Showing 1 - 3 results of 3 for search '"дизъюнктивное программирование"', query time: 0.44s Refine Results
  1. 1
    Academic Journal

    Source: Informatics; Том 15, № 1 (2018); 21-33 ; Информатика; Том 15, № 1 (2018); 21-33 ; 2617-6963 ; 1816-0301

    File Description: application/pdf

    Relation: https://inf.grid.by/jour/article/view/313/289; Крыжановский, Г. А. Введение в прикладную теорию управления воздушным движением : учебник для вузов гражданской авиации / Г. А. Крыжановский. – М.: Машиностроение, 1984. – 368 с.; Солодухин, В. А. Задачи оптимизации процессов планирования и управления потоками воздушного движения / В. А. Солодухин // Научный вестник МГТУ ГА. – 2009. – № 139. – С. 85–90.; Безряков, В. В. Прямые и обратные задачи оптимизации управления потоками воздушного движения в районе аэродрома / В. В. Безряков, Г. А. Крыжановский, В. А. Солодухин // Научный вестник МГТУ ГА. – 2011. – № 171. – С. 109–113.; Dell’Olmo, P. A new hierarchical architecture for Air Traffic Management: Optimisation of airway capacity in a Free Flight scenario / P. Dell’Olmo, G. Lulli // European Journal of Operational Research. – 2003. – Vol. 144. – P. 179–193.; Рубанов, И. В. Задача выбора маршрутов движения объектов при ограничении на сближение / И. В. Рубанов, М. С. Баркетов, М. Я. Ковалев // Танаевские чтения : докл. Междунар. науч. конф., Минск, 27–29 марта 2014 г. – Минск: ОИПИ НАН Беларуси, 2014. – С. 136–140.; Рубанов, И. В. Малозатратные методы решения системы разностных и интервальных ограничений / И. В. Рубанов, М. С. Баркетов, М. Я. Ковалев // Танаевские чтения : докл. Седьмой Междунар. науч. конф., Минск, 28–29 марта 2016 г. – Минск: ОИПИ НАН Беларуси, 2016. – С. 170–174.; Рубанов, И. В. Подходы к решению дизъюнктивной системы разностных и интервальных ограничений / И. В. Рубанов, М. С. Баркетов, М. Я. Ковалев // Танаевские чтения : докл. Седьмой Междунар. науч. конф., Минск, 28–29 марта 2016 г. – Минск: ОИПИ НАН Беларуси, 2016. – С. 175–180.; Рубанов, И. В. Методы поиска нескольких решений системы разностных и интервальных ограничений / И. В. Рубанов, М.С. Баркетов, М. Я. Ковалев // Информатика. – 2016. – № 3(51). – С. 67–79.; Кранц, П. Сферическая тригонометрия : пер. с нем. / П. Кранц; под ред. Я.В. Шпильрейна. – 2-е. изд. – М.: Изд-во ЛКИ, 2007. – 96 с.; Кузнецов, С. В. Прикладные задачи обоснования минимальных интервалов эшелонирования воздушных судов с использованием системы наблюдения ОВД в соответствии с отечественными и международными правилами / С. В. Кузнецов, В. Б. Спрысков // Научный вестник ГосНИИ «Аэронавигация» : сб. науч. тр. – М., 2012. – № 11 : Организация воздушного движения. Использование воздушного пространства. Безопасность полетов. – С. 47–63.; Netjasov, F. Framework for airspace planning and design based on conflict risk assessment. Part 2 : Conflict risk assessment model for airspace tactical planning / F. Netjasov // Transportation Research Part C. – 2012. – No. 24. – P. 213–226.; Systemic identification of airspace collision risk tipping points using an evolutionary multi-objective scenario-based methodology / S. Alam [et al.] // Transportation Research Part C. – 2013. – No. 35. – P. 57–84.; Сотсков, Ю. Н. Построение расписания, допустимого относительно смешанного мультиграфа / Ю. Н. Сотсков, В. С. Танаев // Вес. Акад. наук БССР. Сер. физ.-мат. наук. – 1989. – № 4. – С. 94–98.; Peron, M. An Abstract Domain Extending Difference-Bound Matrices with Disequality Constraints / M. Peron, N. Halbwachs. – Grenoble, France, 2006. – 15 p.; Гэри, М. Вычислительные машины и труднорешаемые задачи / М. Гэри, Д. Джонсон. – М.: Мир, 1982. – 416 с.; https://inf.grid.by/jour/article/view/313

  2. 2
  3. 3