Εμφανίζονται 1 - 14 Αποτελέσματα από 14 για την αναζήτηση '"дикальцийфосфат"', χρόνος αναζήτησης: 0,53δλ Περιορισμός αποτελεσμάτων
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
    Academic Journal

    Συνεισφορές: The work was financially supported by the SPSR “Chemical processes, reagents and technologies, bioregulators and bioorganic chemistry” under assignment 2.1.04.7 for 2021–2025, Работа выполнена при финансовой поддержке ГПНИ «Химические процессы, реагенты и технологии, биорегуляторы и биооргхимия» по заданию 2.1.04.7 на 2021–2025 гг.

    Πηγή: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 58, № 3 (2022); 263-272 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 58, № 3 (2022); 263-272 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2022-58-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestichem.belnauka.by/jour/article/view/736/672; Bucholz, R. Nonallograft osteoconductive bone graft substitutes / R. Bucholz // Clinical Orthopaedics and Related Research. – 2002. – Vol. 395, N 395. – P. 44–52. https://doi.org/10.1097/00003086-200202000-00006; Bohner, M. β-Tricalcium Phosphate for Bone Substitution: Synthesis and Properties / M. Bohner, B. Le Gras Santorini, N. Dobelin // Acta Biomaterialia. – 2020. – Vol. 113. – P. 23–41. https://doi.org/10.1016/j.actbio.2020.06.022; Bioceramics Composed of Octacalcium Phosphate Demonstrate Enhanced Biological Behavior / V. Komlev [et al.] // Applied Materials and Interfaces. – 2014. – Vol. 6. – P. 16610–16620. https://doi.org/10.1021/am502583p; Композиционные биоматериалы и покрытия на основе нанокристаллического гидроксиапатита / В. К. Крутько [и др.] // Вес. Нац. акад. навук Беларусi. Сер. хiм. навук. – 2008. – № 4. – С. 100–105.; Suchanek, W. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants / W. Suchanek, M. Yoshimura // Journal of Materials Research and Technology. – 1998. – Vol. 13, N 1. – P. 94–117. https://doi.org/10.1557/JMR.1998.0015; Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering / J. Venugopal [et al.] // Philosophical Transactions of the Royal Society of London A: Math., Phys. Eng. Sci. – 2010. – Vol. 368, N 1917. – P. 2065–2081. https://doi.org/10.1098/rsta.2010.0012; Dosedependent osteogenic effect of octacalcium phosphate on mouse bone marrow stromal cells / T. Anada [et al.] // Tissue Engineering Part A. – 2008. – Vol. 14, N 6. – P. 965–978. https://doi.org/10.1089/tea.2007.0339; Osteoclast differentiation induced by synthetic octacalcium phosphate through receptor activator of NF-kappa β ligand expression in osteoblasts / M. Takami [et al.] // Tissue Engineering Part A. – 2009. – Vol. 15, N 12. – P. 3991–4000. https://doi.org/10.1097/00003086-200202000-00006; Suzuki, O. Octacalcium phosphate (OCP)-based bone substitute materials / O. Suzuki // Japanese Dental Science Review. – 2013. – Vol. 49, N 2. – P. 58–71. https://doi.org/10.1097/00003086-200202000-00006; Suzuki, O. Octacalcium phosphate bone substitute materials: Comparison between properties of biomaterials and other calcium phosphate materials / O. Suzuki, Y. Shiwaku, R. Hamai // Dental Materials Journal. – 2020. – Vol. 39, N 2. – P. 187–199. https://doi.org/10.1097/00003086-200202000-00006; Momma, K. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data / K. Momma, F. Izumi // Journal of Applied Crystallography. – 2011. – Vol. 44. – P. 1272–1276. https://doi.org/10.1097/00003086-200202000-00006; Lu, X. Theoretical analysis of calcium phosphate precipitation in simulated body fluid / X. Lu, Y. Leng // Biomaterials. – 2005. – Vol. 26 – P. 1097–1108. https://doi.org/10.1097/00003086-200202000-00006; Transformation of brushite to hydroxyapatite and effects of alginate additives / S. Uscar [et al.] // Journal of Crystal Growth. – 2017. – Vol. 468. – P. 774–780. https://doi.org/10.1097/00003086-200202000-00006; Features of octacalcium phosphate thermolysis / V. I. Putlyaev [et al.] // Refractories and Industrial Ceramics. – 2014. – Vol. 54. – P. 420–424. https://doi.org/10.1097/00003086-200202000-00006; Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite / O. Suzuki [et al.] // Biomaterials. – 2006. – Vol. 27, N 13. – P. 2671–2681. https://doi.org/10.1097/00003086-200202000-00006; Arellano-Jimenez, M. J. Synthesis and hydrolysis of octacalciumphosphate and its characterization by electron microscopy and X-ray diffraction / M. J. Arellano-Jimenez, R. Garcia-Garcia, J. Reyes-Gasga // Journal of Physics and Chemistry of Solids. – 2009. – Vol. 70. – P. 390–395. https://doi.org/10.1097/00003086-200202000-00006; Li, Y. Novel highly biodegradable biphasic tricalcium phosphates composed of α-tricalcium phosphate and β-tricalcium phosphate / Y. Li, W. Weng, K.C. Tam // Acta Biomaterialia. – 2007. – Vol. 3, N 2. – P. 251–254. https://doi.org/10.1097/00003086-200202000-00006; In Vitro Transformation of OCP into Carbonate HA Under Physiological Conditions / R. Horvathova [et al.] // Materials Science and Engineering C. – 2008. – Vol. 28, N 8. – P. 1414–1419. https://doi.org/10.1016/j.msec.2008.03.010; Liu, Y. Homogeneous octacalcium phosphate precipitation: effect of temperature and pH / Y. Liu, R. M. Shelton, J. E. Barralet // Key Engineering Materials. – 2004. – Vol. 254–256. – P. 79–82. https://doi.org/10.4028/www.scientific.net/KEM.254-256.79; Collapsed octacalcium phosphate stabilized by ionic substitutions / E. Boanini [et al.] // Crystal Growth & Design. – 2010. – Vol. 10. – P. 3612–3617. https://doi.org/10.1021/cg100494f; Fluoride analysis of apatite crystals with a central planar OCP inclusion: concerning the role of F-ions on apatite/OCP/apatite structure formation / M. Ijima [et al.] // Calcified Tissue International. – 1996. – Vol. 59. – P. 377–384. https://doi.org/10.1007/s002239900143; LeGeros, R. Properties of osteoconductive biomaterials: calcium phosphates / R. LeGros // Clinical Orthopaedics and Related Research. – 2002. – Vol. 395. – P. 81–98. https://doi.org/10.1097/00003086-200202000-00009; Osteoconduction at porous hydroxyapatite with various pore configurations / B. Chang // Biomaterials. – 2000. – Vol. 21. – P. 1291–1298. https://doi.org/10.1016/S0142-9612(00)00030-2; Calcium phosphate-based osteoinductive materials / R. LeGros [et al.] // Chemical Reviews. – 2008. – Vol. 108. – P. 4742–4753. https://doi.org/10.1021/cr800427g; Hydroxyapatite Formation from Octacalcium Phosphate and Its Related Compounds: A Discussion of the Transformation Mechanism / T. Yokoi [et al.] // Bulletin of the Chemical Society of Japan. – 2020. – Vol. 93, N 5. – P. 2671–2681. https://doi.org/10.1246/bcsj.20200031; A facile hydrothermal method for synthesis of submillimeter-long octacalcium phosphate and hydroxyapatite as drug carriers with sustained release behaviors / C. Li [et al.] // Advanced Powder Technology. – 2014. – Vol. 25. – P. 1661–1666. https://doi.org/10.1016/j.apt.2014.06.001; Ginebra, M. P. Calcium phosphate cements as drug delivery materials / M. P. Ginebra, T. Traykova, J. A. Planell // Advanced Drug Delivery Reviews. – 2012. – Vol. 64. – P. 1090–1110. https://doi.org/10.1016/j.addr.2012.01.008; Iijima, M. Roles of fluoride on octacalcium phosphate and apatite formation on amorphous calcium phosphate substrate / M. Iijima, K. Onuma // Crystal Growth & Design. – 2018. – Vol. 18. – P. 2279–2288. https://doi.org/10.1021/acs.cgd.7b01717; Zeng, S. Enhanced hydrated properties of α-tricalcium phosphate bone cement mediated by loading magnesium substituted octacalcium phosphate / S. Zeng, H. Shi, T. Yu, C. Zhou // Advanced Powder Technology. – 2017. – Vol. 28. – P. 3288–3295. https://doi.org/10.1016/j.apt.2017.10.006; Powder Diffraction File JCPDS-ICDD PDF-2 (Set 1-47) [Electronic Resource]. – 2016. – Mode of access: https://www.icdd.com/pdf-2. – Date of access: 15.06.2022.; Kovrlija, L. Octacalcium phosphate: Innovative vehicle for the local biologically active substance delivery in bone regeneration / L. Kovrlija, J. Locs, D. Loca // Acta Biomaterialia. – 2021. – Vol. 135. – P. 27–47. https://doi.org/10.1016/j.actbio.2021.08.021; https://vestichem.belnauka.by/jour/article/view/736

  8. 8
  9. 9
    Academic Journal

    Συνεισφορές: Работа выполнена при поддержке задания 1.04 ГПНИ «Химические технологии и материалы» и проекта ГКНТ № Х19ИНДГ—003

    Πηγή: Proceedings of the National Academy of Sciences of Belarus, Chemical Series; Том 56, № 4 (2020); 419-428 ; Известия Национальной академии наук Беларуси. Серия химических наук; Том 56, № 4 (2020); 419-428 ; 2524-2342 ; 1561-8331 ; 10.29235/1561-8331-2020-56-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://vestichem.belnauka.by/jour/article/view/613/586; Measurement and interpretation of electrokinetic phenomena / A. V. Delgado [et al.] // Journal of colloid and interface science. - 2007. - Vol. 309, N 2. - P. 194-224.; Dynamic light scattering and zeta potential of colloidal mixtures of amelogenin and hydroxyapatite in calcium and phosphate rich ionic milieus / V. Uskokovic [et al.] // Archives of oral biology. - 2011. - Vol. 56, N 6. - P 521-532. https://doi.org/10.1016/j.archoralbio.2010.11.011; Meyer, U. Principles of bone formation driven by biophysical forces in craniofacial surgery / U. Meyer, B. Kruse— Losler, H. P Wiesmann // British J. Oral Maxill. Surg. - 2006. - Vol. 44, N 4. - P 289-295. https://doi.org/10.1016/j.bjoms.2005.06.026; Surface properties of biomimetic nanocrystalline apatites; applications in biomaterials / C. Rey [et al.] // Prog. Cryst. Growth Char. Mater. - 2014. - Vol. 60. - P. 63-73. https://doi.org/10.1016/j.pcrysgrow.2014.09.005; Synthesis, identification and determination of impurities in bioactive hydroxyapatite / V. K. Tsuber [et al.] // Pharm. Chem. J. - 2006. - Vol. 40, N 8. - P. 455-458. https://doi.org/10.1007/s11094-006-0151-2; Adaptative physico-chemistry of bio-related calcium phosphates / S. Cazalbou [et al.] // J. Mater. Chem. - 2004. -Vol. 14, N 14. - P. 2148-2153. https://doi.org/10.1039/b401318b; Phase transformations, ion-exchange, adsorption, and dissolution processes in aquatic fluorapatite systems / A. Bengtsson [et al.] // Langmuir. - 2009. - Vol. 25, N 4. - P. 2355-2362. https://doi.org/10.1021/la803137u; Somasundaran, P. Zeta potential of apatite in aqueous solutions and its change during equilibration / P. Somasundaran // J. Colloid Interface Sci. - 1968. - Vol. 27, N 4. - P. 659-666. https://doi.org/10.1016/0021-9797(68)90098-2; Uskokovic, V. Dynamic light scattering based microelectrophoresis: main prospects and limitations / V. Uskokovic // J. Disp. Sci. Tech. - 2012. - Vol. 33, N 12. - P. 1762-1786. https://doi.org/10.1080/01932691.2011.625523; Apatite enrichment by rare earth elements: a review of the effects of surface properties / C. L. Owens [et al.] // Adv. Colloid Interface Sci. - 2019. - Vol. 265. - P. 14-28. https://doi.org/10.1016/j.cis.2019.01.004; Borisov, V. M. Method of physicochemical assessment of interaction of reagents with the surface of mineral grains in flotation / V. M. Borisov // Khim. Prom. - 1954. - Vol. 19. - P. 336-338.; Hydrothermal synthesis of hydroxyapatite nanorods in the presence of sodium citrate and its aqueous colloidal stability evaluation in neutral pH / X. Jin [et al.] // J. Colloid Interface Sci. - 2015. - Vol. 443. - P. 125-130. https://doi.org/10.1016/j.jcis.2014.12.010; Knowles, J. C. Characterisation of the rheological properties and zeta potential of a range of hydroxyapatite powders / J. C. Knowles, S. Callcut, G. Georgiou // Biomaterials. - 2000. - Vol. 21, N 13. - P. 1387-1392.; Isoelectric point and adsorption activity of porous g-C3N4 / B. Zhu [et al.] // Appl. Surf. Sci. - 2015. - Vol. 344. -P. 188-195. https://doi.org/10.1016/s0142-9612(00)00032-6; Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate / A. Destainville [et al.] // Mater. Chem. Phys. - 2003. - Vol. 80, N 1. - P. 269-277. https://doi.org/10.1016/s0254-0584(02)00466-2; Preparation of bioactive mesoporous calcium phosphate granules / O. N. Musskaya [et al.] // Inorg. Mater. - 2018. -Vol. 54, N 2. - P. 117-124. https://doi.org/10.1134/s0020168518020115; Combes, C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials / C. Combes, C. Rey // Acta Biomater. - 2010. - Vol. 6, N 9. - P. 3362-3378. https://doi.org/10.1016/j.actbio.2010.02.017; Kokubo, T. How useful is SBF in predicting in vivo bone bioactivity? / T. Kokubo, H. Takadama // Biomater. - 2006. -Vol. 27, N 15. - P. 2907-2915. https://doi.org/10.1016/j.biomaterials.2006.01.017; Koutsopoulos, S. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods / S. Koutsopoulos // J. Biomed. Mater. Res. - 2002. - Vol. 62, N 4. - P. 600-612. https://doi.org/10.1002/jbm.10280; Infra-red investigation of dicalcium phosphates / I. Petrov [et al.] // Spectrochimica Acta Part A: Molecular Spectroscopy. - 1967. - Vol. 23, N 10. - P. 2637-2646. https://doi.org/10.1016/0584-8539(67)80155-7; Tas, A. C. Chemical processing of CaHPO4; Correa, T. H. A. Calcium pyrophosphate powder derived from avian eggshell waste / T. H. A. Correa, J. N. F. Holanda // Ceramica. - 2016. - Vol. 62, N 363. - P. 278-280. https://doi.org/10.1590/0366-69132016623631986; New data on Zn2P2O7 phase transformations / M. A. Petrova [et al.] // J. Sol. State Chem. - 1995. - Vol. 119, N 2. -P. 219-223. https://doi.org/10.1016/0022-4596(95)80035-n; Sakae, T. Historical review of biological apatite crystallography / T. Sakae, H. Nakada, J. P. LeGeros // J. Hard Tiss. Biol. - 2015. - Vol. 24, N 2. - P. 111-122. https://doi.org/10.2485/jhtb.24.111; Dorozhkin, S. V. Calcium orthophosphates (CaPO4): occurrence and properties / S. V. Dorozhkin // Progr. Biomater. -2016. - Vol. 5, N 1. - P. 9-70. https://doi.org/10.1007/s40204-015-0045-z; Lide, D. R. CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data / D. R. Lide - 89th ed. - Boca Raton: CRC press, 2008-2009.; Fahami, A. Synthesis, bioactivity and zeta potential investigations of chlorine and fluorine substituted hydroxyapatite / A. Fahami, G. W. Beal, T. Betancourt // Mater. Sci. Eng.: C. - 2016. - Vol. 59. - P. 78-85. https://doi.org/10.1016/j.msec.2015.10.002; Hitmi, N. OH- reorientability in hydroxyapatites: effect of F- and Cl- / N. Hitmi, C. LaCabanne, R. A. Young // J. Phys. Chem. Sol. - 1988. - Vol. 49, N 5. - P. 541-550. https://doi.org/10.1016/0022-3697(88)90065-0; Durst, R. A. Tris/Tris^ HCl: a standard buffer for use in the physiologic pH range / R. A. Durst, B. R. Staples // Clin. Chem. - 1972. - Vol. 18, N 3. - P. 206-208. https://doi.org/10.1093/clinchem/18.3.206; Bell, L. C. The point of zero charge of hydroxyapatite and fluorapatite in aqueous solutions / L. C. Bell, A. M. Posner, J. P. Quirk // J. Colloid Interface Sci. - 1973. - Vol. 42, N 2. - P. 250-261. https://doi.org/10.1016/0021-9797(73)90288-9; Barros, L. A. F. Floatability of apatites and gangue minerals of an igneous phosphate ore / L. A. F. Barros, E. E. Ferreira, A. E. C. Peres // Mineral. Eng. - 2008. - Vol. 21, N 12-14. - P. 994-999. https://doi.org/10.1016/j.mineng.2008.04.012; Adsorption of Ni2+, Cd2+, PO43- and NO3- from aqueous solutions by nanostructured microfibrillated cellulose modified with carbonated hydroxyapatite / S. Hokkanen [et al.] // Chem. Eng. J. - 2014. - Vol. 252. - P. 64-74. https://doi.org/ 10.1016/j.cej.2014.04.101; Phosphoric acid and phosphates / K. Schrodter [et al.] // Ullmann’s encyclopedia of industrial chemistry. - 2000. https://doi.org/10.1002/14356007.a19_465.pub3; Vignoles, M. Occurrence of nitrogenous species in precipitated B-type carbonated hydroxyapatites / M. Vignoles, G. Bonel, R. A. Young // Calcif. Tissue Int. - 1987. - Vol. 40, N 2. - P. 64-70. https://doi.org/10.1007/bf02555707; https://vestichem.belnauka.by/jour/article/view/613

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14