Showing 1 - 1 results of 1 for search '"динамическая двунаправленная аппланационная тонометрия"', query time: 0.49s Refine Results
  1. 1
    Academic Journal

    Source: Ophthalmology in Russia; Том 16, № 3 (2019); 335-343 ; Офтальмология; Том 16, № 3 (2019); 335-343 ; 2500-0845 ; 1816-5095 ; 10.18008/1816-5095-2019-3

    File Description: application/pdf

    Relation: https://www.ophthalmojournal.com/opht/article/view/1011/627; Eilaghi A., Flanagan J.G., Simmons C.A., Ethier C.R. Effects of scleral stiffness properties on optic nerve head biomechanics. Ann Biomed Eng. 2010;38(4):1586– 92. DOI:10.1007/s10439-009-9879-7; Журавлева А.Н., Нероев В.В., Теплинская Л.Е., Андреева Л.Д. Изучение тканевого и плазменного фибронектина при первичной открытоугольной глаукоме. Офтальмология. 2009;(6)3:15–9. [Zhuravleva A.N., Neroev V.V., Tep linskaya L.E., Andreeva L.D. Study of tissue and plasma fibronectin in primary open-angle glaucoma. Ophthalmology in Russia = Oftal’mologiya. 2009;6(3):15–9 (In Russ.)].; Yaoeda K., Fukushima A., Shirakashi M., Fukuchi T. Comparison of intraocular pressure adjusted by central corneal thickness or corneal biomechanical properties as measured in glaucomatous eyes using noncontact tonometers and the Goldmann applanation tonometer. Clin Ophthalmol. 2016;10:829–34. DOI:10.2147/OPTH. S106836; Hong Y., Shoji N., Morita T., Hirasawa K., Matsumura K., Kasahara M., Shimizu K. Comparison of corneal biomechanical properties in normal tension glaucoma patients with different visual field progression speed. International J Ophthalmol. 2016;9(7):973–8. DOI:10.18240/ijo.2016.07.06; Егоров Е.А., Васина М.В. Значение исследования биомеханических свойств роговой оболочки в оценке офтальмотонуса. РМЖ «Клиническая Офтальмология». 2008;1:1–3. [Egorov E.A., Vasina M.V. The value of the study of the biome chanical properties of the cornea in the assessment of the ophthalmotonus. Russian Medical Journal. Clinical Ophthalmology = Rossijskij medicinskij zhurnal. Klin icheskaya oftal’mologiya. 2008;1:1–3 (In Russ.)].; Страхов В.В., Алексеев В.В., Аль-Моррани А.М. Межокулярная асимметрия корнеального гистерезиса в норме и при первичной открытоугольной глау коме. Практическая медицина. 2012;59(4):244–7. [Strakhov V.V., Alekseev V.V., Al’-Morrani A.M. Interocular asymmetry of corneal hysteresis in norm and with primary open-angle glaucoma. Practical Medicine = Prakticheskaya meditsina. 2012;59(4):244–7 (In Russ.)].; Oncel B., Dinc U., Orge F., Yalvac B. Comparison of IOP measurement by ocular response analyzer, dynamic contour, Goldmann applanation, and non contact tonometry. Eur J Ophthalmol. 2009 Nov-Dec;19(6):936–41. DOI:10.1177/112067210901900607; Jorge J., González-Méijome J.M., Queirós A., Fernandes P., Diaz-Rey J.A. A com parison of the NCT Reichert R7 with Goldmann applanation tonometry and the Reichert ocular response analyzer. Ophthalmic Physiol Opt. 2011;31(2):174–9. DOI:10.1111/j.1475-1313.2010.00817.x; Kouchaki B., Hashemi H., Yekta A., Khabazkhoob M. Comparison of current to nometry techniques in measurement of intraocular pressure. Journal of Current Ophthalmology. 2017;29(2):92–7. DOI:10.1016/j.joco.2016.08.010.J; Martinez-de-la-Casa J., Garcia-Feijoo J., Fernandez-Vidal A., Mendez-Hernan dez C., Garcia-Sanchez J. Ocular Response Analyzer versus Goldmann Applanation Tonometry for Intraocular Pressure Measurements. Investigative Ophthalmology & Visual Science October. 2006;47:4410–4. DOI:10.1167/iovs.06-0158; De Moraes C.V., Hill V., Tello C., Liebmann J.M., Ritch R. Lower corneal hysteresis is associated with more rapid glaucomatous visual field progression. J Glaucoma. 2012;21(4):209–13. DOI:10.1097/ijg.0b013e3182071b92; Medeiros F.A., Meira-Freitas D., Lisboa R., Kuang T.M., Zangwill L.M., Wein reb R.N. Corneal hysteresis as a risk factor for glaucoma progression: a prospec tive longitudinal study. Ophthalmology. 2013;120(8):1533–40. DOI:10.1016/j.oph tha.2013.01.032; Волкова Н.В., Юрьева Т.Н., Грищук А.С., Михалевич И.М. Корреляции и по правочные коэффициенты при различных видах тонометрии. Биомеханика и биогеометрия фиброзной оболочки глаза. Сообщение 2. Национальный журнал глаукома. 2016;15(1):37–45. [Volkova N.V., Yur’eva T.N., Grishchuk A.S., Mikhalevich I.M. Correlations and correction factors for different types of tonom etry. Biomechanics and biogeometry of the fibrous membrane of the eye. Message 2. National Journal of Glaucoma = Natsional’nyi zhurnal glaukoma. 2016;15(1):37–45 (In Russ.)].; Lau W., Pye D. A clinical description of ocular response analyzer measurements. IOVS. 2011;52(6):2911–6. DOI:10.1167/iovs.10-6763; Kamiya K., Shimizu K., Ohmoto F. Effect of aging on corneal biomechanical parameters using the ocular response analyzer. J Refract Surg. 2009;25:888–93. DOI:10.3928/1081597x-20090917-10; Shah S., Laiquzzaman M., Cunliffe I., Mantry S. The use of the Reichert ocular response analyser to establish the relationship between ocular hysteresis, corneal resistance factor and central corneal thickness in normal eyes. Cont Lens Anterior Eye. 2006;29(5):257–62. DOI:10.1016/j.clae.2006.09.006; Lau W., Pye D. Changes in corneal biomechanics and applanation tonometry with induced corneal swelling. Invest Ophthalmol Vis Sci. 2011;16;52(6):3207–14. DOI:10.1167/iovs.10-6754; Congdon N.G., Broman A.T., Bandeen-Roche K., Grover D., Quigley H.A. Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol. 2006;141:868–75. DOI:10.1016/j.ajo.2005.12.007; Detry-Morel M., Jamart J., Pourjavan S. Evaluation of corneal biomechanical properties with the reichert ocular response analyzer. Eur J Ophthalmol. 2010;21(2):138–48. DOI:10.5301/ejo.2010.2150; Bayoumi N.H., Bessa A.S., El Massry A.A. Ocular response analyzer and goldmann applanation tonometry: a comparative study of findings. J Glaucoma. 2010;19(9):627–31. DOI:10.1097/ijg.0b013e3181ca7e01; Pensyl D., Sullivan-Mee M., Torres-Monte M., Halverson K., Qualls C. Combining corneal hysteresis with central corneal thickness and intraocular pressure for glaucoma risk assessment. Eye (Lond). 2012;26(10):1349–1356. DOI:10.1038/ eye.2012.164; Murphy M.L., Pokrovskaya O., Galligan M., O’Brien С. Corneal hysteresis in patients with glaucoma-like optic discs, ocular hypertension and glaucoma, BMC Ophhalmology. 2017;17:1. DOI:10.1186/s12886-016-0396-9; Touboul D., Roberts C., Kerautret J., Garra C., Maurice-Tison S., Saubusse E., Colin J. Correlations between corneal hysteresis, intraocular pressure, and corneal central pachymetry. J Cataract Refract Surg. 2008;34(4):616–22. DOI:10.1016/j. jcrs.2007.11.051; Deol M., Taylor D., Radcliffe N. Corneal hysteresis and its relevance to glaucoma. Curr Opin Ophthalmol. 2015;26(2):96–102. DOI:10.1097/ICU.0000000000000130; Coudrillier B., Tian J., Alexander S., Myers K.M., Quigley H.A., Nguyen T.D. Biomechanics of the human posterior sclera: age-and glaucoma-related changes measured using inflation testing. Invest Ophthalmol Vis Sci. 2012;53:1714–28. DOI:10.1167/iovs.11-8009; Cartwright N.E.K, Tyrer J.R., Marshall J. Age-related differences in the elasticity of the human cornea. Invest Ophthalmol Vis Sci. 2011;52:4324–9. DOI:10.1167/ iovs.09-4798; Петров С.Ю., Рещикова В.С., Вострухин С.В., Агаджанян Т.М., Подгорная Н.Н. Исследование биомеханических свойств различных структур глаза: настоя щее и перспективы. Офтальмология. 2015;12(1):8–14. [Petrov S.Y., Reshchiko va V.S., Vostrukhin S.V., Agadzhanyan T.M., Podgornaya N.N. Ocular biomechanics study: current state and perspectives. Ophthalmology in Russia = Oftal’mologiya. 2015;12(1):8–14 (In Russ.)]. DOI:10.18008/1816-5095-2015-1-8-14; Арутюнян Л.Л. Взаимоотношения структурно-функциональных параметров и уровня поперечной связанности коллагена склеры глаукомных глаз. Национальный журнал глаукома. 2015;14(4):5–12. [Arutunyan L.L. Relations between structural and functional parameters and levels of transverse collagen coupling of sclera of glaucoma eyes. National Journal of Glaucoma = Natsional’nyi zhurnal glaukoma. 2015;14(4):5–12 (In Russ.)].; https://www.ophthalmojournal.com/opht/article/view/1011