-
1Academic Journal
Συγγραφείς: V. Yu. Buslaev, V. I. Minina, V. G. Druzhinin, В. Ю. Буслаев, В. И. Минина, В. Г. Дружинин
Πηγή: Medical Genetics; Том 21, № 7 (2022); 33-35 ; Медицинская генетика; Том 21, № 7 (2022); 33-35 ; 2073-7998
Θεματικοί όροι: дифференциальная экспрессия генов, transcriptome, microarray analysis, differential gene expression, транскриптом, микроматричный анализ
Περιγραφή αρχείου: application/pdf
Relation: https://www.medgen-journal.ru/jour/article/view/2102/1569; Bray F., Ferlay J., Soerjomataram I., et al. Global cancerstatistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018 Nov;68(6):394-424.; Malhotra J., Malvezzi M., Negri E., et al. Risk factors for lung cancer worldwide. Eur Respir J. 2016 Sep;48(3):889-902.; Wang J., Liu Q., Yuan S., et al. Genetic predisposition to lung cancer: comprehensive literature integration, meta-analysis, and multiple evidence assessment of candidate-gene association studies. Sci Rep. 2017 Aug;7(1):8371-8384.; Han J., Chen M., Wang Y., et al. Identification of Biomarkers Based on Differentially Expressed Genes in Papillary Thyroid Carcinoma. Sci Rep. 2018 Jul;8(1):9912-9923.; Malone J.H., Oliver B. Microarrays, deep sequencing and the true measure of the transcriptome. BMC Biol. 2011 May;9(1):34-43.; Misono S., Mizuno K., Suetsugu T., et al. Molecular Signature of Small Cell Lung Cancer after Treatment Failure: The MCM Complex as Therapeutic Target. Cancers. 2021 Mar 10;13(6):1187-1203.
-
2Academic Journal
Συγγραφείς: N. V. Klimova, I. V. Chadaeva, S. G. Shichevich, R. V. Kozhemyakina, Н. В. Климова, И. В. Чадаева, С. Г. Шихевич, Р. В. Кожемякина
Συνεισφορές: The work was supported by Russian Foundation for Basic Research grant No. 18-34-00496 (to IVC), publicly funded project No. 0324-2019-0042 (for NVK), and publicly funded project АААА-А17-117072710029-7 (for SGS and RVK).
Πηγή: Vavilov Journal of Genetics and Breeding; Том 25, № 2 (2021); 208-215 ; Вавиловский журнал генетики и селекции; Том 25, № 2 (2021); 208-215 ; 2500-3259 ; 10.18699/VJ21.016
Θεματικοί όροι: крысы, tame behavior, gene expression, hypothalamus, rats, дифференциальная экспрессия генов, гипоталамус
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/2885/1463; Albert F.W., Somel M., Carneiro M., AximuPetri A., Halbwax M., Thalmann O., Blanco-Aguiar J.A., Plyusnina I.Z., Trut L., Villafuerte R., Ferrand N., Kaiser S., Jensen P., Pääbo S. A comparison of brain gene expression levels in domesticated and wild animals. PLoS Genet. 2012;8(9):e1002962. DOI 10.1371/journal.pgen.1002962.; Anholt R.R.H., Mackay T.F.C. Genetics of аggression. Annu. Rev. Genet. 2012;46:145-164. DOI 10.1146/annurev-genet-110711-155514.; Audero E., Mlinar B., Baccini G., Skachokova Z.K., Corradetti R., Gross C. Suppression of serotonin neuron firing increases aggression in mice. J. Neurosci. 2013;33(20):8678-8688. DOI 10.1523/JNEUROSCI.206712.2013.; Belyaev D.K., Borodin P.M. The influence of stress on variation and its role in evolution. In: Evolutionary Genetics. Leningrad, 1985;35-39. (in Russian); Bunda A., LaCarubba B., Bertolino M., Akiki M., Bath K., LopezSoto J., Lipscombe D., Andrade A. Cacna1b alternative splicing impacts excitatory neurotransmission and is linked to behavioral responses to aversive stimuli. Mol. Brain. 2019;12(1):81. DOI 10.1186/s13041-019-0500-1.; Castiglioni A.J., Raingo J., Lipscombe D. Alternative splicing in the C-terminus of CaV2.2 controls expression and gating of N-type calcium channels. J. Physiol. 2006;576(Pt.1):119-134. DOI 10.1113/jphysiol.2006.115030.; Cervantes M., Delville Y. Serotonin 5HT1A and 5HT3 receptors in an impulsive–aggressive phenotype. Behav. Neurosci. 2009;123(3): 589-598. DOI 10.1037/a0015333.; Chu Q., Liang T., Fu L., Li H., Zhou B. Behavioural genetic differences between Chinese and European pigs. J. Genet. 2017;96(4):707-715. DOI 10.1007/s12041-017-0826-3.; Clement J., Simler S., Ciesielski L., Mandel P., Cabib S., PuglisiAllegra S. Agedependent changes of brain GABA levels, turnover rates and shock-induced aggressive behavior in inbred strains of mice. Pharmacol. Biochem. Behav. 1987;26(1):83-88. DOI 10.1016/0091-3057(87)90538-7.; Craig I.W., Halton K.E. Genetics of human aggressive behavior. Hum. Genet. 2009;126:101-113. DOI 10.1007/s00439-009-0695-9.; Cullinan W.E., Herman J.P., Battaglia D.F., Akil H., Watson S.J. Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience. 1995;64:477-505. DOI 10.1016/0306-4522(94)00355-9.; Cushing B.S. Estrogen receptor alpha distribution and expression in the social neural network of monogamous and polygynous Peromyscus. PLoS One. 2016;11(3):e0150373. DOI 10.1371/journal.pone.0150373.; de Boer S.F., Koolhaas J.M. 5HT1A and 5HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Europ. J. Pharmac. 2005;526:125-139. DOI 10.1016/j.ejphar.2005.09.065.; Elizalde N., Pastor P.M., Garcia‐GarciaA.L., Serres F., Venzala E., Huarte J., Ramírez M.J., Del Rio J., Sharp T., Tordera R.M. Regulation of markers of synaptic function in mouse models of depression: chronic mild stress and decreased expression of VGLUT1. J. Neurochem. 2010;114:1302-1314. DOI 10.1111/j.1471-4159.2010.06854.x.; Fairbanks L.A., Newman T.K., Bailey J.N., Jorgensen M.J., Breidenthal S.E., Ophoff R.A., Comuzzie A.G., Martin L.J., Rogers J. Genetic contributions to social impulsivity and aggressiveness in vervet monkeys. Biol. Psychiatry. 2004;55:642-647. DOI 10.1016/j.biopsych.2003.12.005.; Golden S.A., Jin M., Heins C., Venniro M., Michaelides M., Shaham Y. Nucleus accumbens Drd1-expressing neurons control aggression self-administration and aggression seeking in mice. J. Neurosci. 2019;39(13):2482-2496. DOI 10.1523/JNEUROSCI.240918.2019.; Guillot P.V., Chapouthier G. Intermale aggression, GAD activity in the olfactory bulbs and Y chromosome effect in seven inbred mouse strains. Behav. Brain Res. 1998;90(2):203-206. DOI 10.1016/S01664328(97)001101.; Gulevich R.G., Oskina I.N., Shikhevich S.G., Fedorova E.V., Trut L.N. Effect of selection for behavior on pituitary–adrenal axis and proopiomelanocortin gene expression in silver foxes (Vulpes vulpes). Physiol. Behav. 2004;82(2-3):513-518. DOI 10.1016/j.physbeh.2004.04.062.; Hansen C.C., Ljung H., Brodtkorb E., Reimers A. Mechanisms underlying aggressive behavior induced by antiepileptic drugs: focus on topiramate, levetiracetam, and perampanel. Behav. Neurol. 2018; 2018:2064027. DOI 10.1155/2018/2064027.; Heyne H.O., Lautenschlager S., Nelson R., Besnier F., Rotival M., Cagan A., Kozhemyakina R., Plyusnina I.Z., Trut L., Carlborg Ö., Petretto E., Kruglyak L., Pääbo S., Schöneberg T., Albert F.W. Genetic influences on brain gene expression in rats selected for tameness and aggression. Genetics. 2014;198:1277-1290. DOI 10.1534/genetics.114.168948.; Hodges T.E., Green M.R., Simone J.J., McCormick C.M. Effects of social context on endocrine function and Zif268 expression in response to an acute stressor in adolescent and adult rats. Int. J. Develop. Neurosci. 2014;35(1):25-34. DOI 10.1016/j.ijdevneu.2014.03.001.; Hoopfer E.D. Neural control of aggression in Drosophila. Curr. Opin. Neurobiol. 2016;38:109-118. DOI 10.1016/j.conb.2016.04.007.; Hrabovszky E., Halasz J., Meelis W., Kruk M.R., Liposits Z., Haller J. Neurochemical characterization of hypothalamic neurons involved in attack behavior: glutamatergic dominance and co-expression of thyrotropin-releasing hormone in a subset of glutamatergic neurons. Neuroscience. 2005;133:657-666. DOI 10.1016/j.neuroscience.2005.03.042.; Hudziak J.J., van Beijsterveldt C.E.M., Bartels M., Rietveld M.J.H., Rettew D.C., Derks E.M., Boomsma D.I. Individual differences in aggression: genetic analyses by age, gender, and informant in 3-, 7-, and 10-year-old Dutch twins. Behav. Genet. 2003;33:575-589. DOI 10.1023/a:1025782918793.; Ilchibaeva T.V., Kondaurova E.M., Tsybko A.S., Kozhemyakina R.V., Popova N.K., Naumenko V.S. Brainderived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fearinduced aggression. Behav. Brain Res. 2015;1(290):45-50. DOI 10.1016/j.bbr.2015.04.041.; Kim C., Jeon D., Kim Y.H., Lee C.J., Kim H., Shin H.S. Deletion of N-type Ca2+ channel Cav2.2 results in hyperaggressive behaviors in mice. J. Biol. Chem. 2009;284(5):2738-2745. DOI 10.1074/jbc.M807179200.; Kim V., Zhang-James Y., Fernandez-Castillo N., Bakker M., Cormand B., Faraone S.V. Genetics of aggressive behavior: an overview. Am. J. Med. Genet. Part B. 2015;171B:3-43. DOI 10.1002/ajmg.b.32364.; Knapska E., Kaczmarek L. A gene for neuronal plasticity in the mammalian brain: Zif 268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog. Neurobiol. 2004;74(4):183-211. DOI 10.1016/j.pneurobio.2004.05.007.; Kozhemyakina R.V. Taming of grey rat. Priroda = Nature. 2017;6:70-78. (in Russian); Kozhemyakina R.V., Konoshenko M.Y., Sakharov D.G., Smagin D.A., Markel A.L. Comparative analysis of behavior in the open/field test in wild grey rats (Rattus norvegicus) and in grey rats subjected to prolonged selection for tame and aggressive behavior. Zhurnal Vysshey Nervnoy Deyatel’nosti im. I.P. Pavlova = I.P. Pavlov Journal of Higher Nervous Activity. 2016;66:92-102. DOI 10.7868/S0044467716010093. (in Russian); Kruk M.R. Ethology and pharmacology of hypothalamic aggression in the rat. Neurosci. Biobehav. Rev. 1991;15:527-538. DOI 10.1016/s0149-7634(05)80144-7.; Kudryavtseva N.N., Markel A.L., Orlov Yu.L. Aggressive behavior: genetic and physiological mechanisms. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2014; 18(4/3):1133-1155. (in Russian); Kulikov A.V., Osipova D.V., Naumenko V.S., Terenina E., Mormède P., Popova N.K. A pharmacological evidence of positive association between mouse intermale aggression and brain serotonin metabolism. Behav. Brain Res. 2012;233(1):113-119. DOI 10.1016/j.bbr.2012.04.031.; Lin D., Boyle M.P., Dollar P., Lee H., Lein E.S., Perona P., Anderson D.J. Functional identification of an aggression locus in the mouse hypothalamus. Nature. 2011;470:221-226. DOI 10.1038/nature09736.; Lindenfors P., Tullberg B.S. Evolutionary aspects of aggression: the importance of sexual selection. Adv. Genet. 2011;75:7-22. DOI 10.1016/B978-0-12-380858-5.00009-5.; Markel A.L. Biosocial base of aggressiveness and aggressive behavior. Zhurnal Vysshey Nervnoy Deyatel’nosti im. I.P. Pavlova = I.P. Pavlov Journal of Higher Nervous Activity. 2016;66(6):1-12. DOI 10.7868/S0044467716060071. (in Russian); Miczek K.A., Fish E.W., de Bold J.F., de Almeida R.M. Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and γaminobutyric acid systems. Psychopharmacology. 2002;163:434-458. DOI 10.1007/s00213-002-1139-6.; Naumenko V.S., Kozhemjakina R.V., Plyusnina I.Z., Popova N.K. Expression of serotonin transporter gene and startle response in rats with genetically determined fear-induced aggression. Bulletin of Experimental Biology and Medicine. 2009;147(1):81-83. DOI 10.1007/s10517-009-0441-2.; Nelson R.J., Demas G.E., Huang P.L., Fishman M.C., Dawson V.L., Dawson T.M., Snyder S.H. Behavioral abnormalities in male mice lacking neuronal nitric oxide synthase. Nature. 1995;378(6555): 383-386. DOI 10.1038/378383a0.; Olivier B. Serotonin and aggression. Ann. N.Y. Acad. Sci. 2010;1036: 382-392. DOI 10.1196/annals.1330.022.; Park H.J., Kim S.K., Kang W.S., Chung J.H., Kim J.W. Increased activation of synapsin1 and mitogen-activated protein kinases/extracellular signal-regulated kinase in the amygdala of maternal separation rats. CNS Neurosci. Ther. 2014;20(2):172-181. DOI 10.1111/cns.12202.; Pavlov K.A., Chistiakov D.A., Chekhonin V.P. Genetic determinants of aggression and impulsivity in humans. J. Appl. Genet. 2012;53: 61-82. DOI 10.1007/s13353-011-0069-6.; Plyusnina I.S., Schepina O.A., Oskina I.N., Trut L.N. Some features of learning in the Morris water test in rats selected for responses to humans. Neurosci. Behav. Physiol. 2008;38(5):511-516.; Qadeer M.I., Amar A., Mann J.J., Hasnain S. Polymorphisms in dopaminergic system genes; association with criminal behavior and selfreported aggression in violent prison inmates from Pakistan. PLoS One. 2017;12(6):e0173571. DOI 10.1371/journal.pone.0173571.; Raleigh M.J., McGuire M.T., Brammer G.L., Pollack D.B., Yuwiler A. Serotonergic mechanisms promote dominance acquisition in adult male vervet monkeys. Brain Res. 1991;559:181-190. DOI 10.1016/0006-8993(91)90001-C.; Reif A., Jacob C.P., Rujescu D., Herterich S., Lang S., Gutknecht L., Baehne C.G., Strobel A., Freitag C.M., Giegling I., Romanos M., Hartmann A., Rosler M., Renner T.J., Fallgatter A.J., Retz W., Ehlis A.C., Lesch K.P. Influence of functional variant of neuronal nitric oxide synthase on impulsive behaviors in humans. Arch. Gen. Psych. 2009;66(1):41-50. DOI 10.1001/archgenpsychiatry.2008.510.; Saetre P., Strandberg E., Sundgren P.‐E., Pettersson U., Jazin E., Bergström T.F. The genetic contribution to canine personality. Genes Brain Behav. 2006;5:240-248. DOI 10.1111/j.1601-183X.2005.00155.x.; Satoh Y., Endo S., Nakata T., Kobayashi Y., Yamada K., Ikeda T., Takeuchi A., Hiramoto T., Watanabe Y., Kazama T. ERK2 contributes to the control of social behaviors in mice. J. Neurosci. 2011;31(33): 11953-11967. DOI 10.1523/JNEUROSCI.234911.2011.; Simler S., PuglisiAllegra S., Mandel P. γAminobutyric acid in brain areas of isolated aggressive or non-aggressive inbred strains of mice. Pharmacol. Biochem. Behav. 1982;16:57-61. DOI 10.1016/0091-3057(82)90013-2.; Stork O., Ji F.Y., Kaneko K., Stork S., Yoshinobu Y., Moriya T., Shibata S., Obata K. Postnatal development of a GABA deficit and disturbance of neural functions in mice lacking GAD65. Brain Res. 2000;865(1):45-58. DOI 10.1016/s0006-8993(00)02206-x.; Summers C.H., Winberg S. Interactions between the neural regulation of stress and aggression. J. Experim. Biol. 2006;209:4581-4589. DOI 10.1242/jeb.02565.; Takahashi A., Miczek K.A. Neurogenetics of aggressive behavior: studies in rodents. Curr. Top. Behav. Neurosci. 2014;17:3-44. DOI 10.1007/7854_2013_263.; Topilko P., SchneiderMaunoury S., Levi G., Trembleau A., Gourdji D., Driancourt M.-A., Rao Ch.V., Charnay P. Multiple pituitary and ovarian defects in Krox-24 (NGFI-A, Egr-1)-targeted mice. Mol. Endocrinol. 1998;12(1):107-122. DOI 10.1210/mend.12.1.0049.; VanErp A.M.M., Miczek K.A. Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. J. Neurocsi. 2000;20(24):9320-9325. DOI 10.1523/JNEUROSCI.202409320.2000.; VanOortmerssen G.A., Bakker T.C. Artificial selection for short and long attack latencies in wild Mus musculus domesticus. Behav. Genet. 1981;11(2):115-126. DOI 10.1007/bf01065622.; Værøy H., Adori C., Legrand R., Lucas N., Breton J., Cottard C., do Rego J.C., Duparc C., Louiset E., Lefebvre H., Déchelotte P., Western E., Andersson S., Hökfelt T., Fetissov S.O. Autoantibodies reactive to adrenocorticotropic hormone can alter cortisol secretion in both aggressive and nonaggressive humans. Proc. Natl. Acad. Sci. USA. 2018;115(28):E6576-E6584. DOI 10.1073/pnas.1720008115.; Vekovischeva O.Y., Aitta‐aho T., Echenko O., Kankaanpää A., Seppälä T., Honkanen A., Sprengel R., Korpi E.R. Reduced aggression in AMPAtype glutamate receptor GluRA subunitdeficient mice. Genes Brain Behav. 2004;3:253-265. DOI 10.1111/j.1601-1848.2004.00075.x.; Veroude K., Zhang-James Y., Fernandez-Castillo N., Bakker M.J., Cormand B., Faraone S.V. Genetics of aggressive behavior: an overview. Am. J. Med. Genet. Part B. 2016;171B:3-43. DOI 10.1002/ajmg.b.32364.; Watanabe Y., Stone E., McEwen B.C. Induction and habituation of c-Fos and Zif/268 by acute and repeated stressors. NeuroReport. 1994;5:1321-1324. DOI 10.1097/00001756-199406270-00006.; Wultsch T., Chourbaji S., Fritzen S., Kittel S., Grünblatt E., Gerlach M., Gutknecht L., Chizat F., Golfler G., Schmitt A., Gass P., Lesch K.P., Reif A. Behavioural and expressional phenotyping of nitric oxide synthase-I knockdown animals. J. Neural. Transm. Suppl. 2007;72: 69-85. DOI 10.1007/978-3-211-73574-9_10.; Yamaguchi T., Lin D. Functions of medial hypothalamic and mesolimbic dopamine circuitries in aggression. Curr. Opin. Behav. Sci. 2018;24:104-112. DOI 10.1016/j.cobeha.2018.06.011.; Zamponi G. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat. Rev. Drug Discov. 2016;15:19-34. DOI 10.1038/nrd.2015.5.; https://vavilov.elpub.ru/jour/article/view/2885
-
3Academic Journal
Συγγραφείς: M. E. Lopatkina, V. S. Fishman, M. M. Gridina, N. A. Skryabin, T. V. Nikitina, A. A. Kashevarova, L. P. Nazarenko, O. L. Serov, I. N. Lebedev, М. Е. Лопаткина, В. С. Фишман, М. М. Гридина, Н. А. Скрябин, Т. В. Никитина, А. А. Кашеварова, Л. П. Назаренко, О. Л. Серов, И. Н. Лебедев
Πηγή: Medical Genetics; Том 19, № 3 (2020); 10-11 ; Медицинская генетика; Том 19, № 3 (2020); 10-11 ; 2073-7998
Θεματικοί όροι: induced pluripotent stem cells, CNTN6, дифференциальная экспрессия генов, индуцированные плюрипотентные стволовые клетки, intellectual disability, differential gene expression
Περιγραφή αρχείου: application/pdf
-
4Academic Journal
Συγγραφείς: М. К. Живень, И. С. Захарова, А. И. Шевченко, Е. А. Покушалов, С. М. Закиян
Πηγή: Патология кровообращения и кардиохирургия, Vol 19, Iss 4-2, Pp 104-112 (2016)
Θεματικοί όροι: Эндотелиальные клетки, Васкулогенез, Дифференцировка, Дифференциальная экспрессия генов, Surgery, RD1-811
Περιγραφή αρχείου: electronic resource
Relation: http://journalmeshalkin.ru/index.php/heartjournal/article/view/291; https://doaj.org/toc/1681-3472; https://doaj.org/toc/2500-3119
Σύνδεσμος πρόσβασης: https://doaj.org/article/e5a078453f304206b7059f5b642e3034
-
5Academic Journal
Συγγραφείς: N. V. Apanovich, M. V. Peters, A. A. Korotaeva, P. V. Apanovich, A. S. Markova, B. Sh. Kamolov, V. B. Matveev, A. V. Karpukhin, Н. В. Апанович, М. В. Петерс, А. А. Коротаева, П. В. Апанович, А. С. Маркова, Б. Ш. Камолов, В. Б. Матвеев, А. В. Карпухин
Πηγή: Cancer Urology; Том 12, № 4 (2016); 16-20 ; Онкоурология; Том 12, № 4 (2016); 16-20 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2016-12-4
Θεματικοί όροι: дифференциальная экспрессия генов, molecular genetic diagnostics, differential gene expression, молекулярно-генетическая диагностика
Περιγραφή αρχείου: application/pdf
Relation: https://oncourology.abvpress.ru/oncur/article/view/602/616; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/602/334; https://oncourology.abvpress.ru/oncur/article/downloadSuppFile/602/335; Статистика злокачественных новообразований в России и странах СНГ в 2012 г. Под ред. М.И. Давыдова, Е.М. Аксель. М.: Издательская группа РОНЦ, 2014. 226 с. [Statistics of malignant tumors in Russia and CIS countries in 2012. Eds. by: М.I. Davydov, Е.М. Аksel’. Мoscow: Izdatel’skaya gruppa RONTS, 2014. 226 p. (In Russ.)].; Ljungberg B., Bensalah K., Bex A. et al. Guidelines on renal cell carcinoma. European association of urology, 2014. 70 p.; Caoili E.M., Davenport M.S. Role of percutaneous needle biopsy for renal masses. Semin Intervent Radiol 2014;31(1):20–6. DOI:10.1055/s-0033-1363839. PMID: 24596436.; Vetterlein M.W., Jindal T., Becker A. et al. Small renal masses in the elderly: Contemporary treatment approaches and comparative oncological outcomes of nonsurgical and surgical strategies. Investig Clin Urol 2016;57(4):231–9. DOI:10.4111/icu.2016.57.4.231. PMID: 27437532.; Marconi L., Dabestani S., Lam T.B. et al. systematic review and meta-analysis of diagnostic accuracy of percutaneous renal tumour biopsy. Eur Urol 2016;69(4):660–73. DOI:10.1016/j.eururo.2015.07.072. PMID: 26323946.; Tostain J., Li G., Gentil-Perret A., Gigante M. Carbonic anhydrase 9 in clear cell renal cell carcinoma: a marker for diagnosis, prognosis and treatment. Eur J Cancer 2010;46(18):3141–8. DOI:10.1016/j.ejca.2010.07.020. PMID: 20709527.; Luo W., Hu H., Chang R. et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 2011;145(5):732–44. DOI:10.1016/j.cell.2011.03.054. PMID: 21620138.; Gimm T., Wiese M., Teschemacher B. et al. Hypoxia-inducible protein 2 is a novel lipid droplet protein and a specific target gene of hypoxia-inducible factor-1 FASEB 2010;24(11):4443–58. DOI:10.1096/fj.10-159806. PMID: 20624928.; Seo T., Konda R., Sugimura J. et al. Expression of hypoxia-inducible protein 2 in renal cell carcinoma: a promising candidate for molecular targeting therapy. Oncol Lett 2010;1(4):697–701. DOI:10.3892/ol_00000122. PMID: 22966366.; Fredlund E., Ovenberger M., Borg K., Påhlman S. Transcriptional adaptation of neuroblastoma cells to hypoxia. Biochem Biophys Res Commun 2008;366(4):1054–60. DOI:10.1016/j.bbrc.2007.12.074. PMID: 18155155.; Apanovich N.V., Poyarkov S.V., Peters M.V. et al. The differential gene expression in clear cell renal cell carcinoma and biomarker development. Eur Hum Gen 2015;23(Suppl 1):446.; Minton D.R., Fu L., Mongan N.P. et al. Role of NADH Dehydrogenase (Ubiquinone) 1 Alpha Subcomplex 4-Like 2 in Clear Cell Renal Cell Carcinoma. Clin Cancer Res 2016;22(11):2791–801. DOI:10.1158/1078-0432.CCR-15-1511. PMID: 26783287.; Law A.Y., Wong C.K. Stanniocalcin-2 promotes epithelial-mesenchymal transition and invasiveness in hypoxic human ovarian cancer cells. Exp Cell Res 2010;316(20):3425–34. DOI:10.1016/j.yexcr.2010.06.026. PMID: 20619259.; Yeung B.H., Law A.Y., Wong C.K. Evolution and roles of stanniocalcin. Mol Cell Endocrinol 2012;349(2):272–80. DOI:10.1016/j.mce.2011.11.007. PMID: 22115958.; Fisher K.E., Yin-Goen Q., Alexis D. et al. Gene expression profiling of clear cell papillary renal cell carcinoma: comparison with clear cell renal cell carcinoma and papillary renal cell carcinoma. Mod Pathol 2014;27(2)222–30. DOI:10.1038/modpathol.2013.140. PMID: 23887297.; Li G., Bilal I., Gentil-Perret A. et al. CA9 as a molecular marker for differential diagnosis of cystic renal tumors. Urol Oncol 2012;30(4):463–8. DOI:10.1016/j.urolonc.2010.04.014. PMID: 20822935.; Girgis A.H., Iakovlev V.V., Beheshti B. et al. Multilevel whole-genome analysis reveals candidate biomarkers in clear cell renal cell carcinoma. Cancer Res 2012;72(20):273–84. DOI:10.1158/0008-5472.CAN-12-0656. PMID: 22926558.; The Principles of Clinical Cytogenetics Eds. by: S.L. Gersen, M.B. Keagle. NY: Springer, 2013. Рp. 380–381.; Davis C.F., Ricketts C.J., Wang M. et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 2014;26(3):319–30. DOI:10.1016/j.ccr.2014.07.014. PMID: 25155756.; https://oncourology.abvpress.ru/oncur/article/view/602
-
6Dissertation/ Thesis
Συγγραφείς: Кочергин, Николай Иннокентьевич
Συνεισφορές: Институт фундаментальной биологии и биотехнологии, Кафедра геномики и биоинформатики
Θεματικοί όροι: ПШЕНИЦА МЯГКАЯ (TRITICUM AESTIVUM), ДИФФЕРЕНЦИАЛЬНАЯ ЭКСПРЕССИЯ ГЕНОВ, БИОИНФОРМАТИКА, ОТВЕТ НА СТРЕСС, ГОМЕОЛОГИЧНЫЕ ГЕНЫ, 34.15.23
Relation: Кочергин, Николай Иннокентьевич. Изучение вклада транскриптомной регуляции отдельных гомеологов в стрессовый ответ у пшеницы мягкой [Электронный ресурс] : магистерская диссертация : 06.04.01 / Н. И. Кочергин. — Красноярск : СФУ, 2024.
Διαθεσιμότητα: https://elib.sfu-kras.ru/handle/2311/154627
-
7Dissertation/ Thesis
Συνεισφορές: Садовский, Михаил Георгиевич, Институт фундаментальной биологии и биотехнологии, Базовая кафедра защиты и современных технологии мониторинга лесов
Θεματικοί όροι: однонуклеотидые полиморфизмы, апикальный рост, дифференциальная экспрессия генов, транскриптом, точечная мутация, 34.15.23, ведьмины метлы
Σύνδεσμος πρόσβασης: https://openrepository.ru/article?id=459983
-
8Dissertation/ Thesis
Συγγραφείς: Аксенова, Анастасия Ильинична
Συνεισφορές: Крутовский, Константин Валерьевич, Институт фундаментальной биологии и биотехнологии, Кафедра геномики и биоинформатики
Θεματικοί όροι: сравнительная транскриптомика, грибные транскриптомы, рнк-секвенирование, фитопатогены, дифференциальная экспрессия генов, 34.15.23
Relation: Аксенова, Анастасия Ильинична. Сравнительная транскриптомика сибирских штаммов Heterobasidion annosum (Fr.) Bref. с различным уровнем фитопатогенности [Электронный ресурс] : магистерская диссертация : 06.04.01 / А. И. Аксенова. — Красноярск : СФУ, 2020.
Διαθεσιμότητα: https://elib.sfu-kras.ru/handle/2311/136662
-
9Dissertation/ Thesis
Συγγραφείς: Новикова, Серафима Валерьевна
Συνεισφορές: Садовский, Михаил Георгиевич, Институт фундаментальной биологии и биотехнологии, Базовая кафедра защиты и современных технологии мониторинга лесов
Θεματικοί όροι: апикальный рост, ведьмины метлы, дифференциальная экспрессия генов, однонуклеотидые полиморфизмы, точечная мутация, транскриптом, 34.15.23
Relation: Новикова, Серафима Валерьевна. Экспрессия генов у сосны сибирской кедровой (Pinus sibirica Du Tour.) и сосны обыкновенной (Pinus sylvestris Ledeb.) с аномальным морфогенезом кроны [Электронный ресурс] : магистерская диссертация : 06.04.01 / С. В. Новикова. — Красноярск : СФУ, 2018.
Διαθεσιμότητα: https://elib.sfu-kras.ru/handle/2311/73305