Showing 1 - 3 results of 3 for search '"диффузионно-тензорная томография"', query time: 0.44s Refine Results
  1. 1
    Academic Journal

    Contributors: This study was supported by the Russian Science Foundation (21–15–00209)., Исследование выполнено при поддержке Российского научного фонда (21–15–00209).

    Source: Diagnostic radiology and radiotherapy; Том 14, № 4 (2023); 36-44 ; Лучевая диагностика и терапия; Том 14, № 4 (2023); 36-44 ; 2079-5343

    File Description: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/937/620; Vos T., Lim S.S., Abbafati C., Abbas K.M., Abbasi M., Abbasifard M., Abbasi-Kangevari M., Abbastabar H., Abd-Allah F., Abdelalim A., Abdollahi M., Abdollahpour I., Abolhassani H., Aboyans V., Abrams E.M., Abreu L.G., Abrigo M.R.M., Abu-Raddad L.J., Abushouk A.I., Murray C.J.L. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019 // The Lancet. 2020. Vol. 396, No. 10258. Р. 1204–1222. https://doi.org/10.1016/s0140-6736(20)30925-9.; Li Q., Zhao Y., Chen Z., Long J., Dai J., Huang X., Lui S., Radua J., Vieta E., Kemp G.J., Sweeney J.A., Li F., Gong Q. Meta-analysis of cortical thickness abnormalities in medication-free patients with major depressive disorder // Neuropsychopharmacology. 2019. Vol. 45, No. 4. Р. 703–712. https://doi.org/10.1038/s41386-019-0563-9.; Holmes S.E., Abdallah C., Esterlis I. Imaging synaptic density in depression // Neuropsychopharmacology. 2022. Vol. 48, No. 1. Р. 186–190. https://doi.org/10.1038/s41386-022-01368-4.; Rolls E.T. The cingulate cortex and limbic systems for action, emotion, and memory // Cingulate Cortex. Elsevier, 2019. Р. 23–37. http://dx.doi.org/10.1016/b978-0-444-64196-0.00002-9.; Hadland K.A., Rushworth M.F.S., Gaffan D., Passingham R.E. The effect of cingulate lesions on social behavior and emotion. Neuropsychologia. 2003. Vol. 41, No. 8. Р. 919–931. https://doi.org/10.1016/s0028-3932(02)00325-1.; Hayden B.Y., Platt M.L. Neurons in anterior cingulate cortex multiplex information about reward and action // The Journal of Neuroscience. 2010. Vol. 30, No. 9. Р. 3339–3346. https://doi.org/10.1523/jneurosci.4874-09.2010.; Yrondi A., Nemmi F., Billoux S., Giron A., Sporer M., Taib S., Salles J., Pierre D., Thalamas C., Schmitt L., Péran P., Arbus C. Significant decrease in hippocampus and amygdala mean diffusivity in treatment-resistant depression patients who respond to electroconvulsive therapy // Frontiers in Psychiatry. 2019. Vol. 10. https://doi.org/10.3389/fpsyt.2019.00694.; Liao Y., Huang X., Wu Q., Yang C., Kuang W., Du M., Lui S., Yue Q., Chan R., Kemp G., Gong Q. Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD // Journal of Psychiatry & Neuroscience. 2013. Vol. 38, No. 1. Р. 49–56. https://doi.org/10.1503/jpn.110180.; Koolschijn P.C.M.P., van Haren N.E.M., Lensvelt-Mulders G.J.L.M., Hulshoff P.H.E., Kahn R.S. Brain volume abnormalities in major depressive disorder: A meta-analysis of magnetic resonance imaging studies // Human Brain Mapping. 2009. Vol. 30, No. 11. Р. 3719–3735. https://doi.org/10.1002/hbm.20801.; Hayakawa Y.K., Sasaki H., Takao H., Hayashi N., Kunimatsu A., Ohtomo K., Aoki S. Depressive symptoms and neuroanatomical structures in community-dwelling women: A combined voxel-based morphometry and diffusion tensor imaging study with tract-based spatial statistics // NeuroImage: Clinical. 2014. Vol. 4. Р. 481–487. https://doi.org/10.1016/j.nicl.2014.03.002.; Jaworska N., Yücel K., Courtright A., MacMaster F.P., Sembo M., MacQueen G. Subgenual anterior cingulate cortex and hippocampal volumes in depressed youth: The role of comorbidity and age // Journal of Affective Disorders. 2016. Vol. 190. Р. 726–732. https://doi.org/10.1016/j.jad.2015.10.064.; Zou K., Huang X., Gong Q., Li Z., Ou-yang L., Deng W., Chen Q., Li C., Ding Y., Sun X. Alterations of white matter integrity in adults with major depressive disorder: a magnetic resonance imaging study // Journal of Psychiatry & Neuroscience. 2008. Vol. 33, No. 6. Р. 525–530.; Bezmaternykh D.D., Melnikov M.Ye., Savelov A.A., Kozlova L.I., Petrovskiy E.D., Natarova K.A., Shtark M.B. Brain Networks Connectivity in Mild to Moderate Depression: Resting State fMRI Study with Implications to Nonpharmacological Treatment // Neural Plasticity. 2021. Р. 1–15. https://doi.org/10.1155/2021/8846097.; Bzdok D., Langner R., Schilbach L., Engemann D.A., Laird A.R., Fox P.T., Eickhoff S.B. Segregation of the human medial prefrontal cortex in social cognition // Frontiers in Human Neuroscience. 2013. Vol. 7. https://doi.org/10.3389/fnhum.2013.00232.; Bora E., Fornito A., Pantelis C., Yücel M. Gray matter abnormalities in Major Depressive Disorder: A meta-analysis of voxel based morphometry studies // Journal of Affective Disorders. 2012. Vol. 138, No. 1–2. Р. 9–18. https://doi.org/10.1016/j.jad.2011.03.049.; Abi-Dargham A., Moeller S.J., Ali F., DeLorenzo C., Domschke K., Horga G., Jutla A., Kotov R., Paulus M.P., Rubio J.M., Sanacora G., Veenstra-Vander Weele J., Krystal J.H. Candidate biomarkers in psychiatric disorders: state of the field // World Psychiatry. 2023. Vol. 22, No. 2. Р. 236–262. https://doi.org/10.1002/wps.21078.; Hamilton M. A rating scale for depression // Journal of Neurology, Neurosurgery & Psychiatry. 1960. Vol. 23, No. 1. Р. 56–62. https://doi.org/10.1136/jnnp.23.1.56; Montgomery S.A., Åsberg M. A New Depression Scale Designed to be Sensitive to Change // British Journal of Psychiatry. 1979. Vol. 134, No. 4. Р. 382–389. https://doi.org/10.1192/bjp.134.4.382; Beck A.T., Steer R.A., Ball R., Ranieri W.F. Comparison of Beck Depression Inventories-IA and-II in Psychiatric Outpatients // Journal of Personality Assessment. 1996. Vol. 67, No. 3. Р. 588–597. https://doi.org/10.1207/s15327752jpa6703_13.; Wu E.X., Cheung M.M. MR diffusion kurtosis imaging for neural tissue characterization // NMR in Biomedicine. 2010. Vol. 23, No. 7. Р. 836–848. https://doi.org/10.1002/nbm.1506.; Jensen J.H., Helpern J.A. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR in Biomedicine. 2010. Vol. 23, No. 7. Р. 698–710. https://doi.org/10.1002/nbm.1518.; Yarnykh V.L. Fast macromolecular proton fraction mapping from a single off-resonance magnetization transfer measurement // Magnetic Resonance in Medicine. 2011. Vol. 68, No. 1. Р. 166–178. https://doi.org/10.1002/mrm.23224.; Yarnykh V.L., Prihod’ko I.Y., Savelov A.A., Korostyshevskaya A.M. Quantitative assessment of normal fetal brain myelination using fast macromolecular proton fraction mapping // American Journal of Neuroradiology. 2018. Vol. 39, No. 7. Р. 1341–1348. https://doi.org/10.3174/ajnr.a5668.; Korostyshevskaya A.M., Savelov A.A., Papusha L.I., Druy A.E., Yarnykh V.L. Congenital medulloblastoma: Fetal and postnatal longitudinal observation with quantitative MRI // Clinical Imaging. 2018. Vol. 52. Р. 172–176. https://doi.org/10.1016/j.clinimag.2018.06.001.; Korostyshevskaya A.M., Prihod’ko I.Yu., Savelov A.A., Yarnykh V.L. Direct comparison between apparent diffusion coefficient and macromolecular proton fraction as quantitative biomarkers of the human fetal brain maturation // Journal of Magnetic Resonance Imaging. 2010. Vol. 50, No. 1. Р. 52–61. https://doi.org/10.1002/jmri.26635.; Penny W.D., Friston K.J., Ashburner J., Kiebel S.J., Nichols T.E. Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2011.; Maldjian J.A., Laurienti P.J., Kraft R.A., Burdette J.H. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets // NeuroImage. 2003. Vol. 19, No. 3. Р. 1233–1239. https://doi.org/10.1016/s1053-8119(03)00169-1.; Amft M., Bzdok D., Laird A.R., Fox P.T., Schilbach L., Eickhoff S.B. Definition and characterization of an extended social-affective default network // Brain Structure and Function. 2014. Vol. 220, No. 2. Р. 1031–1049. https://doi.org/10.1007/s00429-013-0698-0.; Tabesh A., Jensen J.H., Ardekani B.A., Helpern J.A. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging // Magnetic Resonance in Medicine. 2010. Vol. 65, No. 3. Р. 823–836. https://doi.org/10.1002/mrm.22655.; Zhuo C., Li G., Lin X., Jiang D., Xu Y., Tian H., Wang W., Song X. The rise and fall of MRI studies in major depressive disorder // Translational Psychiatry. 2019. Vol. 9, No. 1. https://doi.org/10.1038/s41398-019-0680-6.; Wu F., Tu Z., Sun J., Geng H., Zhou Y., Jiang X., Li H., Kong L. Abnormal Functional and Structural Connectivity of Amygdala-Prefrontal Circuit in First-Episode Adolescent Depression: A Combined fMRI and DTI Study // Frontiers in Psychiatry. 2020. Vol. 10. https://doi.org/10.3389/fpsyt.2019.00983.; Xu D., Xu G., Zhao Z., Sublette M.E., Miller J.M., Mann J.J. Diffusion tensor imaging brain structural clustering patterns in major depressive disorder // Human Brain Mapping. 2021. Vol. 42, No. 15. Р. 5023–5036. https://doi.org/10.1002/hbm.25597.; Hassan T.A., Elkholy S.F., Mahmoud B.E., ElSherbiny M. Multiple sclerosis and depressive manifestations: Can diffusion tensor MR imaging help in the detection of microstructural white matter changes? // Egyptian Journal of Radiology and Nuclear Medicine. 2019. Vol. 50, No. 1. https://doi.org/10.1186/s43055-019-0033-8.; Chen V.C.-H., Kao C.-J., Tsai Y.-H., McIntyre R.S., Weng J.-C. Mapping brain microstructure and network alterations in depressive patients with suicide attempts using generalized q-sampling MRI // Journal of Personalized Medicine. 2021. Vol. 11, No. 3. Р. 174. https://doi.org/10.3390/jpm11030174.; Karger A. Geschlechtsspezifische Aspekte bei depressiven Erkrankungen // Bundesgesundheitsblatt — Gesundheitsforschung — Gesundheitsschutz. 2014. Vol. 57, No. 9. Р. 1092–1098. https://doi.org/10.1007/s00103-014-2019-z.

  2. 2
  3. 3