev, Yu. V. Przhedetsky, E. N. Kolesnikov, С. В. Тимофеева, А. О. Ситковская, С. Ю. Филиппова, Т. В. Чембарова, И. А. Новикова, О. И. Кит, Л. Н. Ващенко, С. М. Бабиева, С. М. Бакулина, Э. Э. Кечеджиева, Е. А. Андрейко, С. С. Мезенцев, Ю. В. Пржедецкий, Е. Н. Колесников
Contributors: The study was performed without external funding, Исследование проведено без спонсорской поддержки
Source: Medical Genetics; Том 23, № 1 (2024); 52-59 ; Медицинская генетика; Том 23, № 1 (2024); 52-59 ; 2073-7998
Subject Terms: rs3741219, long non-coding RNAs, breast cancer, meta-analysis, rs2107425, rs2839698, rs217727, длинные некодирующие РНК, рак молочной железы, мета-анализ
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2410/1768; Sung H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660; Yuan Y., Wang Y., Niu X. et al. Association of lncRNA H19 polymorphisms with cancer susceptibility: An updated meta-analysis based on 53 studies. Frontiers in genetics. 2022;(13):1051766. doi:10.3389/fgene.2022.1051766; Taniue K., Akimitsu N. The Functions and Unique Features of LncRNAs in Cancer Development and Tumorigenesis. Int J Mol Sci. 2021;22(2):632. doi:10.3390/ijms22020632; Ghahramani Almanghadim H., Ghorbian S., Khademi N.S. et al. New Insights into the Importance of Long Non-Coding RNAs in Lung Cancer: Future Clinical Approaches. DNA and cell biology. 2021;40(12):1476–1494. doi:10.1089/dna.2021.0563; Kallen A.N., Zhou X.B., Xu J. et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Molecular cell. 2013;52(1):101–112. doi:10.1016/j.molcel.2013.08.027; Yoshimizu T., Miroglio A., Ripoche M.A. et al. The H19 locus acts in vivo as a tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(34):2417–12422. doi:10.1073/pnas.0801540105; Zhang L., Yang F., Yuan J.H. et al. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis. 2013;34(3):577–586. doi:10.1093/carcin/bgs381; Moher D., Shamseer L., Clarke M. et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1. doi:10.1186/2046-4053-4-1; Barnholtz-Sloan J.S., Shetty P.B., Guan X. et al. FGFR2 and other loci identified in genome-wide association studies are associated with breast cancer in African-American and younger women. Carcinogenesis. 2010;31(8):1417–1423. doi:10.1093/carcin/bgq128; Butt S., Harlid S., Borgquist S. et al. Genetic predisposition, parity, age at first childbirth and risk for breast cancer. BMC research notes. 2012;(5):414. URL: https://www.researchgate.net/publication/230621915_Genetic_predisposition_parity_age_at_first_childbirth_and_risk_for_breast_cancer; Gong W.J., Yin J.Y., Li X.P. et al. Association of well-characterized lung cancer lncRNA polymorphisms with lung cancer susceptibility and platinum-based chemotherapy response. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2016;37(6):8349–8358. doi:10.1007/s13277-015-4497-5; Xia Z., Yan R., Duan F. et al. Genetic Polymorphisms in Long Noncoding RNA H19 Are Associated With Susceptibility to Breast Cancer in Chinese Population. Medicine. 2016;95(7):e2771. doi:10.1097/MD.0000000000002771; Hassanzarei S., Hashemi M., Sattarifard H. et al. Genetic polymorphisms in long noncoding RNA H19 are associated with breast cancer susceptibility in Iranian population. Meta Gene. 2017 Dec;(14):1-5. doi:10.2147/OTT.S127962; Lin Y., Fu F., Chen Y. et al. Genetic variants in long noncoding RNA H19 contribute to the risk of breast cancer in a southeast China Han population. OncoTargets and therapy. 2017;(10):4369–4378. doi:10.2147/OTT.S127962; Cui P., Zhao Y., Chu X. et al. SNP rs2071095 in LincRNA H19 is associated with breast cancer risk. Breast cancer research and treatment. 2018;171(1):161–171. URL: https://link.springer.com/article/10.1007/s10549-018-4814-y; Abdollahzadeh S., Ghorbian S. Association of the study between LncRNA-H19 gene polymorphisms with the risk of breast cancer. Journal of clinical laboratory analysis. 2019;33(3):e22826. doi:10.1002/jcla.22826; Safari M.R., Mohammad Rezaei F., Dehghan A. et al. Genomic variants within the long non-coding RNA H19 confer risk of breast cancer in Iranian population. Gene. 2019;(701):121–124. doi:10.1016/j.gene.2019.03.036; Li W., Jiang X., Jin X. et al. Significant association between long non-coding RNA H19 polymorphisms and cancer susceptibility: A PRISMA-compliant meta-analysis and bioinformatics prediction. Medicine (Baltimore). 2020 Apr;99(15):e19322. doi:10.1097/MD.0000000000019322; Kit O.I, Timofeeva S.V., Sitkovskaya A.O. et al. Biobank of the “National Medical Research Centre for Oncology” as a resource for conducting research in the field of personalized medicine. Modern Oncology. 2022; (24):6-11. doi:10.26442/18151434.2022.1.201384; Chen L., Zhang S. Long noncoding RNAs in cell differentiation and pluripotency. Cell and tissue research. 2016;366(3):509–521. doi:10.1007/s00441-016-2451-5; Gao Y., Liu Y., Du L. et al. Down-regulation of miR-24-3p in colorectal cancer is associated with malignant behavior. Medical oncology (Northwood, London, England). 2015;32(1):362. doi:10.1007/s12032-014-0362-4; Liu X., Zhao Y., Li Y., Zhang J. Quantitative assessment of lncRNA H19 polymorphisms and cancer risk: a meta-analysis based on 48,166 subjects. Artificial cells, nanomedicine, and biotechnology. 2020;48(1):15–27. doi:10.1080/21691401.2019.1699804; Vladimirova L.Yu., Storozhakova A.E., Snezhko T.A., et al. Hormone-positive HER2-negative metastatic breast cancer: decision making in real clinical practice. South Russian Journal of Cancer. 2020;1(2):46-51. doi:10.37748/2687-0533-2020-1-2-6
-
6Academic Journal
Authors: Kovaleva O.V., Podlesnaya P.A., Kudinova E.S., Mochalnikova V.V., Kushlinskii N.E., Gratchev A.N.
Contributors: 0
Source: Almanac of Clinical Medicine; Vol 52, No 4 (2024); 189-196 ; Альманах клинической медицины; Vol 52, No 4 (2024); 189-196 ; 2587-9294 ; 2072-0505
Subject Terms: long non-coding RNAs, non-small cell lung cancer, marker, prognosis, длинные некодирующие РНК, немелкоклеточный рак легкого, маркер, прогноз
File Description: application/pdf
Relation: https://almclinmed.ru/jour/article/view/17232/1683; https://almclinmed.ru/jour/article/downloadSuppFile/17232/160156; https://almclinmed.ru/jour/article/downloadSuppFile/17232/160157; https://almclinmed.ru/jour/article/downloadSuppFile/17232/160158; https://almclinmed.ru/jour/article/downloadSuppFile/17232/160159; https://almclinmed.ru/jour/article/downloadSuppFile/17232/160160; https://almclinmed.ru/jour/article/downloadSuppFile/17232/160161; https://almclinmed.ru/jour/article/view/17232
-
7Academic Journal
Authors: Мустафин, Р. Н., Хуснутдинова, Э. К.
Subject Terms: медицина, медицинская генетика, вирусная мимикрия, длинные некодирующие РНК, злокачественные новообразования, канцерогенез, микроРНК, мобильные генетические элементы, таргетная терапия, транспозоны
Availability: http://dspace.bsu.edu.ru/handle/123456789/62805
-
8Academic Journal
Authors: Mustafin R.N.
Source: Advances in Molecular Oncology; Vol 10, No 4 (2023); 21-30 ; Успехи молекулярной онкологии; Vol 10, No 4 (2023); 21-30 ; 2413-3787 ; 2313-805X
Subject Terms: long non-coding RNAs, malignant neoplasms, carcinogenesis, miRNAs, transposons, retroelements, длинные некодирующие РНК, злокачественные новообразования, канцерогенез, микроРНК, транспозоны, ретроэлементы
File Description: application/pdf
Relation: https://umo.abvpress.ru/jour/article/view/603/319; https://umo.abvpress.ru/jour/article/view/603
-
9Academic Journal
Authors: M. N. Ammar, N. P. Milutina, E. V. Butenko, R. M. Ali, T. P. Shkurat, М. Н. Аммар, Н. П. Милютина, Е. В. Бутенко, Р. М. Али, Т. П. Шкурат
Source: Medical Genetics; Том 22, № 3 (2023); 3-9 ; Медицинская генетика; Том 22, № 3 (2023); 3-9 ; 2073-7998
Subject Terms: длинные некодирующие РНК, obesity, gluconeogenesis, lipid metabolism, insulin resistance, hypoxia, Н19, ожирение, глюконеогенез, липидный обмен, резистентность к инсулину, гипоксия
File Description: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2274/1699; Ajlouni K., Khader Y., Batieha A., et al. An alarmingly high and increasing prevalence of obesity in Jordan. Epidemiol Health. 2020;42:e2020040. doi:10.4178/epih.e2020040.; Safaei M., Sundararajan E.A., Driss M. et al. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. ComputBiol Med. 2021; 136: 104754. doi:10.1016/j.compbiomed.2021.104754.; Shi Y., Qu J., Gai L., et al. Long Non-coding RNAs in Metabolic and Inflammatory Pathways in Obesity. Curr Pharm Des. 2020; (26):3317–3325.; Chen S., Liu D. Zhou Z., Qin S. Role of long non-coding RNA H19 in the development of osteoporosis. Mol Med. 2021;27(1):122. doi:10.1186/s10020-021-00386-0.; Liu C., Yang Z., Wu J., et al. lncRNA H19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis. Hepatology. 2018; (67):1768.; Wu H.Y., Cheng Y, Jin L.Y, et al. Paternal obesity impairs hepatic gluconeogenesis of offspring by altering Igf2/H19 DNA methylation. Mol Cell Endocrinol. 2021;529:111264. doi:10.1016/j.mce.2021.111264.; Wang Y., Hylemon P.B., Zhou H. Long Noncoding RNA H19: A Key Player in Liver Diseases. Hepatology. 2021; (74):1652–1659.; Özgür E., Ferhatoǧlu F., Sen F., et al. Circulating lncRNA H19 may be a useful marker of response to neoadjuvant chemotherapy in breast cancer. Cancer Biomark. 2020; (27):11–17.; Goshen R., Rachmilewitz J., Schneider T, et al. The expression of the H-19 and IGF-2 genes during human embryogenesis and placental development. MolReprod Dev. 1993; (34):374–379.; Lustig O., Ariel I., Ilan J., et al. Expression of the imprinted gene H19 in the human fetus. MolReprod Dev. 1994; (38):239–246.; Gabory A., Ripoche M.A., Yoshimizu T., Dandolo L. The H19 gene: regulation and function of a non-coding RNA. Cytogenet Genome Res. 2006; (113):188–193.; Gabory A., Jammes H., Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays. 2010; (32):473–480.; Goyal N., Sivadas A., Shamsudheen K. V., et al. RNA sequencing of db/db mice liver identifies lncRNA H19 as a key regulator of gluconeogenesis and hepatic glucose output. Sci Rep. 2017;7(1):8312. doi:10.1038/s41598-017-08281-7.; Zhang N, Geng T, Wang Z, et al. Elevated hepatic expression of H19 long noncoding RNA contributes to diabetic hyperglycemia. JCI Insight. 2018;3(10):e120304. doi:10.1172/jci.insight.120304.; Knoch K.P., Nath-Sain S., Petzold A., et al. PTBP1 is required for glucose-stimulated cap-independent translation of insulin granule proteins and Coxsackieviruses in beta cells. MolMetab. 2014; (3):518– 530.; Gao Y…, Wu F, Zhou J, et al. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Res. 2014; (42):13799–13811.; Gui W., Zhu W.F., Zhu Y., et al. LncRNAH19 improves insulin resistance in skeletal muscle by regulating heterogeneous nuclear ribonucleoprotein A1. Cell Commun Signal. 2020;18(1):173. doi:10.1186/s12964-020-00654-2.; Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev. 2013; (93):1–21.; Lefere S., Van Steenkiste C., Verhelst X., et al. Hypoxia-regulated mechanisms in the pathogenesis of obesity and non-alcoholic fatty liver disease. Cell Mol Life Sci. 2016; (73):3419–3431.; Xia Q.S., Lu F.E., Wu F., et al. New role for ceramide in hypoxia and insulin resistance. World J Gastroenterol. 2020; (26):2177.; Kayser B., Verges S. Hypoxia, energy balance and obesity: from pathophysiological mechanisms to new treatment strategies. Obes Rev. 2013; (14):579–592.; Arcidiacono B., Chiefari E., Foryst-Ludwig A., et al. Obesity-related hypoxia via miR-128 decreases insulin-receptor expression in human and mouse adipose tissue promoting systemic insulin resistance. EBioMedicine. 2020;59:102912. doi:10.1016/j.ebiom.2020.102912.; Ji E., Kim C., Kim W., Lee E.K. Role of long non-coding RNAs in metabolic control. BiochimBiophysActa - Gene Regul Mech. 2020; (1863):194348.; Tech K., Deshmukh M., Gershon T.R. Adaptations of energy metabolism during cerebellar neurogenesis are co-opted in medulloblastoma. Cancer Lett. 2015; (356):268–272.; Luan W., Zhou Z., Ni X., et al. Long non-coding RNA H19 promotes glucose metabolism and cell growth in malignant melanoma via miR-106a-5p/E2F3 axis. J Cancer Res ClinOncol. 2018; (144):531–542.; Rotman Y., Sanyal A.J. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut. 2017; (66):180–190.; Liu J., Tang T., Wang G.D., Liu B. LncRNA-H19 promotes hepatic lipogenesis by directly regulating miR-130a/PPARγ axis in nonalcoholic fatty liver disease. Biosci Rep. 2019; (39):20181722.; Guo J., Fang W., Sun L., et al. Ultraconserved element uc.372 drives hepatic lipid accumulation by suppressing miR-195/miR4668 maturation. Nat Commun. 2018; (9): 612. Doi:10.1038/s41467-018-03072-8; Wang H., Cao Y., Shu L., et al. Long non-coding RNA (lncRNA) H19 induces hepatic steatosis through activating MLXIPL and mTORC1 networks in hepatocytes. J Cell Mol Med. 2020; (24):1399.; Kallen A.N., Zhou X.B., Xu J., et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013; (52):101–112.; Geng T., Liu Y., Xu Y., et al. H19 lncRNA Promotes Skeletal Muscle Insulin Sensitivity in Part by Targeting AMPK. Diabetes. 2018; (67):2183–2198.; Jitrapakdee S. Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis. Int J Biochem Cell Biol. 2012; (44):33–45.; Goyal N., Tiwary S., Kesharwani D., Datta M. Long non-coding RNA H19 inhibition promotes hyperglycemia in mice by upregulating hepatic FoxO1 levels and promoting gluconeogenesis. J Mol Med (Berl). 2019; (97):115–126.; Schmidt E., Dhaouadi I., Gaziano I., et al. LincRNA H19 protects from dietary obesity by constraining expression of monoallelic genes in brown fat. Nat Commun. 2018; 9(1):3622. doi:10.1038/s41467-018-05933-8.; Huang Y., Zheng Y., Jin C., et al. Long Non-coding RNA H19 Inhibits Adipocyte Differentiation of Bone Marrow Mesenchymal Stem Cells through Epigenetic Modulation of Histone Deacetylases. Sci Rep. 2016; (6):28897. Doi:10.1038/srep28897; Corrado C., Costa V., Giavaresi G., et al. Long Non Coding RNA H19: A New Player in Hypoxia-Induced Multiple Myeloma Cell Dissemination. Int J Mol Sci. 2019; 20(4):801. doi:10.3390/ijms20040801.; Wu W., Hu Q., Nie E., et al. Hypoxia induces H19 expression through direct and indirect Hif-1α activity, promoting oncogenic effects in glioblastoma. Sci Rep. 2017; 7:45029. doi:10.1038/srep45029.; Muz B., de la Puente P., Azab F., Azab A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckland, NZ). 2015; (3):83.; Kawai T., Autieri M. V., Scalia R. Inflammation: From Cellular Mechanisms to Immune Cell Education: Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol - Cell Physiol. 2021; (320):C375.; Yaribeygi H., Farrokhi F.R., Butler A.E., Sahebkar A. Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol. 2019; (234):8152–8161.; Wang S.H., Zhu X.L., Wang F., et al. LncRNA H19 governs mitophagy and restores mitochondrial respiration in the heart through Pink1/ Parkin signaling during obesity. Cell Death Dis. 2021; 12(6):557. doi:10.1038/s41419-021-03821-6.; Ghafouri-Fard S., Esmaeili M., Taheri M. H19 lncRNA: Roles in tumorigenesis. Biomed Pharmacother. 2020; 123:109774. doi:10.1016/j.biopha.2019.109774.; Yau M.Y.C., Xu L., Huang C.L., Wong C.M. Long Non-Coding RNAs in Obesity-Induced Cancer. Non-Coding RNA. 2018; 4(3):19. doi:10.3390/ncrna4030019.; Daneshmoghadam J., Omidifar A., Akbari Dilmaghani N., et al. The gene expression of long non-coding RNAs (lncRNAs): MEG3 and H19 in adipose tissues from obese women and its association with insulin resistance and obesity indices. J Clin Lab Anal. 2021; 35(5):e23741. doi:10.1002/jcla.23741.
-
10Academic Journal
Authors: G. F. Korytina, I. A. Gibadullin, Sh. R. Zulkarneev, A. I. Gimazovа, V. A. Markelov, R. Kh. Zulkarneev, A. A. Bakirov, A. M. Avzaletdinov, N. Sh. Zagidullin, Г. Ф. Корытина, И. А. Гибадуллин, Ш. Р. Зулкарнеев, А. И. Гимазова, В. А. Маркелов, Р. Х. Зулкарнеев, А. А. Бакиров, А. М. Авзалетдинов, Н. Ш. Загидуллин
Contributors: The study was carried out with support from the Russian Science Foundation, Contract No. 22-25-00019 dated 16.12.2021., Исследование было выполнено при поддержке гранта РНФ, договор № 22-25-00019 от 16.12.2021 г.
Source: Creative surgery and oncology; Том 13, № 4 (2023); 284-291 ; Креативная хирургия и онкология; Том 13, № 4 (2023); 284-291 ; 2076-3093 ; 2307-0501
Subject Terms: резекция легкого, COVID-19-induced pulmonary fibrosis, long non-coding RNA, non-invasive biomarkers, videothoracoscopy, biopsy, lung resection, COVID-19-индуцированнный легочный фиброз, длинные некодирующие РНК, неинвазивные биомаркеры, видеоторакоскопия, биопсия
File Description: application/pdf
Relation: https://www.surgonco.ru/jour/article/view/859/571; https://www.surgonco.ru/jour/article/view/859/578; Авдеев С.Н., Айсанов З.Р., Белевский А.С., Илькович М.М., Коган Е.А., Мержоева З.М. и др. Идиопатический легочный фиброз: федеральные клинические рекомендации по диагностике и лечению. Пульмонология. 2022;32(3):473–95. DOI:10.18093/0869-0189-2022-32-3-473-495; Giacomelli C., Piccarducci R., Marchetti L., Romei C., Martini C. Pulmonary fibrosis from molecular mechanisms to therapeutic interventions: lessons from post-COVID-19 patients. Biochem Pharmacol. 2021;193:114812. DOI:10.1016/j.bcp.2021.114812; Richeldi L., Collard H.R., Jones M.G. Idiopathic pulmonary fibrosis. Lancet. 2017;389(10082):1941–52. DOI:10.1016/S0140-6736(17)30866-8; Tanni S.E., Fabro A.T., de Albuquerque A., Ferreira E.V.M., Verrastro C.G.Y., Sawamura M.V.Y., et al. Pulmonary fibrosis secondary to COVID-19: a narrative review. Expert Rev Respir Med. 2021;15(6):791–803. DOI:10.1080/17476348.2021.1916472; Phan T.H.G., Paliogiannis P., Nasrallah G.K., Giordo R., Eid A.H., Fois A.G., et al. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci. 2021;78(5):2031–57. DOI:10.1007/s00018-020-03693-7; Michalski J.E., Schwartz D.A. Genetic risk factors for idiopathic pulmonary fibrosis: insights into immunopathogenesis. J Inflamm Res. 2021;13:1305–18. DOI:10.2147/JIR.S280958; Tirelli C., Pesenti C., Miozzo M., Mondoni M., Fontana L., Centanni S. The genetic and epigenetic footprint in idiopathic pulmonary fibrosis and familial pulmonary fibrosis: a state-of-the-art review. Diagnostics (Basel). 2022;12(12):3107. DOI:10.3390/diagnostics12123107; Zhang S., Chen H., Yue D., Blackwell T.S., Lv C., Song X. Long noncoding RNAs: Promising new targets in pulmonary fibrosis. J Gene Med. 2021;23(3):e3318. DOI:10.1002/jgm.3318; Zhang P., Wu W., Chen Q., Chen M. Non-Coding RNAs and their Integrated Networks. J Integr Bioinform. 2019;16(3):20190027. DOI:10.1515/jib-2019-0027; Yan W., Wu Q., Yao W., Li Y., Liu Y., Yuan J., et al. MiR-503 modulates epithelial-mesenchymal transition in silica-induced pulmonary fibrosis by targeting PI3K p85 and is sponged by lncRNA MALAT1. Sci Rep. 2017;7(1):11313. DOI:10.1038/s41598-017-11904-8; Raghu G., Remy-Jardin M., Richeldi L., Thomson C.C., Inoue Y., Johkoh T., et al. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med. 2022;205(9):e18–47. DOI:10.1164/rccm.202202-0399ST.; Duong-Quy S., Vo-Pham-Minh T., Tran-Xuan Q., Huynh-Anh T., Vo-Van T., Vu-Tran-Thien Q., et al. Post-COVID-19 pulmonary fibrosis: facts-challenges and futures: a narrative review. Pulm Ther. 2023;9(3):295–307. DOI:10.1007/s41030-023-00226-y; Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. DOI:10.1006/meth.2001.1262; Ghafouri-Fard S., Abak A., Talebi S.F., Shoorei H., Branicki W., Taheri M., et al. Role of miRNA and lncRNAs in organ fibrosis and aging. Biomed Pharmacother. 2021;143:112132. DOI:10.1016/j.biopha.2021.112132; Lai X., Zhong J., Zhang A., Zhang B., Zhu T., Liao R. Focus on long non-coding RNA MALAT1: Insights into acute and chronic lung diseases. Front Genet. 2022;13:1003964. DOI:10.3389/fgene.2022.1003964; Wang F., Li P., Li F.S. Integrated analysis of a gene correlation network identifies critical regulation of fibrosis by lncRNAs and TFs in idiopathic pulmonary fibrosis. Biomed Res Int. 2020;2020:6537462. DOI:10.1155/2020/6537462; Xiao H., Liu Y., Liang P., Wang B., Tan H., Zhang Y., et al. TP53TG1 enhances cisplatin sensitivity of non-small cell lung cancer cells through regulating miR-18a/PTEN axis. Cell Biosci. 2018;8:23. DOI:10.1186/s13578-018-0221-7; Sun J., Guo Y., Chen T., Jin T., Ma L., Ai L., et al. Systematic analyses identify the anti-fibrotic role of lncRNA TP53TG1 in IPF. Cell Death Dis. 2022;13(6):525. DOI:10.1038/s41419-022-04975-7; Savary G., Dewaeles E., Diazzi S., Buscot M., Nottet N., Fassy J., et al. The long noncoding RNA DNM3OS is a reservoir of fibromirs with major functions in lung fibroblast response to TGF-β and pulmonary fibrosis. Am J Respir Crit Care Med. 2019;200(2):184–98. DOI:10.1164/rccm.201807-1237OC; Fan Q., Jian Y. MiR-203a-3p regulates TGF-β1-induced epithelial-mesenchymal transition (EMT) in asthma by regulating Smad3 pathway through SIX1. Biosci Rep. 2020;40(2):BSR20192645. DOI:10.1042/BSR20192645; https://www.surgonco.ru/jour/article/view/859
-
11Academic Journal
Authors: Мустафин, Р. Н., Хуснутдинова, Э. К.
Subject Terms: медицина, медицинская генетика, вирусы, длинные некодирующие РНК, микроРНК, пептиды, COVID-19, SARS-CoV-2
Availability: http://dspace.bsu.edu.ru/handle/123456789/61194
-
12Academic Journal
Source: Nauchno-prakticheskii zhurnal «Medicinskaia genetika». :17-25
Subject Terms: 0301 basic medicine, 0303 health sciences, long non-coding RNA, TNRC6C-AS1, follicular adenoma, 3. Good health, рак щитовидной железы, 03 medical and health sciences, SLC26A4-AS1, длинные некодирующие РНК, CRNDE, papillary thyroid carcinoma, follicular thyroid carcinomas, RMST, anaplastic thyroid cancer
-
13Academic Journal
Authors: Воронина Валерия Вадимовна, ФГБОУ ВО «Ульяновский государственный технический университет», Valeriia V. Voronina, FSBEI of HE «Ulyanovsk State Technical University», Антонова Елена Ивановна, Научно-исследовательский центр фундаментальных и прикладных проблем биоэкологии и биотехнологии ФГБОУ ВО «Ульяновский государственный педагогический университет им. И.Н. Ульянова», Elena I. Antonova,
Nauchno-issledovatel'skii tsentr fundamental'nykh i prikladnykh problem bioekologii i biotekhnologii FGBOU VO "Ul'ianovskii gosudarstvennyi pedagogicheskii universitet im. I.N. Ul'ianova" Source: Fundamental and applied research for key propriety areas of bioecology and biotechnology; 117-128 ; Фундаментальные и прикладные исследования по приоритетным направлениям биоэкологии и биотехнологии; 117-128
Subject Terms: вторичная структура РНК, третичная структура РНК, третичные мотивы, длинные некодирующие РНК, lncRNA
File Description: text/html
Relation: info:eu-repo/semantics/altIdentifier/isbn/978-5-907561-33-5; https://phsreda.com/e-articles/10364/Action10364-102503.pdf; Баулин Е.Ф. Классификация и идентификация структурных мотивов РНК: дис. … канд. биол. наук. 03.01.09 – математическая биология, биоинформатика. Научные руководители: д-р физ.-мат. наук Михаил Абрамович Ройтберг, канд. физ.-мат. наук, д-р биол. наук Иван Владимирович Кулаковский. – Пущино, 2021.; Eugene Baulin, Victor Yacovlev, Denis Khachko, Sergei Spirin, Mikhail Roytberg, URS DataBase: universe of RNA structures and their motifs, Database, Volume 2016, 2016.; Novikova I.V., Hennelly S.P., Sanbonmatsu K.Y. Sizing up long non-coding RNAs: do lncRNAs have secondary and tertiary structure? // Bioarchitecture 2, 2012. 189–199. – doi:10.4161/bioa.22592; Annotation of the local context of RNA secondary structure improves the classification and prediction of A-minors, Anna A. Shalybkova, Darya S. Mikhailova, Ivan V. Kulakovskiy, Iliia I. Fakhranurova, Eugene F. Baulin. RNA August 2021 27: 907–919. Published in Advance May 20, 2021.; Adams P.D., Afonine P.V., Baskaran K., Berman H.M., Berrisford J., Bricogne G., Brown D.G., Burley S.K., Chen M., Feng Z., Flensburg C., Gutmanas A., Hoch J.C., Ikegawa Y., Kengaku Y., Krissinel E., Kurisu G., Liang Y., Liebschner D., Mak L., Markley J.L., Moriarty N.W., Murshudov G.N., Noble M., Peisach E., Persikova I., Poon B.K., Sobolev O.V., Ulrich E.L., Velankar S., Vonrhein C., Westbrook J., Wojdyr M., Yokochi M. & Young J. Y. (2019). Acta Cryst. D75, 451–454.; Annotation of tertiary interactions in RNA structures reveals variations and correlations. Yurong Xin,Christian Laing,Neocles B. Leontis, Tamar Schlick. RNA 2008. 14: 2465–2477. Published in Advance October 28, 2008.; Classifying RNA pseudoknotted structures / A. Condon [et al.] // Theoretical Computer Science. – 2004. – June. – Vol. 320. №1. – P. 35–50. – DOI:10.1016/j.tcs.2004.03. 042.; Engreitz J.M., Ollikainen N., Guttman M. Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression // Nat. Rev. Mol. Cell Biol., 2016, 17, 756–770 https://doi.org/10.1038/nrm.2016.126.; Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics / A.P. Carter [et al.] // Nature. – 2000. – Sept. – Vol. 407. №6802. – P. 340–348. – DOI:10.1038/35030019.; Fürtig B., Richter C., Wöhnert J., Schwalbe, H. (2003). NMR spectroscopy of RNA. Chembiochem. 4, 936–962. – doi:10.1002/cbic.200300700.; Gorodkin J., Ruzzo W. L. RNA sequence, structure, and function: computational and Bioinformatic methods. – Springer, 2014. – DOI:10.1007/978-1-62703-709-9.; Hendrix D.K., Brenner S.E., Holbrook S.R. RNA structural motifs: building blocks of a modular biomolecule // Quarterly Reviews of Biophysics. – 2005. – Aug. – Vol. 38. №3. – P. 221–243. – DOI:10.1017/s0033583506004215.; Higgs P.G. (2000) RNA Secondary Structure: Physical and Computational Aspects. Quart. Rev. Biophys. 33, 199–253.; Leontis N.B., Zirbel C.L. (2012) Nonredundant 3D Structure Datasets for RNA Knowledge Extraction and Benchmarking. In: Leontis N., Westhof E. (eds) RNA 3D Structure Analysis and Prediction. Nucleic Acids and Molecular Biology, vol 27. Springer, Berlin, Heidelberg.; Low J.T., Weeks K.M. SHAPE-directed RNA secondary structure prediction // Methods. – 2010. – Oct. – Vol. 52. №2. – P. 150–158. – DOI:10.1016/j.ymeth.2010.06.007.; Perkel J.M. Visiting «noncodarnia» // BioTechniques – 2013. – Vol. 54. N6. – P. 301, 303–304.; Regalia M. Prediction of signal recognition particle RNA genes // Nucleic Acids Research. – 2002. – Aug. – Vol. 30. №15. – P. 3368–3377. – DOI:10.1093/nar/gkf468.; Rossi J.J. Ribozyme diagnostics comes of age // Chemistry & Biology (англ.) рус. – 2004. – Т. 11. №7. – С. 894–895. – doi:10.1016/j.chembiol.2004.07.002.; Stephen K. Burley, Helen M. Berman, Charmi Bhikadiya, Chunxiao Bi, Li Chen, Luigi Di Costanzo, Cole Christie, Ken Dalenberg, Jose M. Duarte, Shuchismita Dutta, Zukang Feng, Sutapa Ghosh, David S. Goodsell, Rachel K. Green, Vladimir Guranović, Dmytro Guzenko, Brian P. Hudson, Tara Kalro, Yuhe Liang, Robert Lowe, Harry Namkoong, Ezra Peisach, Irina Periskova, Andreas Prlić, Chris Randle, Alexander Rose, Peter Rose, Raul Sala, Monica Sekharan, Chenghua Shao, Lihua Tan, Yi-Ping Tao, Yana Valasatava, Maria Voigt, John Westbrook, Jesse Woo, Huanwang Yang, Jasmine Young, Marina Zhuravleva, Christine Zardecki, RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy, Nucleic Acids Research, Volume 47, Issue D1, 08 January 2019, Pages D464-D474; Stochastic Sampling of Structural Contexts Improves the Scalability and Accuracy of RNA 3D Module Identification / R. Sarrazin-Gendron [et al.] // Lecture Notes in Computer Science. – Springer International Publishing, 2020. – P. 186–201. – DOI:10.1007/978-3-030–45257-5_12.; Xiang-Jun Lu, Harmen J. Bussemaker, Wilma K. Olson, DSSR: an integrated software tool for dissecting the spatial structure of RNA, Nucleic Acids Research, Volume 43, Issue 21, 2 December 2015, Page e142.; Zuker M., Mathews D. H., Turner D. H. Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide // RNA Biochemistry and Biotechnology. – Springer Netherlands, 1999. – P. 11–43. – DOI:10.1007/978-94-011-4485-8_2.; Воронина В.В. Анализ окружения дальнодействующих контактов в структурах некодирующих РНК / В.В. Воронина, Е.Ф. Баулин [Электронный ресурс]. – Режим доступа: https://www.9111.ru/questions/777777777775012/; https://phsreda.com/files/Books/62b19487cf261.jpg?req=102503; https://phsreda.com/article/102503/discussion_platform
-
14Academic Journal
Source: ZHurnal «Patologicheskaia fiziologiia i eksperimental`naia terapiia». :67-74
Subject Terms: 0301 basic medicine, 0303 health sciences, microRNA, long non-coding RNA, biomarkers, биомаркеры, экспрессия, 3. Good health, 03 medical and health sciences, laryngeal squamous cell carcinoma, длинные некодирующие РНК, expression, микроРНК, плоскоклеточная карцинома гортани
Access URL: https://pfiet.ru/article/view/2097
-
15Academic Journal
Authors: S. V. Mikhailova, D. E. Ivanoshchuk, E. V. Shakhtshneyder, G. A. Stepanov, A. S. Rozanov, S. E. Peltek, M. I. Voevoda, С. В. Михайлова, Д. Е. Иванощук, Е. В. Шахтшнейдер, Г. А. Степанов, А. С. Розанов, С. Е. Пельтек, М. И. Воевода
Contributors: The study was partially supported by SB RAS fundamental research program ААА-А-А17-117112870181-6 and by RFBR research project 17-04-02120, Работа выполнена при частичной поддержке Комплексной программы фундаментальных исследований СО РАН АААА-А17-117112870181-6 и гранта РФФИ 17-04-02120
Source: Siberian Journal of Clinical and Experimental Medicine; Том 34, № 4 (2019); 72-82 ; Сибирский журнал клинической и экспериментальной медицины; Том 34, № 4 (2019); 72-82 ; 2713-265X ; 2713-2927 ; 10.29001/2073-8552-2019-34-4
Subject Terms: биомаркер, microRNA, xeno-microRNA, long non-coding RNA, extracellular vesicles, biomarker, микроРНК, ксено-микроРНК, длинные некодирующие РНК, внеклеточные везикулы
File Description: application/pdf
Relation: https://www.sibjcem.ru/jour/article/view/866/492; Moldoveanu B., Otmishi P., Jani P., Walker J., Sarmiento X., Guardi-ola J. et al. Inflammatory mechanisms in the lung. J. Inflamm. Res. 2009;2:1-11.; Arango Duque G., Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 2014;5:491. DOI:10.3389/fimmu.2014.00491.; Zaas A.K., Garner B.H., Tsalik E.L., Burke T., Woods C.W., Ginsburg G.S. The current epidemiology and clinical decisions surrounding acute respiratory infections. Trends Mol. Med. 2014;20(10):579-588. DOI:10.1016/j.molmed.2014.08.001.; Anevlavis S., Bouros D. Community acquired bacterial pneumonia. Expert Opinion on Pharmacotherapy. 2010;11(3):361-374. DOI:10.1517/14656560903508770.; Karakioulaki M., Stolz D. Biomarkers in Pneumonia-Beyond Procalcitonin. Int. J. Mol. Sci. 2019;20(8):E2004. DOI:10.3390/ijms20082004.; Self W.H., Balk R.A., Grijalva C.G., Williams D.J., Zhu Y, Anderson E.J. et al. Procalcitonin as a marker of etiology in adults hospitalized with community-acquired pneumonia. Clin. Infect. Dis. 2017;65(2):183-190. DOI:10.1093/cid/cix317.; Nascimento-Carvalho C.M. Community-acquired pneumonia among children: the latest evidence for an updated management. J. Pediatr. (Rio J.). 2019;S0021-7557(19)30493-0. DOI:10.1016/j.jped.2019.08.003.; Choi S.H., Hong S.B., Ko G.B., Lee Y, Park H.J., Park S.Y et al. Viral infection in patients with severe pneumonia requiring intensive care unit admission. Am. J. Respir. Crit. Care Med. 2012;186(4):325-332. DOI:10.1164/rccm.201112-2240OC.; Roberts T.C. The microRNA machinery. Adv. Exp. Med. Biol. 2015;887:15-30. DOI:10.1007/978-3-319-22380-3_2.; Friedman R.C., Farh K.K.H., Burge C.B., Bartel D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92-105.; Zhao Y, Li H., Fang S., Kang Y, Wu W., Hao Y et al. Noncode 2016:An informative and valuable data source of long non-coding RNAs. Nucleic Acids Res. 2016;44:D203-D208. DOI:10.1093/nar/gkv1252.; Ma L., Cao J., Liu L., Du Q., Li Z., Zou D. et al. LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res. 2019;47(5):2699. DOI:10.1093/nar/gkz073.; Kogure T., Yan I.K., Lin W.L., Patel T. Extracellular vesicle-mediated transfer of a novel long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer. Genes. Cancer. 2013;4(7-8):261-272. DOI:10.1177/1947601913499020.; Anfossi S., Babayan A., Pantel K., Calin G.A. Clinical utility of circulating non-coding RNAs - an update. Nat. Rev. Clin. Oncol. 2018;15(9):541-563. DOI:10.1038/s41571-018-0035-x.; Fernandes J.C.R., Acuna S.M., Aoki J.I., Floeter-Winter L.M., Mux-el S.M. Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA. 2019;5(1):E17. DOI:10.3390/ncrna5010017.; Guiot J., Struman I., Louis E., Louis R., Malaise M., Njock M.S. Exoso-mal miRNAs in lung diseases: from biologic function to therapeutic targets. J. Clin. Med. 2019;8(9):E1345. DOI:10.3390/jcm8091345.; Gilad S., Meiri E., Yogev Y, Benjamin S., Lebanony D., Yerushalmi N. et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008;3(9):e3148. DOI:10.1371/journal.pone.0003148.; Li Y, Zheng Q., Bao C., Li S., Guo W., Zhao J. et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25(8):981-984. DOI:10.1038/cr.2015.82.; Raposo G., Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 2013;200(4):373-383. DOI:10.1083/jcb.201211138.; Valadi H., Ekstrom K., Bossios A., Sjostrand M., Lee J.J., Lotvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007;9(6):654-659.; Yanez-Mo M., Siljander P.R., Andreu Z., Zavec A.B., Borras F.E., Bu-zas E.I. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell Vesicles. 2015;4:27066. DOI:10.3402/jev.v4.27066.; Zhu Z., Zhang D., Lee H., Menon A.A., Wu J., Hu K. et al. Macrophage-derived apoptotic bodies promote the proliferation of the recipient cells via shuttling microRNA-221/222. J. Leukoc. Biol. 2017;101(6):1349-1359. DOI:10.1189/jlb.3A1116-483R.; Lee H., Groot M., Pinilla-Vera M., Fredenburgh L.E., Jin Y. Identification of miRNA-rich vesicles in bronchoalveolar lavage fluid: Insights into the function and heterogeneity of extracellular vesicles. J. Control. Release. 2019;294:43-52. DOI:10.1016/j.jconrel.2018.12.008; Arroyo J.D., Chevillet J.R., Kroh E.M., Ruf I.K., Pritchard C.C., Gibson D.F. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA. 2011;108(12):5003-5008. DOI:10.1073/pnas.1019055108.; Vickers K.C., Palmisano B.T., Shoucri B.M., Shamburek R.D., Remaley A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011;13(4):423-433. DOI:10.1038/ncb2210.; Nonaka C.K.V., Macedo C.T., Cavalcante B.R.R., Alcantara A.C., Silva D.N., Bezerra M.D.R. et al. Circulating miRNAs as potential biomarkers associated with cardiac remodeling and fibrosis in chagas disease cardiomyopathy. Int. J. Mol. Sci. 2019;20(16):E4064. DOI:10.3390/ijms20164064.; Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-297. DOI:10.1016/s0092-8674(04)00045-5.; Njock M.-S., Cheng H.S., Dang L.T., Nazari-Jahantigh M., Lau A.C., Boudreau E. et al. Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs. Blood. 2015;125:3202-3212. DOI:10.1182/blood-2014-11-611046.; Monsel A., Zhu Y, Gennai S., Hao Q., Hu S., Rouby J.-J. et al. Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am. J. Respir. Crit. Care Med. 2015;192:324-336. DOI:10.1164/rccm.201410-1765OC.; Abd-El-Fattah A.A., Sadik N.A., Shaker O.G., Aboulftouh M.L. Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia. Cell Biochem. Biophys. 2013;67(3):875-884. DOI:10.1007/s12013-013-9575-y.; Lin J., Wang Y, Zou YQ., Chen X., Huang B., Liu J. et al. Differential miR-NA expression in pleural effusions derived from extracellular vesicles of patients with lung cancer, pulmonary tuberculosis, or pneumonia. Tumour Biol. 2016;37(12):15835-15845. DOI:10.1007/s13277-016-5410-6.; Huang S., Feng C., Zhai Y.Z., Zhou X., Li B., Wang L.L. et al. Identification of miRNA biomarkers of pneumonia using RNA-sequencing and bioinformatics analysis. Ex.p Ther. Med. 2017; 13(4):1235-1244. DOI:10.3892/etm.2017.4151.; Poore G.D., Ko E.R., Valente A., Henao R., Sumner K., Hong C. et al. A miRNA host response signature accurately discriminates acute respiratory infection etiologies. Front. Microbiol. 2018;9:2957. DOI:10.3389/fmicb.2018.02957.; Li Q.L., Wu Y.Y., Sun H.M., Gu W.J., Zhang X.X., Wang M.J. et al. The role of miR-29c/B7-H3/Th17 axis in children with Mycoplasma pneumoniae pneumonia. Ital. J. Pediatr. 2019;45(1):61. DOI:10.1186/s13052-019-0655-5.; Jung A.L., Stoiber C., Herkt C.E., Schulz C., Bertrams W., Schmeck B. Legionella pneumophila-derived outer membrane vesicles promote bacterial replication in macrophages. PLoS Pathog. 2016;12(4):e1005592. DOI:10.1371/journal.ppat.1005592.; Griss K., Bertrams W., Sittka-Stark A., Seidel K., Stielow C., Hippenstiel S. et al. MicroRNAs constitute a negative feedback loop in Streptococcus pneumoniae-induced macrophage activation. J. Infect. Dis. 2016;214(2):288-299. DOI:10.1093/infdis/jiw109.; Wang Q., Li D., Han Y., Ding X., Xu T., Tang B. MicroRNA-146 protects A549 and H1975 cells from LPS-induced apoptosis and inflammation injury. J. Biosci. 2017;42(4):637-645. DOI:10.1007/s12038-017-9715-4.; Gao W., Yang H. MicroRNA-124-3p attenuates severe community-acquired pneumonia progression in macrophages by targeting tumor necrosis factor receptor-associated factor 6. Int. J. Mol. Med. 2019;43(2):1003-1010. DOI:10.3892/ijmm.2018.4011.; Guo J., Cheng Y. MicroRNA-1247 inhibits lipopolysaccharides-induced acute pneumonia in A549 cells via targeting CC chemokine ligand 16. Biomed. Pharmacother. 2018;104:60-68. DOI:10.1016/j.bio-pha.2018.05.012.; Fei S., Cao L., Pan L. MicroRNA-3941 targets IGF2 to control LPS-induced acute pneumonia in A549 cells. Mol. Med. Rep. 2018;17(3):4019-4026. DOI:10.3892/mmr.2017.8369.; Xie F., Yang L., Han L., Yue B. MicroRNA-194 regulates lipopolysac-charide-induced cell viability by inactivation of nuclear factor-к B pathway. Cell Physiol. Biochem. 2017;43(6):2470-2478. DOI:10.1159/000484453.; Liu Z., Yu H., Guo Q. MicroRNA-20a promotes inflammation via the nuclear factor-кВ signaling pathway in pediatric pneumonia. Mol. Med. Rep. 2018;17(1):612-617. DOI:10.3892/mmr.2017.7899.; Koriyama T., Yamakuchi M., Takenouchi K., Oyama Y., Takenaka H., Nagakura T. et al. Legionella pneumophila infection-mediated regulation of RICTOR via miR-218 in U937 macrophage cells. Biochem. Biophys. Res. Commun. 2019;508(2):608-613. DOI:10.1016/j.bbrc.2018.11.093.; Ying H., Kang Y, Zhang H., Zhao D., Xia J., Lu Z. et al. MiR-127 modulates macrophage polarization and promotes lung inflammation and injury by activating the JNK pathway. J. Immunol. 2015;194(3):1239-1251. DOI:10.4049/jimmunol.1402088.; Buggele W.A., Johnson K.E., Horvath C.M. Influenza A virus infection of human respiratory cells induces primary microRNA expression. J. Biol. Chem. 2012;287(37):31027-31040. DOI:10.1074/jbc.M112.387670.; Liu Q., Du J., Yu X., Xu J., Huang F., Li X. et al. miRNA-200c-3p is crucial in acute respiratory distress syndrome. Cell Discov. 2017;3:17021. DOI:10.1038/celldisc.2017.21.; Lee H., Zhang D., Zhu Z., Dela Cruz C.S., Jin Y. Epithelial cell-derived microvesicles activate macrophages and promote inflammation via microvesicle-containing microRNAs. Sci. Rep. 2016;6:35250. DOI:10.1038/srep35250.; Huang F., Zhang J., Yang D., Zhang Y, Huang J., Yuan Y et al. MicroRNA expression profile of whole blood is altered in Adenovirus-infected pneumonia children. Mediators Inflamm. 2018;2018:2320640. DOI:10.1155/2018/2320640.; Huang F., Bai J., Zhang J., Yang D., Fan H., Huang L. et al. Identification of potential diagnostic biomarkers for pneumonia caused by adenovirus infection in children by screening serum exosomal microRNAs. Mol. Med. Rep. 2019;19(5):4306-4314. DOI:10.3892/mmr.2019.10107.; Zhang W., Jia J., Liu Z., Si D., Ma L., Zhang G. Circulating microRNAs as biomarkers for Sepsis secondary to pneumonia diagnosed via Sepsis 3.0. BMC Pulm. Med. 2019;19(1):93. DOI:10.1186/s12890-019-0836-4.; Du X., Wei J., Tian D., Wu M., Yan C., Hu P. et al. MiR-182-5p contributes to intestinal injury in a murine model of Staphylococcus aureus pneumonia-induced sepsis via targeting surfactant protein D. J. Cell Physiol. 2020;235(1):563-572. DOI:10.1002/jcp.28995.; Wu X., Wu C., Gu W., Ji H., Zhu L. Serum exosomal microRNAs predict cute respiratory distress syndrome events in patients with severe community-acquired pneumonia. Biomed. Res. Int. 2019;2019:3612020. DOI:10.1155/2019/3612020.; Chi X., Ding B., Zhang L., Zhang J., Wang J., Zhang W. lncRNA GAS5 promotes M1 macrophage polarization via miR-455-5p/SOCS3 pathway in childhood pneumonia. J. Cell Physiol. 2019;234(8):13242-13251. DOI:10.1002/jcp.27996.; Zhou Z., Zhu Y, Gao G., Zhang Y. Long noncoding RNA SNHG16 targets miR-146a-5p/CCL5 to regulate LPS-induced WI-38 cell apoptosis and inflammation in acute pneumonia. Life Sci. 2019;228:189-197. DOI:10.1016/j.lfs.2019.05.008.; Zhang Y, Zhu Y, Gao G., Zhou Z. Knockdown XIST alleviates LPS-induced WI-38 cell apoptosis and inflammation injury via targeting miR-370-3p/TLR4 in acute pneumonia. Cell Biochem. Funct. 2019;37(5):348-358. DOI:10.1002/cbf.3392.; Liu M., Han T., Shi S., Chen E. Long noncoding RNA HAGLROS regulates cell apoptosis and autophagy in lipopolysaccharides-induced WI-38 cells via modulating miR-100/NF-KB axis. Biochem. Biophys. Res. Commun. 2018;500(3):589-596. DOI:10.1016/j.bbrc.2018.04.109.; Meng J., Chen Y, Zhang C. Protective impacts of long noncoding RNA taurine-upregulated 1 against lipopolysaccharide-evoked injury in MRC-5 cells through inhibition of microRNA-127. J. Cell Biochem. 2019;120(9):14928-14935. DOI:10.1002/jcb.28755.; Ritchie N.D., Evans T.J. Dual RNA-seq in Streptococcus pneumoniae infection reveals compartmentalized neutrophil responses in lung and pleural space. mSystems. 2019;4(4):e00216-19. DOI:10.1128/mSys-tems.00216-19.; Sinha D., Zimmer K., Cameron T.A., Rusch D.B., Winkler M.E., De Lay N.R. Redefining the small regulatory RNA transcriptome in Streptococcus pneumoniae Serotype 2 Strain D39. J. Bacteriol. 2019;201(14):e00764-18. DOI:10.1128/JB.00764-18.; Carroll R.K., Weiss A., Broach W.H., Wiemels R.E., Mogen A.B., Rice K.C. et al. Genome-wide annotation, identification, and global tran-scriptomic analysis of regulatory or small RNA gene expression in Staphylococcus aureus. MBio. 2016;7(1):e01990-15. DOI:10.1128/mBio.01990-15.; https://www.sibjcem.ru/jour/article/view/866
-
16Academic Journal
Authors: O. A. Beylerli, I. F. Gareev, V. N. Pavlov, Zhao Shiguang, Chen Xin, V. V. Kudriashov
Source: Креативная хирургия и онкология, Vol 9, Iss 4, Pp 297-304 (2020)
Subject Terms: экзосомы, некодирующие рнк, длинные некодирующие рнк, микрорнк, новообразования, биомаркеры новообразования, межклеточный обмен, Surgery, RD1-811, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, RC254-282
Relation: https://www.surgonco.ru/jour/article/view/439; https://doaj.org/toc/2307-0501; https://doaj.org/toc/2076-3093; https://doaj.org/article/09c670c3121d44e7b6a51feec67181e5
-
17Academic Journal
Authors: I. F. Gareev, O. A. Beylerli, G. Yang, D. Zhang
Source: Креативная хирургия и онкология, Vol 10, Iss 2, Pp 108-114 (2020)
Subject Terms: микро-рнк, длинные некодирующие рнк, студенистое ядро, генная экспрессия, полимеразная цепная реакция в реальном времени, коллагеназа ii типа, межпозвоночные диски, рнк расщепление, Surgery, RD1-811, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, RC254-282
Relation: https://www.surgonco.ru/jour/article/view/487; https://doaj.org/toc/2307-0501; https://doaj.org/toc/2076-3093; https://doaj.org/article/01565b08499345278e08bc555a8f4af9
-
18Academic Journal
Source: Zaporozhye Medical Journal; Vol. 21 No. 6 (2019) ; Запорожский медицинский журнал; Том 21 № 6 (2019) ; Запорізький медичний журнал; Том 21 № 6 (2019) ; 2310-1210 ; 2306-4145
Subject Terms: long noncoding RNAs, single nucleotide polymorphism, HOX antisense intergenic RNA (HOTAIR), cell bladder cancer, довгі некодувальні РНК, однонуклеотидний поліморфізм, рак сечового міхура, длинные некодирующие РНК, однонуклеотидный полиморфизм гена, рак мочевого пузыря
File Description: application/pdf
Relation: http://zmj.zsmu.edu.ua/article/view/186498/187012; http://zmj.zsmu.edu.ua/article/view/186498
Availability: http://zmj.zsmu.edu.ua/article/view/186498
-
19Academic Journal
Source: Vavilov Journal of Genetics and Breeding; Том 22, № 4 (2018); 415-424 ; Вавиловский журнал генетики и селекции; Том 22, № 4 (2018); 415-424 ; 2500-3259
Subject Terms: трансмиссивные губчатые энцефалопатии, long noncoding RNA, methylation, microRNA, prions, regulation, stem cells, transmissible spongiform encephalopathies, длинные некодирующие РНК, метилирование, микроРНК, прионы, регуляция, стволовые клетки
File Description: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/1544/1080; Anderson D.M., Anderson K.M., Cang C.L., Makarewich C.A., Nelson B.R., McAnally J.R., Kasaragod P., Shelton J.M., Liou J., Bassel-Duby R., Olson E.N. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 2015;160: 595-606.; Aprea J., Prenninger S., Dori M., Ghosh T., Monasor L.S., Wessendorf E., Zocher S., Massalini S., Alexopoulou D., Lesche M., Dahl A., Groszer M., Hiller M., Calegari F. Transcriptome sequencing during mouse brain development identifies long noncoding RNAs functionally involved in neurogenic commitment. EMBO J. 2013;32(24):3145-3160.; Battistuzzi F.U., Schneider K.A., Spencer M.K., Fisher D., Chaudhry S., Escalante A.A. Profiles of low complexity regions in Apicomplexa. BMC Evol. Biol. 2016;16:47. DOI 10.1186/s12862-016-0625-0.; Bellingham S.A., Coleman B.M., Hill A.F. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 2012;40(21):10937-10949.; Boese A.S., Saba R., Campbell K., Majer A., Medina S., Burton L., Booth T.F., Chong P., Westmacott G., Dutta S.M., Saba J.A., Booth S.A. MicroRNA abundance is altered in synaptoneurosomes during prion disease. Mol. Cell. Neurosci. 2016;71:13-24.; Borchert G.M., Holton N.W., Williams J.D., Hernan W.L., Bishop I.P., Dombosky J.A., Elste J.E., Gregoire N.S., Kim J.A., Koehler W.W., Lengerich J.C., Medema A.A., Nguyen M.A., Ower G.D., Ra rick M.A., Strong B.N., Tardi N.J., Tasker N.M., Wozniak D.J., Gatto C., Larson E.D. Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob. Genet. Elements. 2011;1(1):8-17.; Burak K., Lamoureux L., Boese A., Majer A., Saba R., Niu Y., Frost K., Booth S.A. MicroRNA-16 targets mRNA involved in neurite extension and branching in hippocampal neurons during presymptoma tic prion disease. Neurobiol. Dis. 2018;112:1-13. DOI 10.1016/j.nbd.2017.12.011.; Couzigou J.M., Andre O., Cuillotin B., Alexandre M., Combier J.P. Use of microRNA-encoded peptide miPEP172c to stimulate nodulation in soybean. New Phytol. 2016;211(2):379-381.; Couzigou J.M., Lauressergues D., Becard G., Comier J.P. miRNAencoded peptides (miPEPs): A new tool to analyze the role of miRNAs in plant biology. RNA Biol. 2015;12:1178-1180.; De Cecco E., Legname G. The role of the prion protein in the internalization of α-synuclein amyloids. Prion. 2018;12(1):23-27. DOI 10.1080/19336896.2017.1423186.; Deng B., Cheng X., Li H., Qin J., Tian M., Jin G. Microarray expression profiling in the denervated hippocampus identified long noncoding RNAs functionally involved in neurogenesis. BMC Mol. Biol. 2017;18(1):15. DOI 10.1186/s12867-017-0091-2.; Dwivedi Y. Emerging role of microRNAs in major depressive disorder: diagnosis and therapeutic implications. Dialogues Clin. Neurosci. 2014;16(1):43-61.; Eigenbrod S., Frick P., Bertsch U., Mitteregger-Kretzschmar G., Mielke J., Maringer M., Piening N., Hepp A., Daude N., Windl O., Levin J., Giese A., Sakthivelu V., Tatzelt J., Kretzschmar H., Westaway D. Substitutions of PrP N-terminal histidine residues modulate scrapie disease pathogenesis and incubation time in transgenic mice. PLoS ONE. 2017;12(12):e0188989.; Evans E.G., Pushie M.J., Markham K.A., Lee H.W., Millhauser G.L. Interaction between prion protein’s cooperbound octarepeat domain and charged C-terminal pocket suggests a mechanism for N-terminal regulation. Structure. 2016;24(7):1057-1067.; Faulkner G.J. Retrotransposons: mobile and mutagenic from conception to death. FEBS Lett. 2011;585(11):1589-1594.; Fitzgerald K.A., Caffrey D.R. Long noncoding RNAs in innate and adaptive immunity. Curr. Opin. Immunol. 2014;26:140-146.; Gao C., Shi Q., Wei J., Zhou W., Xiao K., Wang J., Shi Q., Dong X.P. The associations of two SNPs in miRNA146a and one SNP in ZBTB38-RASA2 with the disease susceptibility and the clinical features of the Chinese patients of sCJD and FFI. Prion. 2018;12(1): 34-41. DOI 10.1080/19336896.2017.1405885.; Gim J., Ha H., Ahn K., Kim D.S., Kim H.S. Genome-wide identification and classification of microRNAs derived from repetitive elements. Genomics Inform. 2014;12(4):261-267.; Gonzalez-Montalban N., Makarava N., Savtchenko R., Baskakov I.V. Relationship between conformational stability and amplification efficiency of prions. Biochemistry. 2011;50(37):79337940.; Harbi D., Harrison P.M. Classifying prion and prion-like phenomena. Prion. 2014;8(2):pii27960.; Hennig S., Kong G., Mannen T., Sadowska A., Kobelke S., Blythe A., Knott G.J., Iyer K.S., Ho D., Newcombe E.A., Hosoki K., Goshima N., Kawaguchi T., Hatters D., Trinkle-Mulcahy L., Hirose T., Bond C.S., Fox A.H. Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles. J. Cell. Biol. 2015;210(4):529-539.; Johnson R., Guigo R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA. 2014;20(7): 959-976.; Kyle R.A. Amyloidosis: a convoluted story. Br. J. Haematol. 2001; 114(3):529-538.; Lauressergues D., Couzigou J.M., Clemente H.S., Martinez Y., Dunand C., Becard G., Combier J.P. Primary transcripts of microRNAs encode regulatory peptides. Nature. 2015;520(7545):90-93.; Li Y., Li C., Xia J., Jin Y. Domestication of transposable elements into MicroRNA genes in plants. PLoS ONE. 2011;6:e19212.; Lorenzetti A.P., A de Antonio G.Y., Paschoal A.R., Domingues D.S. Plant TE-MIR DB: a database for transposable element-related microRNAs in plant genomes. Funct. Integr. Genomics. 2016;16: 235-242.; Lu X., Sachs F., Ramsay L., Jacques P.E., Goke J., Bourque G., Ng H.H. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 2014; 21(4):423-425.; Lv S., Pan L., Wang G. Commentary: primary transcripts of microRNAs encode regulatory peptides. Front. Plant Sci. 2016;7:1436.; Mabbott N.A. How do PrPSc prions spread between host species, and within hosts? Pathogens. 2017;6(4). pii: E60. DOI 10.3390/pathogens6040060.; March Z.M., King O.D., Shorter J. Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drives of neurodegenerative disease. Brain Res. 2016;1647:9-18.; Mercer T.R., Dinger M.E., Sunkin S.M., Mehler M.F., Mattick J.S. Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl. Acad. Sci. USA. 2008;105(2):716-721.; Michelitsch M.D., Weissman J.S. A census of glutamine/asparagines-rich regions: implications for their conserved function and the prediction of novel prions. Proc. Natl. Acad. Sci. USA. 2000;97(22): 11910-11915.; Montag J., Hitt R., Opitz L., Schulz-Schaeffer W.J., Hunsmann G., Motzkus D. Upregulation of miRNA hsa-miR-342-3p in experimental and idiopathic prion disease. Mol. Neurodegener. 2009;4:36. DOI 10.1186/1750-1326-4-36.; Murakami T., Ishiguro N., Haguchi K. Transmission of systemic AA amyloidosis in animals. Vet. Pathol. 2014;51(2):363-371.; Mustafin R.N., Khusnutdinova E.K. Non-coding parts of genomes as the basis of epigenetic heredity. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(6):742-749. DOI 10.18699/VJ17.30-o. (in Russian); Nelson B.R., Makarewich C.A., Anderson D.M., Winders B.R., Trou pes C.D., Wu F., Reese A.L., McAnally J.R., Chen X., Kevalali E.T., Cannon S.C., Houser S.R., Bassel-Duby R., Olson E.N. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science. 2016;351(6270):271-275.; Notwell J.H., Chung T., Heavner W., Bejerano G. A family of transposable elements co-opted into developmental enhancers in the mouse neocortex. Nat. Commun. 2015;6:6644.; Richardson S.R., Morell S., Faulkner G.J. L1 retrotransposons and somatic mosaicism in the brain. Annu. Rev. Genet. 2014;48:127.; Rubenstein R., Wang K.K., Chiu A., Grinkina N., Sharma D.R., Agarwal S., Lin F., Yang Z. PrPC expression and calpain activity independently mediate the effects of closed head injury in mice. Behav. Brain Res. 2018;340:29-40.; Ruiz-Orera J., Messeguer X., Subirana J.A., Alba M.M. Long noncoding RNAs as a source of new peptides. Elife. 2014;3:e03523. DOI 10.7554/eLife.03523.; Saa P., Sferrazza G.F., Ottenberg G., Oelschlegel A.M., Dorsey K., Lasmezas C.I. Strain-specific role of RNAs in prion replication. J. Virol. 2012;86(19):10494-10504.; Saba R., Goodman C.D., Huzarewich R.L., Robertson C., Booth S.A. A miRNA signature of prion induced neurodegeneration. PLoS ONE. 2008;3:e3652.; Saba R., Gushue S., Huzarewich R.L., Manguiat K., Medina S., Robertson C., Booth S.A. MicroRNA 146a (miR-146a) is overexpressed during prion disease and modulates the innate immune response and the microglial activation state. PLoS ONE. 2012;7(2):e30832.; Saba R., Medina S.J., Booth S.A. A functional SNP catalog of overlapping miRNA-binding sites in genes implicated in prion disease and other neurodegenerative disorders. Hum. Mutat. 2014;35(10):1233-1248.; Saghatelian A., Couso J.P. Discovery and сharacterization of smORF encoded bioactive polypeptides. Nat. Chem. Biol. 2015;11(12):909-916.; Sanz Rubio D., Lopez-Perez O., de Andres Pablo A., Bolea R., Osta R., Badiola J.J., Zaragoza P., Martin-Burriel I., Toivonen J.M. Increased circulating microRNAs miR-342-3p and miR-215p in natural sheep prion disease. J. Gen. Virol. 2017;98(2):305310.; Simoneau S., Thomzig A., Ruchoux M.M., Vignier N., Daus M.L., Poleggi A., Lebon P., Freire S., Durand V., Graziano S., Galeno R., Cardone F., Comoy E., Pocchiari M., Beekes M., Deslys J.P., Four nier J.G. Synthetic scrapie infectivity: interaction between recombinant PrP and scrapie brain-derived RNA. Virulence. 2015;6(2):132-144. DOI 10.4161/21505594.2014.989795.; Tetz G., Tetz V. Prion-like domains in phagobiota. Front. Microbiol. 2017;8:2239.; Timmes A.G., Moore R.A., Fischer E.R., Priora S.A. Recombinant prion refolded with lipid and RNA has the biochemical hallmarks of a prion but lacks in vivo infectivity. PLoS ONE. 2013;8(7):e71081.; Tycko R. Physical and structural basis for polymorphism in amyloid fibrils. Protein Sci. 2014;23(11):1528-1539.; Upton K.R., Gerhardt D.J., Jesuadian J.S., Richardson S.R., Sanchez-Luque F.J., Bodea G.O., Ewing A.D., Salvador-Palomegue C., van der Knaap M.S., Brennan P.M., Vanderver A., Faulkner G.J. Ubi quitous L1 mosaicism in hippocampal neurons. Cell. 2015;161(2): 228-239.; Wang J., Li X., Wang L., Li J., Zhao Y., Bou G., Li Y., Jiao G., Shen X., Wei R., Liu S., Xie B., Lei L., Li W., Zhou Q., Liu Z. A novel long intergenic noncoding RNA indispensable for the cleavage of mouse two-cell embryos. EMBO Rep. 2016;17:1452-1470.; Zhang J., Mujahid H., Hou Y., Nallamilli B.R., Peng Z. Plant long ncRNAs: a new frontier for gene regulatory control. Am. J. Plant Sci. 2013;4(5):1038-1045. DOI 10.4236/ajps.2013.45128.; https://vavilov.elpub.ru/jour/article/view/1544
-
20Academic Journal
Authors: Rustam N. Mustafin, Elza K. Khusnutdinova
Source: Креативная хирургия и онкология, Vol 7, Iss 3, Pp 60-67 (2017)
Subject Terms: геномная нестабильность (гн), длинные некодирующие рнк (lncрнк), метилирование (мт), микрорнк, неаллельная гомологичная рекомбинация (nahr – non-allelic homologous recombination), некодирующие рнк (нкрнк), ретротранспозиция (рт), транспозоны (те – transposable elements), Surgery, RD1-811, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, RC254-282
Relation: https://www.surgonco.ru/jour/article/view/244; https://doaj.org/toc/2307-0501; https://doaj.org/toc/2076-3093; https://doaj.org/article/ba7f7b49ede744d187f30d8a01614730