Εμφανίζονται 1 - 20 Αποτελέσματα από 404 για την αναζήτηση '"дифференцировка"', χρόνος αναζήτησης: 0,85δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: This work was supported by the Ministry of Science and Higher Education of the Russian Federation for the Institute of Cytology and Genetics (state budget-funded project No. FWNR-2022-0016) and by LLC “ES.LAB DIAGNOSTIC”, I.N. Zaitseva and A.A. Purtov.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 28, № 8 (2024); 993-1007 ; Вавиловский журнал генетики и селекции; Том 28, № 8 (2024); 993-1007 ; 2500-3259 ; 10.18699/vjgb-24-88

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/4420/1905; Boerrigter M.E.T.I., Mullaart E., Van Der Schans G.P., Vijg J. Quiescent human peripheral blood lymphocytes do not contain a sizable amount of preexistent DNA single-strand breaks. Exp. Cell Res. 1989;180(2):569-573. doi 10.1016/0014-4827(89)90085-2; Chen J.M., Cooper D.N., Chuzhanova N., Férec C., Patrinos G.P. Gene conversion: mechanisms, evolution and human disease. Nat. Rev. Genet. 2007;8(10):762-775. doi 10.1038/NRG2193; Chen T.L., Chiang Y.W., Lin G.L., Chang H.H., Lien T.S., Sheh M.H., Sun D.S. Different effects of granulocyte colony-stimulating factor and erythropoietin on erythropoiesis. Stem. Cell Res. Ther. 2018; 9(1):119. doi 10.1186/S13287-018-0877-2; Desterke C., Bennaceur-Griscelli A., Turhan A.G. EGR1 dysregulation defines an inflammatory and leukemic program in cell trajectory of human-aged hematopoietic stem cells (HSC). Stem. Cell Res. Ther. 2021;12(1):419. doi 10.1186/S13287-021-02498-0; DNA Cloning. A practical approach. Ed. D.M. Glover. IRL Press, 1985; Dolgova E.V., Efremov Y.R., Orishchenko K.E., Andrushkevich O.M., Alyamkina E.A., Proskurina A.S., Bayborodin S.I., Nikolin V.P., Popova N.A., Chernykh E.R., Ostanin A.A., Taranov O.S., Omigov V.V., Minkevich A.M., Rogachev V.A., Bogachev S.S., Shurdov M.A. Delivery and processing of exogenous double-stranded DNA in mouse CD34+ hematopoietic progenitor cells and their cell cycle changes upon combined treatment with cyclophosphamide and double-stranded DNA. Gene. 2013;528(2):74-83. doi 10.1016/j.gene.2013.06.058; Dolgova E.V., Alyamkina E.A., Efremov Y.R., Nikolin V.P., Popova N.A., Tyrinova T.V., Kozel A.V., Minkevich A.M., Andrushkevich O.M., Zavyalov E.L., Romaschenko A.V., Bayborodin S.I., Taranov O.S., Omigov V.V., Shevela E.Y., Stupak V.V., Mishinov S.V., Rogachev V.A., Proskurina A.S., Mayorov V.I., Shurdov M.A., Ostanin A.A., Chernykh E.R., Bogachev S.S. Identification of cancer stem cells and a strategy for their elimination. Cancer Biol. Ther. 2014;15(10):1378-1394. doi 10.4161/cbt.29854; Dolgova E.V., Potter E.A., Proskurina A.S., Minkevich A.M., Chernych E.R., Ostanin A.A., Efremov Y.R., Bayborodin S.I., Nikolin V.P., Popova N.A., Kolchanov N.A., Bogachev S.S. Properties of internalization factors contributing to the uptake of extracellular DNA into tumor-initiating stem cells of mouse Krebs-2 cell line. Stem. Cell Res. Ther. 2016;7(1):76. doi 10.1186/s13287-016-0338-8; Dolgova E.V., Petrova D.D., Proskurina A.S., Ritter G.S., Kisaretova P.E., Potter E.A., Efremov Y.R., Bayborodin S.I., Karamysheva T.V., Romanenko M.V., Netesov S.V., Taranov O.S., Ostanin A.A., Chernykh E.R., Bogachev S.S. Identification of the xenograft and its ascendant sphere-forming cell line as belonging to EBV-induced lymphoma, and characterization of the status of sphere-forming cells. Cancer Cell Int. 2019;19:120. doi 10.1186/S12935-019-0842-X; Farzaneh F., Zalin R., Brill D., Shall S. DNA strand breaks and ADPribosyl transferase activation during cell differentiation. Nature. 1982;300(5890):362-366. doi 10.1038/300362A0; Forristal C.E., Levesque J.-P. Targeting the hypoxia-sensing pathway in clinical hematology. Stem Cells Transl. Med. 2014;3(2):135-140. doi 10.5966/SCTM.2013-0134; Goncalves K.A., Silberstein L., Li S., Severe N., Hu M.G., Yang H., Scadden D.T., Hu G.F. Angiogenin promotes hematopoietic regeneration by dichotomously regulating quiescence of stem and progenitor cells. Cell. 2016;166(4):894-906. doi 10.1016/J.CELL.2016.06.042; Hastings P.J., McGill C., Shafer B., Strathern J.N. Ends-in vs. endsout recombination in yeast. Genetics. 1993;135(4):973-980. doi 10.1093/GENETICS/135.4.973; Iseki S. DNA strand breaks in rat tissues as detected by in situ nick translation. Exp. Cell Res. 1986;167(2):311-326. doi 10.1016/0014-4827(86)90172-2; Jacobson G.K., Pinon R., Esposito R.E., Esposito M.S. Single-strand scissions of chromosomal DNA during commitment to recombination at meiosis. Proc. Natl. Acad. Sci. USA. 1975;72(5):1887-1891. doi 10.1073/PNAS.72.5.1887; Jiang N., Pisetsky D.S. The effect of inflammation on the generation of plasma DNA from dead and dying cells in the peritoneum. J. Leukoc. Biol. 2005;77(3):296-302. doi 10.1189/JLB.0704411; Johnstone A.P., Williams G.T. Role of DNA breaks and ADP-ribosyl transferase activity in eukaryotic differentiation demonstrated in human lymphocytes. Nature. 1982;300(5890):368-370. doi 10.1038/300368A0; Kaminskas E., Li J.C. DNA fragmentation in permeabilized cells and nuclei. The role of (Ca2+ + Mg2+)-dependent endodeoxyribonuclease. Biochem. J. 1989;261(1):17-21. doi 10.1042/BJ2610017; Kananen L., Hurme M., Bürkle A., Moreno-Villanueva M., Bernhardt J., Debacq-Chainiaux F., Grubeck-Loebenstein B., Malavolta M., Basso A., Piacenza F., Collino S., Gonos E.S., Sikora E., Gradinaru D., Jansen E.H.J.M., Dollé M.E.T., Salmon M., Stuetz W., Weber D., Grune T., Breusing N., Simm A., Capri M., Franceschi C., Slagboom E., Talbot D., Libert C., Raitanen J., Koskinen S., Härkänen T., Stenholm S., Ala-Korpela M., Lehtimäki T., Raitakari O.T., Ukkola O., Kähönen M., Jylhä M., Jylhävä J. Circulating cell-free DNA in health and disease – the relationship to health behaviours, ageing phenotypes and metabolomics. GeroScience. 2023;45(1): 85-103. doi 10.1007/S11357-022-00590-8; Kiang J.G., Zhai M., Lin B., Smith J.T., Anderson M.N., Jiang S. Cotherapy of pegylated G-CSF and ghrelin for enhancing survival after exposure to lethal radiation. Front. Pharmacol. 2021;12: 628018. doi 10.3389/FPHAR.2021.628018; Korabecna M., Zinkova A., Brynychova I., Chylikova B., Prikryl P., Sedova L., Neuzil P., Seda O. Cell-free DNA in plasma as an essential immune system regulator. Sci. Rep. 2020;10(1):17478. doi 10.1038/S41598-020-74288-2; Kovtonyuk L.V., Fritsch K., Feng X., Manz M.G., Takizawa H. Inflamm- aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment. Front. Immunol. 2016;7:502. doi 10.3389/FIMMU.2016.00502; Kulkarni R., Kale V. Physiological cues involved in the regulation of adhesion mechanisms in hematopoietic stem cell fate decision. Front. Cell Dev. Biol. 2020;8:611. doi 10.3389/FCELL.2020.00611; Kumar S., Geiger H. HSC niche biology and HSC expansion ex vivo. Trends Mol. Med. 2017;23(9):799. doi 10.1016/J.MOLMED.2017.07.003; Langston L.D., Symington L.S. Gene targeting in yeast is initiated by two independent strand invasions. Proc. Natl. Acad. Sci. USA. 2004; 101(43):15392-15397. doi 10.1073/PNAS.0403748101; Lauková L., Bertolo E.M.J., Zelinková M., Borbélyová V., Čonka J., Gaál Kovalčíková A., Domonkos E., Vlková B., Celec P. Early dynamics of plasma DNA in a mouse model of sepsis. Shock. 2019; 52(2):257-263. doi 10.1097/SHK.0000000000001215; Lévesque J.P., Helwani F.M., Winkler I.G. The endosteal ‘osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization. Leukemia. 2010;24(12):1979-1992. doi 10.1038/leu.2010.214; Li J., Read L.R., Baker M.D. The mechanism of mammalian gene replacement is consistent with the formation of long regions of heteroduplex DNA associated with two crossing-over events. Mol. Cell. Biol. 2001;21(2):501-510. doi 10.1128/MCB.21.2.501-510.2001; Likhacheva A.S., Nikolin V.P., Popova N.A., Rogachev V.A., Prokhorovich M.A., Sebeleva T.E., Bogachev S.S., Shurdov M.A. Exogenous DNA can be captured by stem cells and be involved in their rescue from death after lethal-dose γ-radiation. Gene Therapy Mol. Biol. 2007;11:305-314; Likhacheva A.S., Rogachev V.A., Nikolin V.P., Popova N.A., Shilov A.G., Sebeleva T.E., Strunkin D.N., Chernykh E.R., Gel’fgat E.L., Bogachev S.S., Shurdov M.A. Involvement of exogenous DNA in the molecular processes in somatic cell. Informatsionnyy Vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeders. 2008;12(3):426-473 (in Russian); Lucas D. Leukocyte trafficking and regulation of murine hematopoietic stem cells and their niches. Front. Immunol. 2019;10:387. doi 10.3389/FIMMU.2019.00387/BIBTEX; Maizels N., Davis L. Initiation of homologous recombination at DNA nicks. Nucleic Acids Res. 2018;46:6962-6973. doi 10.1093/NAR/GKY588; Maniatis T., Fritch E., Sambrook D. Methods of Genetic Engineering. Molecular Cloning. Moscow: Mir Publ., 1984 (in Russian); McMahon G., Alsina J.L., Levy S.B. Induction of a Ca2+, Mg2+-dependent endonuclease activity during the early stages of murine erythroleukemic cell differentiation. Proc. Natl. Acad. Sci. USA. 1984; 81(23):7461-7465. doi 10.1073/PNAS.81.23.7461; Mendelson A., Frenette P.S. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat. Med. 2014;20(8): 833-846. doi 10.1038/NM.3647; Morita Y., Ema H., Nakauchi H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J. Exp. Med. 2010;207(6):1173-1182. doi 10.1084/JEM.20091318; Muller-Sieburg C., Sieburg H.B. Stem cell aging: survival of the laziest? Cell Cycle. 2008;7(24):3798-3804. doi 10.4161/CC.7.24.7214; Patkin E.L., Kustova M.E., Noniashvili E.M. DNA-strand breaks in chromosomes of early mouse embryos as detected by in situ nick translation and gap filling. Genome. 1995;38:381-384. doi 10.1139/G95-049; Petrova D.D., Dolgova E.V., Proskurina A.S., Ritter G.S., Ruzanova V.S., Efremov Y.R., Potter E.A., Kirikovich S.S., Levites E.V., Taranov O.S., Ostanin A.A., Chernykh E.R., Kolchanov N.A., Bogachev S.S. The new general biological property of stem-like tumor cells (Part II: Surface molecules, which belongs to distinctive groups with particular functions, form a unique pattern characteristic of a certain type of tumor stem-like cells). Int. J. Mol. Sci. 2022; 23(24):15800. doi 10.3390/ijms232415800; Pierce H., Zhang D., Magnon C., Lucas D., Christin J.R., Huggins M., Schwartz G.J., Frenette P.S. Cholinergic signals from the CNS regulate G-CSF-mediated HSC mobilization from bone marrow via a glucocorticoid signaling relay. Cell Stem. Cell. 2017;20:648-658.e4. doi 10.1016/J.STEM.2017.01.002; Pinho S., Frenette P.S. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 2019;20(5):303-320. doi 10.1038/S41580-019-0103-9; Potter E.A., Proskurina A.S., Ritter G.S., Dolgova E.V., Nikolin V.P., Popova N.A., Taranov O.S., Efremov Y.R., Bayborodin S.I., Ostanin A.A., Chernykh E.R., Kolchanov N.A., Bogachev S.S. Efficacy of a new cancer treatment strategy based on eradication of tumor-initiating stem cells in a mouse model of Krebs-2 solid adenocarcinoma. Oncotarget. 2018;9(47):28486-28499. doi 10.18632/oncotarget.25503; Potter E.A., Dolgova E.V., Proskurina A.S., Ruzanova V.S., Efremov Y.R., Kirikovich S.S., Oshikhmina S.G., Mamaev A.L., Taranov O.S., Bryukhovetskiy A.S., Grivtsova L.U., Kolchanov N.A., Os-tanin A.A., Chernykh E.R., Bogachev S.S. Stimulation of mouse hematopoietic stem cells by angiogenin and DNA preparations. Braz. J. Med. Biol. Res. 2024;57:e13072. doi 10.1590/1414-431X2024E13072; Pulito V.L., Miller D.L., Sassa S., Yamane T. DNA fragments in Friend erythroleukemia cells induced by dimethyl sulfoxide. Proc. Natl. Acad. Sci. USA. 1983;80(19):5912-5915. doi 10.1073/PNAS.80.19.5912; Rass E., Grabarz A., Bertrand P., Lopez B.S. Double strand break repair, one mechanism can hide another: alternative non-homologous end joining. Cancer Radiother. 2012;16:1-10. doi 10.1016/J.CANRAD.2011.05.004; Redondo P.A., Pavlou M., Loizidou M., Cheema U. Elements of the niche for adult stem cell expansion. J. Tissue Eng. 2017;8: 2041731417725464. doi 10.1177/2041731417725464; Ritter G.S., Dolgova E.V., Petrova D.D., Efremov Y.R., Proskurina A.S., Potter E.A., Ruzanova V.S., Kirikovich S.S., Levites E.V., Taranov O.S., Ostanin A.A., Chernykh E.R., Kolchanov N.A., Bogachev S.S. The new general biological property of stem-like tumor cells. Part I. Peculiarities of the process of the double-stranded DNA fragments internalization into stem-like tumor cells. Front. Genetics. 2022;13:954395. doi 10.3389/fgene.2022.954395; Rix B., Maduro A.H., Bridge K.S., Grey W. Markers for human haematopoietic stem cells: the disconnect between an identification marker and its function. Front. Physiol. 2022;13. doi 10.3389/FPHYS.2022.1009160; Rubnitz J., Subramani S. The minimum amount of homology required for homologous recombination in mammalian cells. Mol. Cell. Biol. 1984;4(11):2253-2258. doi 10.1128/MCB.4.11.2253-2258.1984; Ruzanova V., Proskurina A., Efremov Y., Kirikovich S., Ritter G., Levites E., Dolgova E., Potter E., Babaeva O., Sidorov S., Taranov O., Ostanin A., Chernykh E., Bogachev S. Chronometric administration of cyclophosphamide and a double-stranded DNA-Mix at interstrand crosslinks repair timing, called “Karanahan” therapy, is highly efficient in a weakly immunogenic Lewis carcinoma model. Pathol. Oncol. Res. 2022;28. doi 10.3389/PORE.2022.1610180; Saitoh T., Fujita N., Yoshimori T., Akira S. Regulation of dsDNAinduced innate immune responses by membrane trafficking. Autophagy. 2010;6:430-432. doi 10.4161/AUTO.6.3.11611; Scharf P., Broering M.F., da Rocha G.H.O., Farsky S.H.P. Cellular and molecular mechanisms of environmental pollutants on hematopoiesis. Int. J. Mol. Sci. 2020;21(19):6996. doi 10.3390/IJMS21196996; Scher W., Friend C. Breakage of DNA and alterations in folded genomes by inducers of differentiation in Friend erythroleukemic cells. Cancer Res. 1978;38:841-849; Seita J., Weissman I.L. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip. Rev. Syst. Biol. Med. 2010;2(6): 640-653. doi 10.1002/WSBM.86; Silberstein L., Goncalves K.A., Kharchenko P.V., Turcotte R., Kfoury Y., Mercier F., Baryawno N., Severe N., Bachand J., Spencer J.A., Papazian A., Lee D., Chitteti B.R., Srour E.F., Hoggatt J., Tate T., Lo Celso C., Ono N., Nutt S., Heino J., Sipilä K., Shioda T., Osawa M., Lin C.P., Hu G.-fu, Scadden D.T. Proximity-based differential single-cell analysis of the niche to identify stem/progenitor cell regulators. Cell Stem Cell. 2016;19(4):530-543. doi 10.1016/J.STEM.2016.07.004; So A., Le Guen T., Lopez B.S., Guirouilh-Barbat J. Genomic rearrangements induced by unscheduled DNA double strand breaks in somatic mammalian cells. FEBS J. 2017;284(15):2324-2344. doi 10.1111/FEBS.14053; Szade K., Gulati G.S., Chan C.K.F., Kao K.S., Miyanishi M., Marjon K.D., Sinha R., George B.M., Chen J.Y., Weissman I.L. Where hematopoietic stem cells live: the bone marrow niche. Antioxid. Redox Signal. 2018;29:191. doi 10.1089/ARS.2017.7419; Vatolin S.Y., Okhapkina E.V., Matveeva N.M., Shilov A.G., Baiborodin S.I., Philimonenko V.V., Zhdanova N.S., Serov O.L. Scheduled perturbation in DNA during in vitro differentiation of mouse embryo-derived cells. Mol. Reprod. Dev. 1997;47(1):1-10. doi 10.1002/(SICI)1098-2795(199705)47:13.0.CO;2-R; Vriend L.E.M., Krawczyk P.M. Nick-initiated homologous recombination: protecting the genome, one strand at a time. DNA Repair. 2017; 50:1-13. doi 10.1016/J.DNAREP.2016.12.005; Wang S., Zhang Y., Meng W., Dong Y., Zhang S., Teng L., Liu Y., Li L., Wang D. The involvement of macrophage colony stimulating factor on protein hydrolysate injection mediated hematopoietic function improvement. Cells. 2021;10(10):2776. doi 10.3390/CELLS10102776; Wilkinson A.C., Igarashi K.J., Nakauchi H. Haematopoietic stem cell self-renewal in vivo and ex vivo. Nat. Rev. Genet. 2020;21(9):541-554. doi 10.1038/s41576-020-0241-0; Winkler I.G., Barbier V., Nowlan B., Jacobsen R.N., Forristal C.E., Patton J.T., Magnani J.L., Lévesque J.P. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat. Med. 2012;18(11):1651-1657. doi 10.1038/NM.2969; Xu S.Y. Sequence-specific DNA nicking endonucleases. Biomol. Concepts. 2015;6(4):253-267. doi 10.1515/BMC-2015-0016; Zhang C.C., Sadek H.A. Hypoxia and metabolic properties of hematopoietic stem cells. Antioxid. Redox. Signal. 2014;20(12):1891-1901. doi 10.1089/ARS.2012.5019; Zilio N., Ulrich H.D. Exploring the SSBreakome: genome-wide mapping of DNA single-strand breaks by next-generation sequencing. FEBS J. 2021;288(13):3948-3961. doi 10.1111/FEBS.15568; https://vavilov.elpub.ru/jour/article/view/4420

  2. 2
    Academic Journal

    Πηγή: Siberian journal of oncology; Том 24, № 1 (2025); 115-124 ; Сибирский онкологический журнал; Том 24, № 1 (2025); 115-124 ; 2312-3168 ; 1814-4861

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/3457/1316; Bratt O., Damber J.E., Emanuelsson M., Gronberg H. Hereditary prostate cancer: clinical characteristics and survival. J Urol. 2002; 167(6): 2423-6.; You J.S., Jones P.A. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012; 22(1): 9-20. doi:10.1016/j.ccr.2012.06.008.; Recillas-Targa F. Cancer Epigenetics: An Overview. Arch Med Res. 2022; 53(8): 732-40. doi:10.1016/j.arcmed.2022.11.003.; Смирнов В.В., Леонов Г.Е. Эпигенетика: теоретические аспекты и практическое значение. Лечащий врач. 2016; (12).; Varambally S., Yu J., Laxman B., Rhodes D.R., Mehra R., Tomlins S.A., Shah R.B., Chandran U., Monzon F.A., Becich M.J., Wei J.T., Pienta K.J., Ghosh D., Rubin M.A., Chinnaiyan A.M. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell. 2005; 8(5): 393-406. doi:10.1016/j.ccr.2005.10.001.; Taylor B.S., Schultz N., Hieronymus H., GopalanA.,Xiao Y, Carver B.S., Arora V.K., Kaushik P., Cerami E., Reva B., Antipin Y., Mitsiades N., Landers T., Dolgalev I., Major J.E., Wilson M., Socci N.D., Lash A.E., Heguy A., Eastham J.A., Scher H.I., Reuter V.E., Scardino P.T., Sander C., Sawyers C.L., Gerald W.L. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010; 18(1): 11-22. doi:10.1016/j.ccr.2010.05.026.; Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000; 100(1): 57-70. doi:10.1016/s0092-8674(00)81683-9.; Armenia J., Wankowicz S.A.M., Liu D., Gao J., Kundra R., Reznik E., Chatila W.K., Chakravarty D., Han G.C., Coleman I., Montgomery B., Pritchard C., Morrissey C., Barbieri C.E., BeltranH., SbonerA., Zafeiriou Z., Miranda S., Bielski C.M., Penson A.V., Tolonen C., Huang F.W., Robinson D., Wu Y.M., Lonigro R., Garraway L.A., Demichelis F., Kantoff P.W., Taplin M.E., Abida W., Taylor B.S., Scher H.I., Nelson P.S., de Bono J.S., Rubin M.A., Sawyers C.L., Chinnaiyan A.M.; PCF/SU2C International Prostate Cancer Dream Team; Schultz N., Van Allen E.M. The long tail of oncogenic drivers in prostate cancer. Nat Genet. 2018; 50(5): 645-51. doi:10.1038/s41588-018-0078-z. Erratum in: Nat Genet. 2019; 51(7): 1194. doi:10.1038/s41588-019-0451-6.; Quigley D.A., Dang H.X., Zhao S.G., Lloyd, P., Aggarwal R., Alumkal J.J., Foye A., Kothari V., Perry M.D., Bailey A.M., Playdle D., Barnard T.J., Zhang L., Zhang J., Youngren, J.F., Cieslik M.P., Parolia A., Beer T.M., Thomas G., Chi K.N., Feng F.Y. Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell. 2018; 174(3): 758-769. doi:10.1016/j.cell.2018.06.039.; Cancer Genome Atlas Research Network. The Molecular Taxonomy of Primary Prostate Cancer. Cell. 2015; 163(4): 1011-25. doi:10.1016/j.cell.2015.10.025.; Chung W., Eum H.H., Lee H.O., Lee K.M., Lee H.B., Kim, K.T., Ryu H.S., Kim S., Lee J. E., Park Y.H., Kan Z., Han W., Park W.Y. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nature Communications. 2017; 8. doi:10.1038/ncomms15081.; Jovic D., Liang X., Zeng H., Lin L., Xu F., Luo Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin Transl Med. 2022; 12(3). doi:10.1002/ctm2.694.; Lambros M.B., Seed G., Sumanasuriya S., Gil V., Crespo M., Fontes M., Chandler R., Mehra N., Fowler G., Ebbs B., Flohr P., Miranda S., Yuan W., Mackay A., Ferreira A., Pereira R., Bertan C., Figueiredo I., Riisnaes R., Rodrigues D.N., Sharp A., Goodall J., Boysen G., Carreira S., Bianchini D., Rescigno P., Zafeiriou Z., Hunt J., Moloney D., Hamilton L., Neves R.P., Swennenhuis J., Andree K., Stoecklein N.H., Terstappen L.W.M.M., de Bono J.S. Single-Cell Analyses of Prostate Cancer Liquid Biopsies Acquired by Apheresis. Clin Cancer Res. 2018; 24(22): 5635-44. doi:10.1158/1078-0432.CCR-18-0862.; Papalexi E., Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol. 2018; 18(1): 35-45. doi:10.1038/nri.2017.76.; Lin X.D., Lin N., Lin T.T., Wu Y.P., Huang P., Ke Z.B., Lin Y.Z., Chen S.H., Zheng Q.S., Wei Y., Xue X.Y., Lin R.J., Xu N. Identification of marker genes and cell subtypes in castration-resistant prostate cancer cells. J Cancer. 2021; 12(4): 1249-57. doi:10.7150/jca.49409.; Felsenfeld G., Groudine M. Controlling the double helix. Nature. 2003; 421(6921): 448-53. doi:10.1038/nature01411.; Zhang Y., Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 2001; 15(18): 2343-60. doi:10.1101/gad.927301.; Jenuwein T., Allis C.D. Translating the histone code. Science. 2001; 293(5532): 1074-80. doi:10.1126/science.1063127.; Kukkonen K., Taavitsainen S., Huhtala L., Uusi-Makela J., Granberg K.J., Nykter M., Urbanucci A. Chromatin and epigenetic dysregulation of prostate cancer development, progression, and therapeutic response. Cancers (Basel) 2021; 13(13). doi:10.3390/cancers13133325.; Li L.C. Epigenetics of prostate cancer. Front Biosci. 2007; 12: 3377-97. doi:10.2741/2320.; Liao Y., Xu K. Epigenetic regulation of prostate cancer: the theories and the clinical implications. Asian J Androl. 2019; 21(3): 279-90. doi:10.4103/aja.aja_53_18.; Berger S.L., Kouzarides T., Shiekhattar R., Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009; 23(7): 781-83. doi:10.1101/gad.1787609.; Rodriguez-Paredes M., Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011; 17(3): 330-39. doi:10.1038/nm.2305.; Bedford M.T., van Helden P.D. Hypomethylation of DNA in pathological conditions of the human prostate. Cancer Res. 1987; 47(20): 5274-76.; Stein R., Gruebaum Y., Pollack Y., Razin A., Cedar H. Clonal inheritance of the pattern of DNA methylation in mouse cells. Proc Natl Acad Sci 1982; 79(1): 61-65. doi:10.1073/pnas.79.1.61.; Baylin S.B., Makos M., Wu J.J., Yen R.W., de Bustros A., Vertino P., Nelkin B.D. Abnormal patterns of DNA methylation in human neoplasia: potential consequences for tumor progression. Cancer Cells. 1991; 3(10): 383-90.; Jeronimo C., Usadel H., Henrique R., Oliveira J., Lopes C., Nelson W.G., Sidransky D. Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J Natl Cancer Inst. 2001; 93(22): 1747-52. doi:10.1093/jnci/93.22.1747.; Henrique R., Jeronimo C. Molecular detection of prostate cancer: a role for GSTP1 hypermethylation. Eur Urol. 2004; 46(5): 660-69; discussion 669. doi:10.1016/j.eururo.2004.06.014.; Kinney S.R., Moser M.T., Pascual M., Greally J.M., Foster B.A., Karpf A.R. Opposing roles of Dnmt1 in early- and late-stage murine prostate cancer. Mol Cell Biol. 2010; 30(17): 4159-74. doi:10.1128/MCB.00235-10.; Roupret M., Hupertan V, Catto J.W., Yates D.R., Rehman I., Proctor L.M., Phillips J., Meuth M., Cussenot O., Hamdy F.C. Promoter hypermethylation in circulating blood cells identifies prostate cancer progression. Int J Cancer. 2008; 122(4): 952-56. doi:10.1002/ijc.23196.; Mahon K.L., Qu W., Devaney J., Paul C., Castillo L., Wykes R.J., Chatfield M.D., Boyer M.J., Stockler M.R., Marx G., Gurney H., Mallesara G., Molloy P.L., Horvath L.G., Clark S.J.; PRIMe consortium. Methylated Glutathione S-transferase 1 (mGSTP1) is a potential plasma free DNA epigenetic marker of prognosis and response to chemotherapy in castrate-resistant prostate cancer. Br J Cancer. 2014; 111(9): 1802-9. doi:10.1038/bjc.2014.463.; Farah E., Zhang Z., Utturkar S.M., Liu J., Ratliff T.L., Liu X. Targeting DNMTs to Overcome Enzalutamide Resistance in Prostate Cancer. Mol Cancer Ther. 2022; 21(1): 193-205. doi:10.1158/1535-7163.MCT-21-0581.; Suzuki H., Freije D., Nusskern D.R., Okami K., Cairns P., Sidransky D., Isaacs W.B., Bova G.S. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res. 1998; 58(2): 204-9.; Jarrard D.F., Bova G.S., Ewing C.M., Pin S.S., Nguyen S.H., Baylin S.B., Cairns P., Sidransky D., Herman J.G., Isaacs W.B. Dele-tional, mutational, and methylation analyses of CDKN2 (p16/MTS1) in primary and metastatic prostate cancer. Genes Chromosomes Cancer. 1997; 19(2): 90-96.; Conteduca V., Hess J., Yamada Y., Ku S.Y., Beltran H. Epigenetics in prostate cancer: clinical implications. Transl Androl Urol. 2021; 10(7): 3104-16. doi:10.21037/tau-20-1339.; Ruggero K., Farran-Matas S., Martinez-Tebar A., Aytes A. Epigenetic Regulation in Prostate Cancer Progression. Curr Mol Biol Rep. 2018; 4(2): 101-15. doi:10.1007/s40610-018-0095-9.; Zhao S.G., Chen W.S., Li H., Foye A., Zhang M., Sjosirom M., Aggarwal R., Playdle D., Liao A., Alumkal J.J., Das R., Chou J., Hua J.T., Barnard T.J., Bailey A.M., Chow E.D., Perry M.D., Dang H.X., Yang R., Moussavi-Baygi R., Zhang L., Alshalalfa M., Laura Chang S., Houla-han K.E., Shiah Y.J., Beer T.M., Thomas G., Chi K.N., Gleave M., Zou-beidi A., Reiter R.E., Rettig M.B., Witte O., Yvonne Kim M., Fong L., Spratt D.E., Morgan T.M., Bose R., Huang F.W., Li H., Chesner L., Shenoy T., Goodarzi H., Asangani I.A., Sandhu S., Lang J.M., Mahajan N.P., Lara P.N., Evans C.P., Febbo P., Batzoglou S., Knudsen K.E., He H.H., Huang J., Zwart W., Costello J.F., Luo J., Tomlins S.A., Wyatt A.W., Dehm S.M., Ashworth A., Gilbert L.A., Boutros P.C., Farh K., Chinnaiyan A.M., Maher C.A., Small E.J., Quigley D.A., Feng F.Y. The DNA methylation landscape of advanced prostate cancer. Nat Genet. 2020; 52(8): 778-89. doi:10.1038/s41588-020-0648-8.; Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002; 21(35): 5400-13. doi:10.1038/sj.onc.1205651.; Wang Y., Jadhav R.R., Liu J., Wilson D., Chen Y., Thompson I.M., Troyer D.A., Hernandez J., Shi H., Leach R.J., Huang T.H., Jin V.X. Roles of Distal and Genic Methylation in the Development of Prostate Tumori-genesis Revealed by Genome-wide DNA Methylation Analysis. Sci Rep. 2016; 6. doi:10.1038/srep22051.; Ge R., Wang Z., Montironi R., Jiang Z., Cheng M., Santoni M., Huang K., Massari F., Lu X., Cimadamore A., Lopez-Beltran A., Cheng L. Epigenetic modulations and lineage plasticity in advanced prostate cancer. Ann Oncol. 2020; 31(4): 470-79. doi:10.1016/j.annonc.2020.02.002.; Partin A.W., van Neste L., Klein E.A., Marks L.S., Gee J.R., Troyer DA., Rieger-Christ K., Jones J.S., Magi-Galluzzi C., MangoldLA., Trock B.J., Lance R.S., Bigley J.W., van Criekinge W., Epstein J.I. Clinical validation of an epigenetic assay to predict negative histopathological results in repeat prostate biopsies. J Urol. 2014; 192(4): 1081-87. doi:10.1016/j.juro.2014.04.013.; Patel P.G., Wessel T., Kawashima A., Okello J.B.A., Jamaspishvili T, Guerard K.P., Lee L., Lee A.Y., How N.E., Dion D., Scarlata E., Jackson C.L., Boursalie S., Sack T., Dunn R., Moussa M., Mackie K., Ellis A., Marra E., Chin J., Siddiqui K., Hetou K., Pickard L.A., Arthur-Hayward V., Bauman G., Chevalier S., Brimo F., Boutros P.C., Lapointe PhD J., Bartlett J.M.S., Gooding R.J., Berman D.M. A three-gene DNA methylation biomarker accurately classifies early stage prostate cancer. Prostate. 2019; 79(14): 1705-14. doi:10.1002/pros.23895.; Bachman M., Uribe-Lewis S., Yang X., Williams M., Murrell A., Balasubramanian S. 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat Chem. 2014; 6(12): 1049-55. doi:10.1038/nchem.2064.; Ficz G., Branco M.R., Seisenberger S., Santos F., Krueger F., Hore T.A., Marques C.J., Andrews S., Reik W. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature. 2011; 473(7347): 398-402. doi:10.1038/nature10008.; Jin S.G., Jiang Y., Qiu R., Rauch T.A., Wang Y., Schackert G., Krex D., Lu Q., Pfeifer G.P. 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res. 2011; 71(24): 7360-65. doi:10.1158/0008-5472.CAN-11-2023.; Takayama K., Misawa A., Suzuki T., Takagi K., Hayashizaki Y., Fujimura T., Homma Y., Takahashi S., Urano T., Inoue S. TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression. Nat Commun. 2015; 6. doi:10.1038/ncomms9219.; Strand S.H., Hoyer S., Lynnerup A.S., Haldrup C., Storebjerg T.M., Borre M., Orntoft T.F., Sorensen K.D. High levels of 5-hydroxymethyl-cytosine (5hmC) is an adverse predictor of biochemical recurrence after prostatectomy in ERG-negative prostate cancer. Clin Epigenet. 2015; 7. doi:10.1186/s13148-015-0146-5.; Spans L., van den Broeck T., Smeets E., Prekovic S., Thienpont B., Lambrechts D., Karnes R.J., Erho N., Alshalalfa M., Davicioni E., Helsen C., Gevaert T., Tosco L., Haustermans K., Lerut E., Joniau S., Claessens F. Genomic and epigenomic analysis of high-risk prostate cancer reveals changes in hydroxymethylation and TET1. Oncotarget. 2016; 7(17): 24326-38. doi:10.18632/oncotarget.8220.; Storebjerg T.M., Strand S.H., Hoyer S., Lynnerup A.S., Borre M., 0rntoft T.F, Sorensen K.D. Dysregulation and prognostic potential of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) levels in prostate cancer. Clin Epigenetics. 2018; 10(1): 105. doi:10.1186/s13148-018-0540-x.; Sokolova V., Sarkar S., Tan D. Histone variants and chromatin structure, update of advances. Comput Struct Biotechnol J. 2022; 21: 299-311. doi:10.1016/j.csbj.2022.12.002.; Allis C.D., Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016; 17(8): 487-500. doi:10.1038/nrg.2016.59.; Li Y., Ge K., Li T., Cai R., Chen Y. The engagement of histone lysine methyltransferases with nucleosomes: structural basis, regulatory mechanisms, and therapeutic implications. Protein Cell. 2023; 14(3): 165-79. doi:10.1093/procel/pwac032.; Cai C., He H.H., Gao S., Chen S., Yu Z., Gao Y., Chen S., Chen M.W., Zhang J., Ahmed M., Wang Y., Metzger E., Schule R., Liu X.S., Brown M., Balk S.P. Lysine-specific demethylase 1 has dual functions as a major regulator of androgen receptor transcriptional activity. Cell Rep. 2014; 9(5): 1618-27. doi:10.1016/j.celrep.2014.11.008.; Gao S., Chen S., Han D., Wang Z., Li M., Han W., Besschetnova A., Liu M., Zhou F., Barrett D., Luong M.P., Owiredu J., Liang Y., Ahmed M., Petricca J., Patalano S., Macoska J.A., Corey E., Chen S., Balk S.P., He H.H., Cai C. Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer. Nat Genet. 2020; 52(10): 1011-17. doi:10.1038/s41588-020-0681-7.; Guo Y., Zhao S., Wang G.G. Polycomb Gene Silencing Mechanisms: PRC2 Chromatin Targeting, H3K27me3 ‘Readout', and Phase Separation-Based Compaction. Trends Genet. 2021; 37(6): 547-65. doi:10.1016/j.tig.2020.12.006.; Cao R., Wang L., Wang H., Xia L., Erdjument-Bromage H., Tempst P., Jones R.S., Zhang Y. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science. 2002; 298(5595): 1039-43. doi:10.1126/science.1076997.; Yu J., Yu J., Mani R.-S., Cao Q., Brenner C. J., Cao X., Wang X., Wu L., Li J., Hu M., Gong Y., Cheng H., Laxman B., Vellaichamy A., Shankar S., Li Y., Dhanasekaran S.M., Morey R., Barrette T., Lonigro R.J., Tomlins S.A., Varambally S., Qin Z.S., Chinnaiyan A.M. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell. 2010; 17(5): 443-54. doi:10.1016/j.ccr.2010.03.018.; Varambally S., Dhanasekaran S.M., Zhou M., Barrette T.R., Kumar-Sinha C., Sanda M.G., Ghosh D., Pienta K.J., Sewalt R.G., Otte A.P., Rubin M.A., Chinnaiyan A.M. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002; 419(6907): 624-29. doi:10.1038/nature01075.; Bai Y., Zhang Z., Cheng L., Wang R., Chen X., Kong Y., Feng F., Ahmad N., Li L., Liu X. Inhibition of enhancer of zeste homolog 2 (EZH2) overcomes enzalutamide resistance in castration-resistant prostate cancer. J Biol Chem. 2019; 294(25): 9911-23. doi:10.1074/jbc.RA119.008152.; Li N., Xue W., Yuan H., Dong B., Ding Y., Liu Y., Jiang M., Kan S., Sun T., Ren J., Pan Q., Li X., Zhang P., Hu G., Wang Y., Wang X., Li Q., Qin J. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017; 127(4): 1284-302. doi:10.1172/JCI91144.; Asangani I.A., Ateeq B., Cao Q., Dodson L., Pandhi M., Kunju L.P., Mehra R., Lonigro R.J., Siddiqui J., Palanisamy N., Wu Y.M., Cao X., Kim J.H., Zhao M., Qin Z.S., Iyer M.K., Maher C.A., Kumar-Sinha C., Varambally S., Chinnaiyan A.M. Characterization of the EZH2-MMSET histone methyltransferase regulatory axis in cancer. Mol Cell. 2013; 49(1): 80-93. doi:10.1016/j.molcel.2012.10.008.; Zhao Y., Garcia B.A. Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb Perspect Biol. 2015; 7(9). doi:10.1101/cshperspect.a025064.; German J.G., Baylin S.B. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003; 349(21): 2042-54. doi:10.1056/NEJMra023075.; Wu Y., Sarkissyan M., Vadgama J.V. Epigenetics in breast and prostate cancer. Methods Mol Biol. 2015; 1238: 425-66. doi:10.1007/978-1-4939-1804-1_23.; Lavery D.N., Bevan C.L. Androgen receptor signalling in prostate cancer: the functional consequences of acetylation. J Biomed Biotechnol. 2011. doi:10.1155/2011/862125.; Severson T.M., Zhu Y., Prekovic S., Schuurman K., Nguyen H.M., Brown L.G., Hakkola S., Kim Y., Kneppers J., Linder S., Stelloo S., Lieftink C., van der Heijden M., Nykter M., van der Noort V., Sanders J., Morris B., Jenster G., van Leenders G.J., Pomerantz M., Freedman M.L., Beijersbergen R.L., Urbanucci A., Wessels L., Corey E., Zwart W., Bergman A.M. Enhancer profiling identifies epigenetic markers of endocrine resistance and reveals therapeutic options for metastatic castration-resistant prostate cancer patients. medRxiv [Preprint]. 2023. doi:10.1101/2023.02.24.23286403.; Whyte W.A., Orlando D.A., Hnisz D., Abraham B.J., Lin C.Y., Kagey M.H., Rahl P.B., Lee T.I., Young R.A. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013; 153(2): 307-19. doi:10.1016/j.cell.2013.03.035.; Valdes-Mora F., Gould CM., Colino-S^angguino Y, Qu W., Song J.Z., Taylor K.M., Buske F.A., Statham A.L., Nair S.S., Armstrong N.J., Kench J.G., Lee K.M.L., Horvath L.G., Qiu M., Ilinykh A., Yeo-Teh N.S., Gallego-Ortega D., Stirzaker C., Clark S.J. Acetylated histone variant H2A.Z is involved in the activation of neo-enhancers in prostate cancer. Nat Commun. 2017; 8(1). doi:10.1038/s41467-017-01393-8.; Sayar E., Patel R.A., Coleman I.M., Roudier M.P., Zhang A., Mustafi P., Low J.Y., Hanratty B., Ang L.S., Bhatia V., Adil M., Bakbak H., Quigley D.A., Schweizer M.T., Hawley J.E., Kollath L., True L.D., Feng F.Y., Bander N.H., Corey E., Lee J.K., Morrissey C., Gulati R., Nelson P.S., Haffner M.C. Reversible epigenetic alterations mediate PSMA expression heterogeneity in advanced metastatic prostate cancer. JCI Insight. 2023; 8(7). doi:10.1172/jci.insight.162907.; Yuan T.C., Veeramani S., Lin F.F., Kondrikou D., Zelivianski S., Igawa T., Karan D., Batra S.K., Lin M.F. Androgen deprivation induces human prostate epithelial neuroendocrine differentiation of androgensensitive LNCaP cells. Endocr Relat Cancer. 2006; 13(1): 151-67. doi:10.1677/erc.1.01043.; Ковченко Г.А., Сивков А.В., Каприн А.Д. Роль определения хромогранина А в лечении больных кастрационно-резистентным раком предстательной железы. Экспериментальная и клиническая урология. 2024; 17(1): 75-85. doi:10.29188/2222-8543-2024-17-1-75-85. EDN: TCUWHH.; Sciarra A., Mariotti G., Gentile V., Voria G., Pastore A., Monti S., Di Silverio F. Neuroendocrine differentiation in human prostate tissue: is it detectable and treatable? BJU Int. 2003; 91(5): 438-45. doi:10.1046/j.1464-410x.2003.03066.x.; Li Z., Sun Y., Chen X., Squires J., Nowroozizadeh B., Liang C., Huang J. p53 Mutation Directs AURKA Overexpression via miR-25 and FBXW7 in Prostatic Small Cell Neuroendocrine Carcinoma. Mol Cancer Res. 2015; 13(3): 584-91. doi:10.1158/1541-7786.MCR-14-0277-T.; Xu X., Huang Y.H., Li Y.J., Cohen A., Li Z., Squires J., Zhang W., Chen X.F., Zhang M., Huang J.T. Potential therapeutic effect of epigenetic therapy on treatment-induced neuroendocrine prostate cancer. Asian J Androl. 2017; 19(6): 686-93. doi:10.4103/1008-682X.191518.; Antonarakis E.S. Targeting lineage plasticity in prostate cancer. Lancet Oncol. 2019; 20(10): 1338-40. doi:10.1016/S1470-2045-(19)30497-8.; Long Z., Deng L., Li C., He Q., He Y., Hu X., Cai Y., Gan Y. Loss of EHF facilitates the development of treatment-induced neuroendocrine prostate cancer. Cell Death Dis. 2021; 12(1). doi:10.1038/s41419-020-03326-8.; Wishahi M. Treatment-induced neuroendocrine prostate cancer and de novo neuroendocrine prostate cancer: Identification, prognosis and survival, genetic and epigenetic factors. World J Clin Cases. 2024; 12(13): 2143-46. doi:10.12998/wjcc.v12.i13.2143.; Abida W., Cyrta J., Heller G., Prandi D., Armenia J., Coleman I., Cieslik M., Benelli M., Robinson D., Van Allen EM., Sboner A., Fedrizzi T., Mosquera J.M., Robinson B.D., De Sarkar N., Kunju L.P., Tomlins S., Wu Y.M., Nava Rodrigues D., Loda M., Gopalan A., Reuter V.E., Pritchard C.C., Mateo J., Bianchini D., Miranda S., Carreira S., Rescigno P., Filipenko J., Vinson J., Montgomery R.B., Beltran H., Heath E.I., Scher H.I., Kantoff P.W., Taplin M.E., Schultz N., deBono J.S., Demichelis F., Nelson P.S., Rubin M.A., Chinnaiyan A.M., Sawyers C.L. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Nat. Acad Sci USA. 2019; 116(23): 11428-36. doi:10.1073/pnas.1902651116.; Kaarijärvi R., Kaljunen H., Ketola K. Molecular and Functional Links between Neurodevelopmental Processes and Treatment-Induced Neuroendocrine Plasticity in Prostate Cancer Progression. Cancers (Basel). 2021; 13(4). doi:10.3390/cancers13040692.; Beltran H., Prandi D., Mosquera J.M., Benelli M., Puca L., Cyrta J., Marotz C., Giannopoulou E., Chakravarthi B.V., Varambally S., Tomlins S.A., Nanus D.M., Tagawa S.T., Van Allen E.M., Elemento O., Sboner A., Garraway L.A., Rubin M.A., Demichelis F. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016; 22(3): 298-305. doi:10.1038/nm.4045.; Chen R., Dong X., Gleave M. Molecular model for neuroendocrine prostate cancer progression. BJU Int. 2018; 122(4): 560-70. doi:10.1111/bju.14207.; Clermont P.L., Lin D., Crea F., Wu R., Xue H., Wang Y., Thu K.L., Lam W.L., Collins C.C., Wang Y., Helgason C.D. Polycomb-mediated silencing in neuroendocrine prostate cancer. Clin Epigenet, 2015; 7(1). doi:10.1186/s13148-015-0074-4.; Viré E., Brenner C., Deplus R., Blanchon L., Fraga M., Didelot C., Morey L., van Eynde A., Bernard D., Vanderwinden J.M., Bollen M., Esteller M., Di Croce L., de Launoit Y., Fuks F. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006; 439(7078): 871-74. doi:10.1038/nature04431. Erratum in: Nature. 2007; 446(7137): 824.; BeltranH., RickmanD.S., ParkK., Chae S.S., Sboner A., MacDonald T.Y., Wang Y., Sheikh K.L., Terry S., Tagawa S.T., Dhir R., Nelson J.B., de la Taille A., Allory Y., Gerstein M.B., Perner S., Pienta K.J., Chinnaiyan A.M., Wang Y., Collins C.C., Gleave M.E., Demichelis F., Nanus D.M., Rubin M.A. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discovery. 2011; 1(6): 487-95. doi:10.1158/2159-8290.CD-11-0130.; https://www.siboncoj.ru/jour/article/view/3457

  3. 3
    Academic Journal

    Συνεισφορές: Работа выполнена в рамках гос. задания ИИФ УрО РАН (регистрационный номер темы 122020900136-4) с использованием оборудования ЦКП ИИФ УрО РАН. Авторы благодарят сотрудников лаборатории морфологии и биохимии за участие в подготовке исследования.

    Πηγή: Medical Immunology (Russia); Том 26, № 5 (2024); 1037-1044 ; Медицинская иммунология; Том 26, № 5 (2024); 1037-1044 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/3104/2011; Булавинцева Т.С., Юшков Б.Г., Данилова И.Г., Абидов М.Т. Влияние макрофагов на инсулинсин-тезирующую систему в норме и при аллоксановом диабете // Медицинская иммунология, 2023. Т. 25, № 2. С. 287-300. doi:10.15789/10.15789/1563-0625-IOM-2534.; Гетте И.Ф., Емельянов В.В. Влияние соединения из ряда замещенных 1,3,4-6н-тиадиазинов на содержание цитокинов в плазме крови крыс с экспериментальным сахарным диабетом 2 типа // Российский иммунологический журнал, 2019. Т. 13, № 3 (22). С. 1103-1107. doi:10.31857/S102872210007234-2.; Anquetil F., Sabouri S. Alpha cells, the main source of IL-1β in human pancreas. J. Autoimmun., 2017, Vol. 81, pp. 68-73.; Cassado ADA. F4/80 as a Major Macrophage Marker: The Case of the Peritoneum and Spleen. Results Probl. Cell Differ., 2017, Vol. 62, pp. 161-179.; Danilova I.G. Partial recovery from alloxan-induced diabetes by sodium phthalhydrazide in rats. Biomed. Pharmacother., 2017, Vol. 95, pp. 103-110.; Donath M., Shoelson S. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol., 2011, Vol. 11, pp. 98-107.; Efrat S. Beta-Cell Dedifferentiation in Type 2 Diabetes: Concise Review. Stem Cells, 2019, Vol. 37, no. 10, pp. 1267-1272.; Ghasemi A., Khalifi S., Jedi S. Streptozotocin-nicotinamide-induced rat model of type 2 diabetes. Acta Physiol. Hung., 2014, Vol. 101, no. 4, pp. 408-420.; Ito M. Characterization of low dose streptozotocin-induced progressive diabetes in mice. Environ. Toxicol. Pharmacol., 2001, Vol. 9, no. 3, pp. 71-78.; Khin P.P., Lee J.J. A Brief Review of the Mechanisms of β-Cell Dedifferentiation in Type 2 Diabetes. Nutrients, 2021, Vol. 13, no. 5, 1593. doi:10.3390/nu13051593.; Puri S., Folias A.E. Hebrok M. Plasticity and Dedifferentiation within the Pancreas: Development, Homeostasis, and Disease. Cell Stem Cell, 2015, Vol. 16, no. 1, pp. 18-31.; Schindelin J. Fiji: an open-source platform for biological-image analysis. Nat. Methods, 2012, Vol. 9, no. 7, pp. 676-682.; Sharma R. Experimental Models on Diabetes : A Comprehensive Review. Int. J. Adv. Pharm. Sci., 2013, Vol. 4, pp. 1-8.; Stirling D.R. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics, 2021, Vol. 22, pp. 1-11.; https://www.mimmun.ru/mimmun/article/view/3104

  4. 4
    Academic Journal

    Συνεισφορές: Работа поддержана грантом РНФ 18-14-00152.

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 13, № 3 (2024); 73-82 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 13, № 3 (2024); 73-82 ; 2587-9537 ; 2306-1278

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1152/831; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1152/1096; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1152/1097; https://www.nii-kpssz.com/jour/article/downloadSuppFile/1152/1098; Natorska, J., Kopytek M., Undas A. Review. Aortic valvular stenosis: Novel therapeutic strategies. Eur J Clin Invest. 2021;51(7):e13527. doi:10.1111/eci.13527.; Kraler, S., Blaser, M. S., Aikawa, E., Camici, G.G., Lüscher, T. F. Calcific aortic valve disease: from molecular and cellular mechanisms to medical therapy. Eur Heart J. 2022;43(7):683-697. doi:10.1093/eurheartj/ehab757; Moncla, L.-H. M., Briend, M., Bossé, Y., Mathieu, P. Calcific aortic valve disease: mechanisms, prevention and treatment. Nat Rev Cardiol. 2023; 20(8):546-559. doi:10.1038/s41569-023-00845-7; Nishimura, R. A., Otto, C. M., Bonow, R. O., Carabello, B. A., Erwin, J. P., Fleisher, L. A., Jneid, H., Mack, M. J., McLeod, C. J., O'Gara, P. T., Rigolin, V. H., Sundt, T. M., Thompson A. AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;70(2): 252-289. doi:10.1016/j.jacc.2017.03.011.; Zigelman, C. Z., Edelstein, P. M. Aortic valve stenosis. Anesthesiol Clin. 2009;27(3): 519-32. doi:10.1016/j.anclin.2009.07.012; Rabkin-Aikawa, E., Aikawa, M., Farber, M., Kratz, J. R., Garcia-Cardena, G., Kouchoukos, N. T., Mitchell, M. B., Jonas, R. A., Schoen F. J. Clinical pulmonary autograft valves: Pathologic evidence of adaptive remodeling in the aortic site. Surgery for Acquired Cardiovascular Disease.2004;128(4):552-61. doi:10.1016/j.jtcvs.2004.04.016; Rutkovskiy, A., Malashicheva, A., Sullivan, G., Bogdanova, M., Kostareva, A., Stensløkken, K.-O., Fiane, A., Vaage, J. Valve Interstitial Cells: The Key to Understanding the Pathophysiology of Heart Valve Calcification. J Am Heart Assoc.2017;6(9):e006339. doi:10.1161/JAHA.117.006339; Cheng, S.-L., Shao, J.-S., Behrmann, A., Krchma, K., Towler, D. A. Dkk1 and MSX2-Wnt7b signaling reciprocally regulate the endothelial-mesenchymal transition in aortic endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33(7): 1679–89. doi:10.1161/ATVBAHA.113.300647; Hjortnaes, J., Shapero, K., Goettsch, C., Hutcheson, J. D., Keegan, J., Kluin, J., Aikawa, E. Valvular interstitial cells suppress calcification of valvular endothelial cells. Atherosclerosis.2015;242(1):251–260. doi:10.1016/j.atherosclerosis.2015.07.008; Summerhill, V. I., Moschetta, D., Orekhov, A. N., Poggio, P., Myasoedova, V. A. Sex-Specific Features of Calcific Aortic Valve Disease. Int J Mol Sci. 2020; 21(16):5620. doi:10.3390/ijms21165620; Yao, M., Wang, X., Wang, X., Zhang, T., Chi, Y., Gao, F. The Notch pathway mediates the angiotensin II-induced synthesis of extracellular matrix components in podocytes. Int J Mol Med. 2015;36(1): 294-300. doi:10.3892/ijmm.2015.2193; Akat, K., Borggrefe, M., Kaden, J. J. Aortic valve calcification: basic science to clinical practice. Heart.2009; 95 (8): 616-23. doi:10.1136/hrt.2007.134783; Goody, P.R., Hosen, M.R., Christmann, D., Niepmann, S.T., Zietzer, A, Adam, M., Bönner, F., Zimmer, S., Nickenig, G., Jansen, F. Aortic Valve Stenosis: From Basic Mechanisms to Novel Therapeutic Targets. Arterioscler Thromb Vasc Biol.2020; 40(4):885-900. doi:10.1161/ATVBAHA.119.313067; Helske, S., Kupari, M., Lindstedt, K. A., Kovanen, P. T. Aortic valve stenosis: an active atheroinflammatory process. Curr Opin Lipidol. 2007;18 (5): 483-91. doi:10.1097/MOL.0b013e3282a66099; Mohler, E. R. Mechanisms of aortic valve calcification. The American Journal of Cardiology. 2004; 94(11): 1396–1402. doi:10.1016/j.amjcard.2004.08.013; de Oliveira Sá, M. P.B., Cavalcanti, L. R. P., Perazzo, A. M., Gomes, R. A. F., Clavel, M.-A., Pibarot, P., Biondi-Zoccai, G., Zhigalov, K., Weymann, A., Ruhparwar, A., Lima, R.C. Calcific Aortic Valve Stenosis and Atherosclerotic Calcification. Curr Atheroscler Rep.2020;7;22(2):2. doi:10.1007/s11883-020-0821-7; Bogdanova, M., Zabirnyk, A., Malashicheva, A., Semenova, D., Kvitting, J.-P. E., Kaljusto, M.-L., Del Mar Perez, M., Kostareva, A., Stensløkken, K.-O., Sullivan, G. J., Rutkovskiy, A., Vaage. J. Models and Techniques to Study Aortic Valve Calcification in Vitro, ex Vivo and in Vivo. An Overview. Front Pharmacol. 2022;13:835825. doi:10.3389/fphar.2022.835825; Jian, B., Jones, P. L., Li, Q., Mohler, E. R., Schoen, F. J., Levy, R. J. Matrix metalloproteinase-2 is associated with tenascin-C in calcific aortic stenosis. Am J Pathol.2001;159 (1): 321-7. doi:10.1016/S0002-9440(10)61698-7; Zhiduleva, E. V., Irtyuga, O. B., Shishkova, A. A., Ignat'eva, E. V., Kostina, A. S., Levchuk, K. A., Golovkin, A. S., Rylov, A. Yu., Kostareva, A. A., Moiseeva, O. M., Malashicheva, A. B., Gordeev, M. L. Cellular Mechanisms of Aortic Valve Calcification. Bull Exp Biol Med. 2018;164(3):371-375. doi:10.1007 /s10517-018-3992-2; Benton, J. A., Kern, H. B., Anseth, K. S. Substrate properties influence calcification in valvular interstitial cell culture. J Heart Valve Dis. 2008;17(6): 689-99.; Ghanbari, H., Viatge, H., Kidane, A. G., Burriesci, G., Tavakoli, M., Seifalian, A. M. Polymeric heart valves: new materials, emerging hopes. Trends Biotechnol. 2009;27(6):359-367. doi:10.1016/j.tibtech.2009.03.002; Rajput F. A., Zeltser R. Review. Aortic Valve Replacement. StatPearls Publishing. 2020. Available at: https://www.ncbi.nlm.nih.gov/books/NBK537136/ (accessed 23.06.2024); Ueshima, D., Fovino, L.N., Brener, S.J., Fabris, T., Scotti, A., Barioli, A., Giacoppo, D., Pavei, A., Fraccaro, C., Napodano, M., Tarantini, G. Transcatheter aortic valve replacement for bicuspid aortic valve stenosis with first- and new-generation bioprostheses: A systematic review and meta-analysis. Int J Cardiol. 2020;298:76-82. doi:10.1016/j.ijcard.2019.09.003; Фадеев А.А. Конструктивные формы и функциональные свойства протезов клапанов сердцаю Анналы хирургии. 2013;3: 9-18; Jiang, T., Hasan, S.M., Faluk, M., Patel, J. Evolution of Transcatheter Aortic Valve Replacement %7C Review of Literature. Curr Probl Cardiol. 2021;46(3):100600. doi:10.1016/j.cpcardiol.2020.100600; Joseph, J., Naqvi, S.Y., Giri, J., Goldberg, S. Review Aortic Stenosis: Pathophysiology, Diagnosis, and Therapy. The American Journal of Medicine. 2017;130 (3): 253-263. doi:10.1016/j.amjmed.2016.10.005; Tully A., Chowdhury Y.S. Bioprosthetic Stented Pericardial Porcine Aortic Valve Replacement. StatPearls Publishing. 2021. Available at: https://www.ncbi.nlm.nih.gov/books/NBK563200/ (accessed 23.06.2024); Bogdanova, M., Zabirnyk, A., Malashicheva, A., Zihlavnikova Enayati K., Karlsen T.A., Kaljusto M-L., Kvitting J-P. E., Dissen E., Sullivan G. J., Kostareva A., Stensløkken K-O., Rutkovskiy A., Vaage J., Interstitial cells in calcified aortic valves have reduced differentiation potential and stem cell-like properties. Scientific Reports. 2019; 9(1):12934. doi:10.1038/s41598-019-49016-0

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
    Academic Journal
  12. 12
    Academic Journal

    Συνεισφορές: The study was financially supported by the Russian Science Foundation and the Perm Territory as part of a research project № 22-25-20121., Исследование выполнено при финансовой поддержке РНФ и Пермского края в рамках научного проекта № 22-25-20121.

    Πηγή: Medical Immunology (Russia); Том 25, № 3 (2023); 465-468 ; Медицинская иммунология; Том 25, № 3 (2023); 465-468 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2798/1665; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2798/11749; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2798/11750; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2798/11751; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2798/11752; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2798/11753; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2798/12212; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2798/12213; Calamini B., Santarsiero B.D., Boutin J.A., Mesecar A.D. Kinetic, thermodynamic and X-ray structural insights into the interaction of melatonin and analogues with quinone reductase 2. Biochem. J., 2008, Vol. 413, no. 1, pp. 81-91.; Carrillo-Vico A., Lardone P.J., Naji L., Fernandez-Santos J.M., Martin-Lacave I., Guerrero J.M., Calvo J.R. Beneficial pleiotropic actions of melatonin in an experimental model of septic shock in mice: Regulation of pro-/ anti-inflammatory cytokine network, protection against oxidative damage and anti-apoptotic effects. J. Pineal. Res., 2005, Vol. 39, pp. 400-408.; Espino J., Rodriguez A.B., Pariente J.A. The inhibition of TNF-α-induced leucocyte apoptosis by melatonin involves membrane receptor MT1/MT2 interaction. J. Pineal. Res., 2013, Vol. 54, no. 4, pp. 442- 452.; Farez M.F., Mascanfroni I.D., Mendez-Huergo S.P., Yeste A., Murugaiyan G., Garo L.P., Balbuena Aguirre M.E., Patel B., Ysrraelit M.C., Zhu C., Kuchroo V.K., Rabinovich G.A., Quintana F.J., Correale J. Melatonin Contributes to the Seasonality of Multiple Sclerosis Relapses. Cell, 2015, Vol. 162, pp. 1338-1352.; Ferlazzo N., Andolina G., Cannata A., Costanzo M.G., Rizzo V., Curro M., Ientile R., Caccamo D. Is Melatonin the Cornucopia of the 21st Century? Antioxidants, 2020, Vol. 9, no. 11, 1088. doi:10.3390/antiox9111088.; Garcia-Maurino S., Gonzalez-Haba M.G., Calvo J.R., Rafii-El-Idrissi M., Sanchez-Margalet V., Goberna R., Guerrero J.M. Melatonin enhances IL-2, IL-6, and IFNγ production by human circulating CD4+ cells: a possible nuclear receptor-mediated mechanism involving T helper type 1 lymphocytes and monocytes. J. Immunol., 1997, Vol. 159, pp. 574-581.; Glebezdina N.S., Olina A.A., Nekrasova I.V., Kuklina E.M. Molecular Mechanisms of control of differentiation of regulatory T-lymphocytes by exogenous melatonin. Dokl. Biochem. Biophys., 2019, Vol. 484, no. 1, pp. 13-16.; Gupta S., Haldar C. Physiological crosstalk between melatonin and glucocorticoid receptor modulates t-cell mediated immune responses in a wild tropical rodent, funambulus pennant. J. Steroid. Biochem. Mol. Biol., 2013, Vol. 134, pp. 23-36.; Kuklina E.M., Glebezdina N.S., Nekrasova I.V. Role of melatonin in the regulation of differentiation of T cells producing interleukin-17 (Th17). Bull. Exp. Biol. Med., 2016, Vol. 160, no. 5, pp. 656-658.; Lardone P.J., Rubio A., Cerrillo I., Gomez-Corvera A., Carrillo-Vico A., Sanchez-Hidalgo M., Guerrero J.M., Fernandez-Riejos P., Sanchez-Margalet V., Molinero P. Blocking of melatonin synthesis and MT(1) receptor impairs the activation of Jurkat T cells. Cell. Mol. Life. Sci., 2010, Vol. 67, pp. 3163-3172.; Lardone P.J., Guerrero J.M., Fernandez-Santos J.M., Rubio A., Martin-Lacave I., Carrillo-Vico A. Melatonin synthesized by T lymphocytes as a ligand of the retinoic acid-related orphan receptor. J. Pineal Res., 2011, Vol. 51, pp. 454-462.; Naranjo M.C., Guerrero J.M., Rubio A., Lardone P.J., Carrillo-Vico A., Carrascosa-Salmoral M.P., Jimenez-Jorge S., Arellano M.V., Leal-Noval S.R., Leal M., Lissen E., Molinero P. Melatonin biosynthesis in the thymus of humans and rats. Cell. Mol. Life Sci., 2007, Vol. 64, no. 6, pp. 781-790.; Ragonda F., Diederich M., Ghibelli L. Melatonin: a pleiotropic molecule regulating inflammation. Biochem. Pharmacol., 2010, Vol. 80, pp. 1844-1852.; Raghavendra V., Singh V., Shaji A.V., Vohra H., Kulkarni S.K., Agrewala J.N. Melatonin provides signal 3 to unprimed CD4(+) T cells but failed to stimulate LPS primed B cells. Clin. Exp. Immunol., 2001, Vol. 124, pp. 414-422.; Reppert S.M., Weaver D.R., Ebisawa T. Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron, 1994, Vol. 13, no. 5, pp. 1177-1185; https://www.mimmun.ru/mimmun/article/view/2798

  13. 13
    Academic Journal

    Πηγή: Medical Immunology (Russia); Том 25, № 5 (2023); 1049-1058 ; Медицинская иммунология; Том 25, № 5 (2023); 1049-1058 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2694/1758; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2694/10997; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2694/10998; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2694/10999; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2694/11000; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2694/11001; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2694/11002; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2694/11003; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2694/11004; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2694/11005; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2694/11021; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2694/11042; Arger N.K., Ho M.E., Allen I.E., Benn B.S., Woodruff P.G., Koth L.L. CXCL9 and CXCL10 are differentially associated with systemic organ involvement and pulmonary disease severity in sarcoidosis. Respir. Med., 2020, Vol. 161, 105822. doi:10.1016/j.rmed.2019.105822.; Bennett D., Bargagli E., Refini R.M., Rottoli P. New concepts in the pathogenesis of sarcoidosis. Expert Rev. Respir. Med., 2019, Vol. 13, no. 10, pp. 981-991.; Broos C.E., Koth L.L., van Nimwegen M., In ‘tVeen J.C.C.M., Paulissen S.M.J., van Hamburg J.P., Annema J.T., Heller-Baan R., Kleinjan A., Hoogsteden H.C., Wijsenbeek M.S., Hendriks R.W., van den Blink B., Kool M. Increased T-helper 17.1 cells in sarcoidosis mediastinal lymph nodes. Eur. Respir. J., 2018, Vol. 51, no. 3, 1701124. doi:10.1183/13993003.01124-2017.; Facco M., Cabrelle A., Teramo A., Olivieri V., Gnoato M., Teolato S., Ave E., Gattazzo C., Fadini G.P., Calabrese F., Semenzato G., Agostini C. Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax, 2011, Vol. 66, no. 2, pp. 144-150.; Georas S.N., Chapman T.J., Crouser E.D. Sarcoidosis and T-helper cells. Th1, Th17, or Th17.1? Am. J. Respir. Crit. Care Med., 2016, Vol. 193, no 11, pp. 1198-1200.; Hunninghake G.W., Costabel U., Ando M., Baughman R., Cordier J.F., du Bois R., Eklund A., Kitaichi M., Lynch J., Rizzato G., Rose C., Selroos O., Semenzato G., Sharma O.P. ATS/ERS/WASOG statement on sarcoidosis. American thoracic society/European respiratory society/world association of sarcoidosis and other granulomatous disorders. Sarcoidosis Vasc. Diffuse. Lung. Dis., 1999, Vol. 16, no. 2, pp. 149-173.; Kudryavtsev I.V., Borisov A.G., Krobinets I.I., Savchenko A.A., Serebriakova M.K., Totolian A.A. Chemokine receptors at distinct differentiation stages of T-helpers from peripheral blood. Medical Immunology (Russia), 2016, Vol. 18, no. 3, pp. 239-250. (In Russ.) doi:10.15789/1563-0625-2016-3-239-250.; Kudryavtsev I.V., Lazareva N.M., Baranova O.P., Serebriakova M.K., Ses' T.P., Ilkovich M.M., Totolian Areg A. Peripheral blood T helper cell subsets in Lofgren's and non-Lofgren's syndrome patients. Medical Immunology (Russia), 2022, Vol. 24, no. 3, pp. 573-586. (In Russ.) doi:10.15789/1563-0625-PBT-2468.; Lazareva N.M., Baranova O.P., Kudryavtsev I.V., Arsentieva N.A., Liubimova N.E., Ses' T.P., Ilkovich M.M., Totolian Areg A. Features of cytokine profile in patients with sarcoidosis. Medical Immunology (Russia), 2020, Vol. 22, no. 5, pp. 993-1002. (In Russ.). doi:10.15789/1563-0625-FOC-2064.; Lazareva N.M., Baranova O.P., Kudryavtsev I.V., Arsentieva N.A., Lyubimova N.E., Ses' T.P., Ilkovich M.M., Totolian Areg A. CXCR3 chemokine receptor ligands in sarcoidosis. Medical Immunology (Russia), 2021, Vol. 23, no. 1, pp. 73-86. (In Russ.). doi:10.15789/1563-0625-CCR-2181.; Loke W.S., Herbert C., Thomas P.S. Sarcoidosis: immunopathogenesis and immunological markers. Int. J. Chronic Dis., 2013, Vol. 2013, 928601. doi:10.1155/2013/928601.; McKee A.S., Atif S.M., Falta M.T., Fontenot A.P. Innate and adaptive immunity in noninfectious granulomatous lung disease. J. Immunol., 2022, Vol. 208, no. 8, 1835-1843.; Miedema J.R., Kaiser Y., Broos C.E., Wijsenbeek M.S., Grunewald J., Kool M. Th17-lineage cells in pulmonary sarcoidosis and Lofgren's syndrome: Friend or foe? J. Autoimmun., 2018, Vol. 87, pp. 82-96.; Patterson K.C., Chen E.S. The pathogenesis of pulmonary sarcoidosis and implications for treatment. Chest, 2018, Vol. 153, no. 6, pp. 1432-1442.; Paulissen S.M., van Hamburg J.P., Dankers W., Lubberts E. The role and modulation of CCR6+ Th17 cell populations in rheumatoid arthritis. Cytokine, 2015, Vol. 74, no. 1, pp. 43-53.; Sakthivel P., Bruder D. Mechanism of granuloma formation in sarcoidosis. Curr. Opin. Hematol., 2017, Vol. 24, no. 1, pp. 59-65.; Zhang H., Costabel U., Dai H. The Role of diverse immune cells in sarcoidosis. Front. Immunol., 2021, Vol. 12, 788502. doi:10.3389/fimmu.2021.788502.; Zhou E-R., Arce S. Key players and biomarkers of the adaptive immune system in the pathogenesis of sarcoidosis. Int. J. Mol. Sci., 2020, Vol. 21, no. 19, 7398. doi:10.3390/ijms21197398.; https://www.mimmun.ru/mimmun/article/view/2694

  14. 14
    Academic Journal

    Συνεισφορές: The study was carried out at the expense of State Assignment No. 122011800108-0., Министерство высшего образования и науки. Государственное задание № 122011800108-0

    Πηγή: Medical Immunology (Russia); Том 25, № 3 (2023); 495-500 ; Медицинская иммунология; Том 25, № 3 (2023); 495-500 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2730/1738; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2730/11233; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2730/11234; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2730/11235; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2730/11236; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2730/11237; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2730/11238; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2730/11239; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2730/11240; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2730/11241; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2730/11242; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2730/11304; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2730/11336; Bennett L.F., Liao C., Paulson R.F. Stress erythropoiesis model systems. Methods Mol Biol., 2018, Vol. 1698, pp. 91-102.; Bennett L.F., Liao C., Quickel M.D., Yeoh B.S., Vijay-Kumar M., Hankey-Giblin P., Prabhu K.S., Paulson R.F. Inflammation induces stress erythropoiesis through heme-dependent activation of SPI-C. Sci. Signal, 2019, Vol. 12, no. 598, eaap7336.; Chen J., Qiao Y.D., Li X., Xu J.L., Ye Q.J., Jiang N., Zhang H., Wu X.Y. Intratumoral CD45+CD71+ erythroid cells induce immune tolerance and predict tumor recurrence in hepatocellular carcinoma. Cancer Lett., Vol. 499, pp. 85-98.; Craig W., Poppema S., Little M.T., Dragowska W., Lansdorp P.M. CD45 isoform expression on human haemopoietic cells at different stages of development. Br. J. Haematol., 1994 , Vol. 88 , no. 1 , pp. 24-30.; Han Y., Liu Q., Hou J., Gu Y., Zhang Y., Chen Z., Fan J., Zhou W., Qiu S., Zhang Y., Dong T., Li N., Jiang Z., Zhu H., Zhang Q., Ma Y., Zhang L., Wang Q., Yu Y., Li N., Cao X. Tumor-induced generation of splenic erythroblastlike ter-cells promotes tumor progression. Cell, 2018 , Vol. 173, no. 3, pp. 634-648.e12.; Hughes A., Dhoot G.K. Dysregulated cancer cell transdifferentiation into erythrocytes is an additional metabolic stress in hepatocellular carcinoma. Tumour Biol., 2018, Vol. 40, no. 11, 1010428318811467. doi:10.1177/1010428318811467.; Mello F.V., Land M.G.P., Costa E.S., Teodósio C., Sanchez M.L., Bárcena P., Peres R.T., Pedreira C.E., Alves L.R., Orfao A. Maturation-associated gene expression profiles during normal human bone marrow erythropoiesis. Cell Death Discov., 2019, Vol. 5, 69. doi:10.1038/s41420-019-0151-0.; Mori Y., Chen J.Y., Pluvinage J.V., Seita J., Weissman I.L. Prospective isolation of human erythroid lineagecommitted progenitors. Proc. Natl Acad. Sci. USA, 2015, Vol. 112, no. 31, pp. 9638-9643.; Palazon A., Goldrath A.W., Nizet V., Johnson R.S. HIF transcription factors, inflammation, and immunity. Immunity, 2014, Vol. 41, no. 4, pp. 518-528.; Popescu D.M., Botting R.A., Stephenson E., Green K., Webb S., Jardine L., Calderbank E.F., Polanski K., Goh I., Efremova M., Acres M., Maunder D., Vegh P., Gitton Y., Park J.E., Vento-Tormo R., Miao Z., Dixon D., Rowell R., McDonald D., Fletcher J., Poyner E., Reynolds G., Mather M., Moldovan C., Mamanova L., Greig F., Young M.D., Meyer K.B., Lisgo S., Bacardit J., Fuller A., Millar B., Innes B., Lindsay S., Stubbington M.J.T., Kowalczyk M.S., Li B., Ashenberg O., Tabaka M., Dionne D., Tickle T.L., Slyper M., Rozenblatt-Rosen O., Filby A., Carey P., Villani A.C., Roy A., Regev A., Chédotal A., Roberts I., Göttgens B., Behjati S., Laurenti E., Teichmann S.A., Haniffa M. Decoding human fetal liver haematopoiesis. Nature, 2019, Vol. 574, no. 7778, pp. 365-371.; Sennikov S.V., Inzhelevskaya T.V., Eremina L.V., Kozlov V.A. Regulation of functional activity of bone marrow hemopoietic stem cells by erythroid cells in mice. Bull. Exp. Biol. Med., 2000, Vol. 130, no. 12, pp. 1159-1161.; Sennikov S.V., Injelevskaya T.V., Krysov S.V., Silkov A.N., Kovinev I.B., Dyachkova N.J Zenkov A.N., Loseva M.I., Kozlov V.A. Production of hemo- and immunoregulatory cytokines by erythroblast antigen+ and glycophorin A+ cells from human bone marrow. BMC Cell Biol., 2004, Vol. 5, no. 1, 39. doi:10.1186/1471-2121-5-39.; Sennikov S.V., Krysov S.V., Injelevskaya T.V., Silkov A.N., Kozlov V.A. Production of cytokines by immature erythroid cells derived from human embryonic liver. Eur. Cytokine Netw., 2001, Vol. 12, no. 2, pp. 274-279.; Tusi B.K., Wolock S.L., Weinreb C., Hwang Y., Hidalgo D., Zilionis R., Waisman A., Huh J.R., Klein A.M., Socolovsky M. Population snapshots predict early haematopoietic and erythroid hierarchies. Nature, 2018, Vol. 555, no. 7694, pp. 54-60.; https://www.mimmun.ru/mimmun/article/view/2730

  15. 15
    Academic Journal

    Συνεισφορές: Работа выполнена при поддержке комплексной программы фундаментальных научных исследований СО РАН в рамках фундаментальной темы НИИ КПССЗ № 0419-2021-001 «Разработка новых фармакологических подходов к экспериментальной терапии атеросклероза и комплексных цифровых решений на основе искусственного интеллекта для автоматизированной диагностики патологий системы кровообращения и определения риска летального исхода» при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках национального проекта «Наука и университеты».

    Πηγή: Complex Issues of Cardiovascular Diseases; Том 11, № 3 (2022); 97-114 ; Комплексные проблемы сердечно-сосудистых заболеваний; Том 11, № 3 (2022); 97-114 ; 2587-9537 ; 2306-1278

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.nii-kpssz.com/jour/article/view/1165/699; Li Y., Lui K.O., Zhou B. Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases. Nat Rev Cardiol. 2018;15(8):445-456. doi:10.1038/s41569-018-0023-y.; Kovacic J.C., Dimmeler S., Harvey R.P., Finkel T.,Aikawa E., Krenning G., Baker A.H. Endothelial to Mesenchymal Transition in Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol. 2019;73(2):190-209. doi:10.1016/j.jacc.2018.09.089.; Chen P.Y., Schwartz M.A., Simons M. Endothelial-to-Mesenchymal Transition, Vascular Inflammation, and Atherosclerosis. Front Cardiovasc Med. 2020;7:53. doi:10.3389/fcvm.2020.00053.; Alvandi Z., Bischoff J. Endothelial-Mesenchymal Transition in Cardiovascular Disease. Arterioscler Thromb Vasc Biol. 2021;41(9):2357-2369. doi:10.1161/ATVBAHA.121.313788.; Peng Q., Shan D., Cui K., Li K., Zhu B., Wu H., Wang B., Wong S., Norton V., Dong Y., Lu Y.W., Zhou C., Chen H. The Role of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Cells. 2022;11(11):1834. doi:10.3390/cells11111834.; Kutikhin A.G., Shishkova D.K., Velikanova E.A., Sinitsky M.Y., Sinitskaya A.V., Markova V.E. Endothelial Dysfunction in the Context of Blood-Brain Barrier Modeling. J Evol Biochem Physiol. 2022;58(3):781-806. doi:10.1134/S0022093022030139.; Kutikhin A.G., Tupikin A.E., Matveeva V.G., Shishkova D.K., Antonova L.V., Kabilov M.R., Velikanova E.A. Human Peripheral Blood-Derived Endothelial Colony-Forming Cells Are Highly Similar to Mature Vascular Endothelial Cells yet Demonstrate a Transitional Transcriptomic Signature. Cells. 2020;9(4):876. doi:10.3390/cells9040876.; Ханова М.Ю., Великанова Е.А., Матвеева В.Г., Кривкина Е.О., Глушкова Т.В., Севостьянова В.В., Кутихин А.Г., Антонова Л.В. Формирование монослоя эндотелиальных клеток на поверхности сосудистого протеза малого диаметра в условиях потока. Вестник трансплантологии и искусственных органов. 2021. Т. 23. № 3. С. 101-114. doi:10.15825/1995-1191-2021-3-101-114.; Mukhamadiyarov R.A., Bogdanov L.A., Glushkova T.V., Shishkova D.K., Kostyunin A.E., Koshelev V.A., Shabaev A.R., Frolov A.V., Stasev A.N., Lyapin A.A., Kutikhin A.G. EMbedding and Backscattered Scanning Electron Microscopy: A Detailed Protocol for the Whole-Specimen, High-Resolution Analysis of Cardiovascular Tissues. Front Cardiovasc Med. 2021;8:739549. doi:10.3389/fcvm.2021.739549.; Ma J., Sanchez-Duffhues G., Goumans M.J., Ten Dijke P. TGF-β-Induced Endothelial to Mesenchymal Transition in Disease and Tissue Engineering. Front Cell Dev Biol. 2020;8:260. doi:10.3389/fcell.2020.00260.; Ma J., van der Zon G., Gonçalves M.A.F.V., van Dinther M., Thorikay M., Sanchez-Duffhues G., Ten Dijke P. TGF-β-Induced Endothelial to Mesenchymal Transition Is Determined by a Balance Between SNAIL and ID Factors. Front Cell Dev Biol. 2021;9:616610. doi:10.3389/fcell.2021.616610.; Ma J., van der Zon G., Sanchez-Duffhues G., Ten Dijke P. TGF-β-mediated Endothelial to Mesenchymal Transition (EndMT) and the Functional Assessment of EndMT Effectors using CRISPR/Cas9 Gene Editing. J Vis Exp. 2021;(168). doi:10.3791/62198.; Krishnamoorthi M.K., Thandavarayan R.A., Youker K.A., Bhimaraj A. An In Vitro Platform to Study Reversible Endothelial-to-Mesenchymal Transition. Front Pharmacol. 2022;13:912660. doi:10.3389/fphar.2022.912660.; Tang R., Li Q., Lv L., Dai H., Zheng M., Ma K., Liu B. Angiotensin II mediates the high-glucose-induced endothelial-to-mesenchymal transition in human aortic endothelial cells. Cardiovasc Diabetol. 2010;9:31. doi:10.1186/1475-2840-9-31; Noseda M., McLean G., Niessen K., Chang L., Pollet I., Montpetit R., Shahidi R., Dorovini-Zis K., Li L., Beckstead B., Durand R.E., Hoodless P.A., Karsan A. Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation. Circ Res. 2004;94(7):910-7. doi:10.1161/01.RES.0000124300.76171.C9.; Chang A.C., Fu Y., Garside V.C., Niessen K., Chang L., Fuller M., Setiadi A., Smrz J., Kyle A., Minchinton A., Marra M., Hoodless P.A., Karsan A. Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Dev Cell. 2011;21(2):288-300. doi:10.1016/j.devcel.2011.06.022.; Kostina A.S., Uspensky V.Е., Irtyuga O.B., Ignatieva E.V., Freylikhman O., Gavriliuk N.D., Moiseeva O.M., Zhuk S., Tomilin A., Kostareva А.А., Malashicheva A.B. Notch-dependent EMT is attenuated in patients with aortic aneurysm and bicuspid aortic valve. Biochim Biophys Acta. 2016;1862(4):733-740. doi:10.1016/j.bbadis.2016.02.006.; Xu X., Tan X., Tampe B., Sanchez E., Zeisberg M., Zeisberg E.M. Snail Is a Direct Target of Hypoxia-inducible Factor 1α (HIF1α) in Hypoxia-induced Endothelial to Mesenchymal Transition of Human Coronary Endothelial Cells. J Biol Chem. 2015;290(27):16653-64. doi:10.1074/jbc.M115.636944.; Tang H., Babicheva A., McDermott K.M., Gu Y., Ayon R.J., Song S., Wang Z., GuptaA., Zhou T., Sun X., Dash S., Wang Z., Balistrieri A., Zheng Q., Cordery A.G., Desai A.A., Rischard F., Khalpey Z., Wang J., Black S.M., Garcia J.G.N., Makino A., Yuan J.X. Endothelial HIF-2α contributes to severe pulmonary hypertension due to endothelial-to-mesenchymal transition. Am J Physiol Lung Cell Mol Physiol. 2018;314(2):L256-L275. doi:10.1152/ajplung.00096.2017.; Dejana E., Hirschi K.K., Simons M. The molecular basis of endothelial cell plasticity. Nat Commun. 2017;8:14361. doi:10.1038/ncomms14361.; Piera-Velazquez S., Jimenez S.A. Endothelial to Mesenchymal Transition: Role in Physiology and in the PathogenesisofHumanDiseases.PhysiolRev.2019;99(2):1281-1324. doi:10.1152/physrev.00021.2018.; Gao Y., Galis Z.S. Exploring the Role of Endothelial Cell Resilience in Cardiovascular Health and Disease. Arterioscler Thromb Vasc Biol. 2021;41(1):179-185. doi:10.1161/ATVBAHA.120.314346.; Greenspan L.J., Weinstein B.M. To be or not to be: endothelial cell plasticity in development, repair, and disease. Angiogenesis. 2021;24(2):251-269. doi:10.1007/s10456-020-09761-7.; Великанова Е.А., Кутихин А.Г., Матвеева В.Г., Тупикин А.Е., Кабилов М.Р., Антонова Л.В. Сравнение профиля генной экспрессии колониеформирующих эндотелиальных клеток из периферической крови человека и эндотелиальных клеток коронарной артерии. Комплексные проблемы сердечно-сосудистых заболеваний. 2020; 9(2): 74-81. doi:10.17802/2306-1278-2020-9-2-74-81.; Niklason L., Dai G. Arterial Venous Differentiation for Vascular Bioengineering. Annu Rev Biomed Eng. 2018;20:431-447. doi:10.1146/annurev-bioeng-062117-121231.; Wolf K., Hu H., Isaji T., Dardik A. Molecular identity of arteries, veins, and lymphatics. J Vasc Surg. 2019;69(1):253-262. doi:10.1016/j.jvs.2018.06.195.; Marziano C., Genet G., Hirschi K.K. Vascular endothelial cell specification in health and disease. Angiogenesis. 2021;24(2):213-236. doi:10.1007/s10456-021-09785-7.; Corbett A.H. Post-transcriptional regulation of gene expression and human disease. Curr Opin Cell Biol. 2018;52:96-104. doi:10.1016/j.ceb.2018.02.011.; Evrard S.M., Lecce L., Michelis K.C., Nomura-Kitabayashi A., Pandey G., Purushothaman K.R., d'Escamard V., Li J.R., Hadri L., Fujitani K., Moreno P.R., Benard L., Rimmele P., Cohain A., Mecham B., Randolph G.J., Nabel E.G., Hajjar R., Fuster V., Boehm M., Kovacic J.C. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853. doi:10.1038/ncomms11853.; Yap C., MieremetA., de Vries C.J.M., Micha D., de Waard V. Six Shades of Vascular Smooth Muscle Cells Illuminated by KLF4 (Krüppel-Like Factor 4). Arterioscler Thromb Vasc Biol. 2021;41(11):2693-2707. doi:10.1161/ATVBAHA.121.316600.

  16. 16
  17. 17
  18. 18
  19. 19
    Academic Journal

    Συνεισφορές: Работа выполнена при поддержке гранта РНФ № 22-24-20013

    Πηγή: Medical Immunology (Russia); Том 24, № 3 (2022); 573-586 ; Медицинская иммунология; Том 24, № 3 (2022); 573-586 ; 2313-741X ; 1563-0625

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2468/1562; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2468/9068; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2468/9069; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2468/9070; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2468/9071; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2468/9072; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2468/9073; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2468/9074; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2468/9075; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2468/9076; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2468/9077; Визель А.А., Визель И.Ю., Амиров Н.Б. Эпидемиология саркоидоза в Российской Федерации // Вестник современной клинической медицины, 2017. Т. 10, № 5. С. 66-73.; Зурочка А.В., Хайдуков С.В., Кудрявцев И.В., Черешнев В.А. Проточная цитометрия в биомедицинских исследованиях. Екатеринбург: Уральское отделение РАН, 2018. 720 с.; Кудрявцев И.В., Борисов А.Г., Кробинец И.И., Савченко А.А., Серебрякова М.К., Тотолян А.А. Хемокиновые рецепторы на Т-хелперах различного уровня дифференцировки: основные субпопуляции // Медицинская иммунология, 2016. Т. 18, № 3. С. 239-250. doi:10.15789/1563-0625-2016-3-239-250.; Лазарева Н.М., Кудрявцев И.В., Баранова О.П., Серебрякова М.К., Бажанов А.А., Сесь Т.П., Илькович М.М., Тотолян А.А. Анализ субпопуляций В-лимфоцитов в периферической крови больных саркоидозом при разной степени активности заболевания // Медицинская иммунология, 2019. Т. 21, № 6. С. 1081 1098. doi:10.15789/15630625-2019-6-1081-1098.; Agostini C., Cassatella M., Zambello R., Trentin L., Gasperini S., Perin A., Piazza F., Siviero M., Facco M., Dziejman M., Chilosi M., Qin S., Luster A.D., Semenzato G. Involvement of the IP-10 chemokine in sarcoid granulomatous reactions. J. Immunol., 1998, Vol. 161, no. 11, pp. 6413-6420.; Belperio J.A., Dy M., Murray L., Burdick M.D., Xue Y.Y., Strieter R.M., Keane M.P. The role of the Th2 CC chemokine ligand CCL17 in pulmonary fibrosis. J. Immunol., 2004, Vol. 173, no. 7, pp. 4692-4698.; Bennett D., Bargagli E., Refini R.M., Rottoli P. New concepts in the pathogenesis of sarcoidosis. Expert Rev. Respir. Med., 2019, Vol. 13, no. 10, pp. 981-991.; Broos C.E., Hendriks R.W., Kool M. T-cell immunology in sarcoidosis: Disruption of a delicate balance between helper and regulatory T-cells. Curr. Opin. Pulm. Med., 2016, Vol. 22, no. 5, pp. 476-483.; Broos C.E., Koth L.L., van Nimwegen M., In ‘tVeen J.C.C.M., Paulissen S.M.J., van Hamburg J.P., Annema J.T., Heller-Baan R., Kleinjan A., Hoogsteden H.C., Wijsenbeek M.S., Hendriks R.W., van den Blink B., Kool M. Increased T-helper 17.1 cells in sarcoidosis mediastinal lymph nodes. Eur Respir J., 2018, Vol. 51, no. 3, 1701124. doi:10.1183/13993003.01124-2017.; Broquet A., Jacqueline C., Davieau M., Besbes A., Roquilly A., Martin J., Caillon J., Dumoutier L., Renauld J.C., Heslan M., Josien R., Asehnoune K. Interleukin-22 level is negatively correlated with neutrophil recruitment in the lungs in a Pseudomonas aeruginosa pneumonia model. Sci. Rep., 2017, Vol. 7, no. 1, 11010. doi:10.1038/s41598-017-11518-0.; Ding J., Dai J., Cai H., Gao Q., Wen Y. Extensively disturbance of regulatory T cells – Th17 cells balance in stage II pulmonary sarcoidosis. Int. J. Med. Sci., 2017, Vol. 14, no. 11, pp. 1136-1142.; Duhen T., Geiger R., Jarrossay D., Lanzavecchia A., Sallusto F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol., 2009, Vol. 10, no. 8, pp. 857-863.; Facco M., Baesso I., Miorin M., Bortoli M., Cabrelle A., Boscaro E., Gurrieri C., Trentin L., Zambello R., Calabrese F., Cassatella M.A., Semenzato G., Agostini C. Expression and role of CCR6/CCL20 chemokine axis in pulmonary sarcoidosis. J. Leukoc. Biol., 2007, Vol. 82, no. 4, pp. 946-955.; Facco M., Cabrelle A., Teramo A., Olivieri V., Gnoato M., Teolato S., Ave E., Gattazzo C., Fadini G.P., Calabrese F., Semenzato G., Agostini C. Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax, 2011, Vol. 66, no. 2, pp. 144-150.; Georas S.N., Chapman T.J., Crouser E.D. Sarcoidosis and T-helper cells. Th1, Th17, or Th17.1? Am. J. Respir. Crit. Care Med., 2016, Vol. 193, no 11, pp. 1198-1200.; Golovkin A., Kalinina O., Bezrukikh V., Aquino A., Zaikova E., Karonova T., Melnik O., Vasilieva E., Kudryavtsev I. Imbalanced immune response of T-Cell and B-Cell subsets in patients with moderate and severe COVID-19. Viruses, 2021, Vol. 13, no. 10, 1966. doi:10.3390/v13101966.; Greaves S.A., Atif S.M., Fontenot A.P. Adaptive immunity in pulmonary sarcoidosis and chronic beryllium disease. Front. Immunol., 2020, Vol. 11, 474. doi:10.3389/fimmu.2020.00474.; Hauber H.P., Gholami D., Meyer A., Pforte A. Increased interleukin-13 expression in patients with sarcoidosis. Thorax, 2003, Vol. 58, no. 6, pp. 519-524.; Huang H., Lu Z., Jiang C., Liu J., Wang Y., Xu Z. Imbalance between Th17 and regulatory T-Cells in sarcoidosis. Int. J. Mol. Sci., 2013, Vol. 14, no. 11, pp. 21463-21473.; Kudryavtsev I., Serebriakova M., Starshinova A., Zinchenko Y., Basantsova N., Malkova A., Soprun L., Churilov L.P., Toubi E., Yablonskiy P., Shoenfeld Y. Imbalance in B cell and T follicular helper cell subsets in pulmonary sarcoidosis. Sci Rep., 2020, Vol. 10, no. 1, 1059. doi:10.1038/s41598-020-57741-0.; Kudryavtsev I.V., Lazareva N.M., Baranova O.P., Golovkin A.S., Isakov D.V., Serebriakova M.K., Ses’ T.P., Ilkovich M.M., Totolian A.A. CD39+ expression by regulatory T cells in pulmonary sarcoidosis and Lofgren’s syndrome. Medical Immunology (Russia), 2019, Vol. 21, no. 3. pp. 467-478. doi:10.15789/1563-0625-2019-3-467478.; Kumar P., Rajasekaran K., Palmer J.M., Thakar M.S., Malarkannan S. IL-22: An evolutionary missing-link authenticating the role of the immune system in tissue regeneration. J. Cancer., 2013, Vol. 4, no. 1, pp. 57-65.; Lazareva N.M., Baranova O.P., Kudryavtsev I.V., Isakov D.V., Arsentieva N.A., Liubimova N.E., Ses’ T.P., Ilkovich M.M., Totolian A.A. chemokines CCL17 and CCL22 in sarcoidosis. Medical Immunology (Russia), 2021, Vol. 23, no. 4, pp. 791-798. doi:10.15789/1563-0625-CCA-2340.; Locke L.W., Crouser E.D., White P., Julian M.W., Caceres E.G., Papp A.C., Le V.T., Sadee W., Schlesinger L.S. IL-13-regulated macrophage polarization during granuloma formation in an in vitro human sarcoidosis model. Am. J. Respir. Cell Mol. Biol., 2019, Vol. 60, no. 1, pp. 84-95.; Loke W.S., Herbert C., Thomas P.S. Sarcoidosis: immunopathogenesis and immunological markers. Int. J. Chronic Dis., 2013, Vol. 2013, 928601. doi:10.1155/2013/928601.; Ly N.T.M., Ueda-Hayakawa I., Nguyen C.T.H., Okamoto H. Exploring the imbalance of circulating follicular helper CD4+ T cells in sarcoidosis patients. J. Dermatol. Sci., 2020, Vol. 97, no. 3, pp. 216-224.; Malkova A., Starshinova A., Zinchenko Y., Gavrilova N., Kudryavtsev I., Lapin S., Mazing A., Surkova E., Pavlova M., Belaeva E., Stepanenko Т., Yablonskiy P., Shoenfeld Y. New laboratory criteria of the autoimmune inflammation in pulmonary sarcoidosis and tuberculosis. Clin. Immunol., 2021, Vol. 227, 108724. doi:10.1016/j.clim.2021.108724.; Miedema J.R., Kaiser Y., Broos C.E., Wijsenbeek M.S., Grunewald J., Kool M. Th17-lineage cells in pulmonary sarcoidosis and Löfgren’s syndrome: Friend or foe? J. Autoimmun., 2018, Vol. 87, pp. 82-96.; Moller D.R. Cells and cytokines involved in the pathogenesis of sarcoidosis. Sarcoidosis Vasc. Diffuse Lung Dis., 1999, Vol. 16, no. 1, pp. 24-31.; Mortaz E., Rezayat F., Amani D., Kiani A., Garssen J., Adcock I.M., Velayati A. The Roles of T Helper 1, T Helper 17 and кegulatory T Cells in the pathogenesis of sarcoidosis. Iran J. Allergy Asthma Immunol., 2016, Vol. 15, no. 4, pp. 334-339.; Nguyen C.T.H., Kambe N., Ueda-Hayakawa I., Kishimoto I., Ly N.T.M., Mizuno K., Okamoto H. TARC expression in the circulation and cutaneous granulomas correlates with disease severity and indicates Th2-mediated progression in patients with sarcoidosis. Allergol. Int., 2018, Vol. 67, no. 4, pp. 487-495.; Nguyen Q.P., Deng T.Z., Witherden D.A., Goldrath A.W. Origins of CD4+ circulating and tissue-resident memory T-cells. Immunology, 2019, Vol. 157, no. 1, pp. 3-12.; Palchevskiy V., Hashemi N., Weigt S.S., Xue Y.Y., Derhovanessian A., Keane M.P., Strieter R.M., Fishbein M.C., Deng J.C., Lynch J.P., Elashoff R., Belperio J.A. Immune response CC chemokines CCL2 and CCL5 are associated with pulmonary sarcoidosis. Fibrogenesis Tissue Repair, 2011, Vol. 4, 10. doi:10.1186/1755-1536-4-10.; Paulissen S.M., van Hamburg J.P., Dankers W., Lubberts E. The role and modulation of CCR6+ Th17 cell populations in rheumatoid arthritis. Cytokine, 2015, Vol. 74, no. 1, pp. 43-53.; Ramstein J., Broos C.E., Simpson L.J., Ansel K.M., Sun S.A., Ho M.E., Woodruff P.G., Bhakta N.R., Christian L., Nguyen C.P., Antalek B.J., Benn B.S., Hendriks R.W., van den Blink B., Kool M., Koth L.L. IFN-γproducing T-Helper 17.1 Cells are increased in sarcoidosis and are more prevalent than T-Helper type 1 Cells. Am. J. Respir. Crit. Care Med., 2016, Vol. 193, no. 11, pp. 1281-1291.; Sakthivel P., Bruder D. Mechanism of granuloma formation in sarcoidosis. Curr. Opin. Hematol., 2017, Vol. 24, no. 1, pp. 59-65.; Sallusto F., Zielinski C.E., Lanzavecchia A. Human Th17 subsets. Eur. J. Immunol., 2012, Vol. 42, no. 9, pp. 2215-2220.; Shamaei M., Mortaz E., Pourabdollah M., Garssen J., Tabarsi P., Velayati A., Adcock I.M. Evidence for M2 macrophages in granulomas from pulmonary sarcoidosis: A new aspect of macrophage heterogeneity. Hum. Immunol., 2018, Vol. 79, no. 1, pp. 63-69.; Shigehara K., Shijubo N., Ohmichi M., Takahashi R., Kon S., Okamura H., Kurimoto M., Hiraga Y., Tatsuno T., Abe S., Sato N. IL-12 and IL-18 are increased and stimulate IFN-gamma production in sarcoid lungs. J. Immunol., 2001, Vol. 166, no. 1, pp. 642-649.; Simonian P.L., Wehrmann F., Roark C.L., Born W.K., O’Brien R.L., Fontenot A.P. γδ T cells protect against lung fibrosis via IL-22. J. Exp. Med., 2010, Vol. 207, no. 10, pp. 2239-2253.; Starshinova A.A., Malkova A.M., Basantsova N.Y., Zinchenko Y.S., Kudryavtsev I.V., Ershov G.A., Soprun L.A., Mayevskaya V.A., Churilov L.P., Yablonskiy P.K. Sarcoidosis as an Autoimmune Disease. Front. Immunol., 2020, Vol. 10, 2933. doi:10.3389/fimmu.2019.02933.; Tarasidis A., Arce S. Immune response biomarkers as indicators of sarcoidosis presence, prognosis, and possible treatment: An immunopathogenic perspective. Autoimmun Rev., 2020, Vol. 19, no. 3, 102462. doi:10.1016/j.autrev.2020.102462.; Ten Berge B., Paats M.S., Bergen I.M., van den Blink B., Hoogsteden H.C., Lambrecht B.N., Hendriks R.W., Kleinjan A. Increased IL-17A expression in granulomas and in circulating memory T cells in sarcoidosis. Rheumatology (Oxford), 2012, Vol. 51, no. 1, pp. 37-46.; Wacleche V.S., Goulet J.P., Gosselin A., Monteiro P., Soudeyns H., Fromentin R., Jenabian M.A., Vartanian S., Deeks S.G., Chomont N., Routy J.P., Ancuta P. New insights into the heterogeneity of Th17 subsets contributing to HIV-1 persistence during antiretroviral therapy. Retrovirology, 2016, Vol. 13, no. 1, 59. doi:10.1186/s12977-0160293-6.; Zhang H., Costabel U., Dai H. The role of diverse immune cells in sarcoidosis. Front. Immunol., 2021, Vol. 12, 788502. doi:10.3389/fimmu.2021.788502.; https://www.mimmun.ru/mimmun/article/view/2468

  20. 20
    Academic Journal

    Πηγή: Bukovinian Medical Herald; Vol. 13 No. 4 (52) (2009); 227-229 ; Буковинский медицинский вестник; Том 13 № 4 (52) (2009); 227-229 ; Буковинський медичний вісник; Том 13 № 4 (52) (2009); 227-229 ; 2413-0737 ; 1684-7903

    Περιγραφή αρχείου: application/pdf

    Διαθεσιμότητα: http://e-bmv.bsmu.edu.ua/article/view/251682