-
1Academic Journal
Authors: Надежда Ивановна Шумейко, Анастасия Валерьевна Ямщикова, Сергей Николаевич Филимонов, Татьяна Петровна Маклакова, Евгения Петровна Каширина
Source: Медицина в Кузбассе, Vol 24, Iss 3, Pp 28-34 (2025)
Subject Terms: сахарный диабет, диабетическая полинейропатия, лазерная допплеровская флуометрия, лазерная флуоресценция, транскраниальная магнитная стимуляция, Medicine
File Description: electronic resource
-
2Academic Journal
Authors: Шумейко, Надежда Ивановна, Ямщикова, Анастасия Валерьевна, Филимонов, Сергей Николаевич, Маклакова, Татьяна Петровна, Каширина, Евгения Петровна
Source: Medicine in Kuzbass; Том 24, № 3 (2025): сентябрь; 28-34 ; Медицина в Кузбассе; Том 24, № 3 (2025): сентябрь; 28-34 ; 2588-0411 ; 1819-0901
Subject Terms: diabetes mellitus, diabetic polyneuropathy, laser Doppler fluorometry, laser fluorescence, transcranial magnetic stimulation, сахарный диабет, диабетическая полинейропатия, лазерная допплеровская флуометрия, лазерная флуоресценция, транскраниальная магнитная стимуляция
File Description: application/pdf; text/html
Relation: http://mednauki.ru/index.php/MK/article/view/1299/2211; http://mednauki.ru/index.php/MK/article/view/1299/2256; http://mednauki.ru/index.php/MK/article/view/1299
Availability: http://mednauki.ru/index.php/MK/article/view/1299
-
3Academic Journal
Authors: O. A. Gromova, I. Yu. Torshin, A. G. Moiseenok, О. А. Громова, И. Ю. Торшин, А. Г. Мойсеенок
Source: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 17, No 4 (2024); 542-557 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 17, No 4 (2024); 542-557 ; 2070-4933 ; 2070-4909
Subject Terms: Кокарнит, B-group vitamins, neuroinflammation, diabetic polyneuropathy, bioinformatics, pharmacoinformatics, synergism, Cocarnit, витамины группы В, нейровоспаление, диабетическая полинейропатия, биоинформатика, фармакоинформатика, синергизм
File Description: application/pdf
Relation: https://www.pharmacoeconomics.ru/jour/article/view/1103/595; Khatun S., Prasad Bhagat R., Dutta R., et al. Unraveling HDAC11: epigenetic orchestra in different diseases and structural insights for inhibitor design. Biochem Pharmacol. 2024; 225: 116312. https://doi.org/10.1016/j.bcp.2024.116312.; Dyck P.J., Albers J.W., Andersen H., et al. Diabetic polyneuropathies: update on research definition, diagnostic criteria and estimation of severity. Diabetes Metab Res Rev. 2011; 27 (7): 620–8. https://doi.org/10.1002/dmrr.1226.; Lipsky B.A., Senneville E., Abbas Z.G., et al. Guidelines on the diagnosis and treatment of foot infection in persons with diabetes (IWGDF 2019 update). Diabetes Metab Res Rev. 2020; 36 (Suppl. 1): e3280. https://doi.org/10.1002/dmrr.3280.; Goldney J., Barker M.M., Thomas M., et al. Age at onset of type 2 diabetes and prevalence of vascular disease and heart failure: Systematic review and dose-response meta-analysis. J Diabetes Complications. 2024; 38 (10): 108849. https://doi.org/10.1016/j.jdiacomp.2024.108849.; Галстян Г.Р., Старостина Е.Г., Яхно Н.Н. и др. Диагностика и рациональная терапия болевой формы диабетической периферической нейропатии: междисциплинарный консенсус экспертов. Сахарный диабет. 2019; 22 (4): 305–27. https://doi.org/10.14341/DM9625.; Senneville E., Albalawi Z., van Asten S.A., et al. IWGDF/IDSA guidelines on the diagnosis and treatment of diabetes-related foot infections (IWGDF/IDSA 2023). Diabetes Metab Res Rev. 2024; 40 (3): e3687. https://doi.org/10.1002/dmrr.3687.; Roikjer J., Wegeberg A.M., Nikontovic A., et al. Prevalence of painful and painless diabetic peripheral neuropathy in the Northern Danish Region: a population-based study. Prim Care Diabetes. 2024: S1751-9918(24)00164-5. https://doi.org/10.1016/j.pcd.2024.08.006.; Shrimpton M., Shaw C. Concurrent transverse myelitis and acute inflammatory demyelinating polyneuropathy. BMJ Case Rep. 2024; 17 (5): e259732. https://doi.org/10.1136/bcr-2024-259732.; Vincent A.M., Callaghan B.C., Smith A.L., Feldman E.L. Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol. 2011; 7 (10): 573–83. https://doi.org/10.1038/nrneurol.2011.137.; Niimi N., Yako H., Takaku S., et al. Aldose reductase and the polyol pathway in schwann cells: old and new problems. Int J Mol Sci. 2021; 22 (3): 1031. https://doi.org/10.3390/ijms22031031.; Aziz N., Dash B., Wal P., et al. New horizons in diabetic neuropathies: an updated review on their pathology, diagnosis, mechanism, screening techniques, pharmacological, and future approaches. Curr Diabetes Rev. 2024; 20 (6): e201023222416. https://doi.org/10.2174/0115733998242299231011181615.; Liang Z., Zhang N., Wang X., et al. Corrigendum to “Epothilone B inactivation of Sirtuin1 promotes mitochondrial reactive oxygen species to induce dysfunction and ferroptosis of Schwann cells” [European Journal of Pharmaeutical Sciences 181 (2023) 106350]. Eur J Pharm Sci. 2024:106854. https://doi.org/10.1016/j.ejps.2024.106854.; Chong Z.Z., Menkes D.L., Souayah N. Targeting neuroinflammation in distal symmetrical polyneuropathy in diabetes. Drug Discov Today. 2024; 29 (8): 104087. https://doi.org/10.1016/j.drudis.2024.104087.; Громова О.А., Торшин И.Ю., Путилина М.В. и др. О механизмах синергидного действия толперизона, мелоксикама и витаминов группы В в терапии периферических болевых синдромов. Медицинский совет. 2020; 8: 54–64. https://doi.org/10.21518/2079-701X-2020-8-54-64.; Громова О.А., Торшин И.Ю., Тапильская Н.И., Галустян А.Н. Системно-биологический анализ синергидного воздействия прогестерона, витаминов и микроэлементов на нейропротекцию и развитие мозга плода. Вопросы гинекологии, акушерства и перинатологии.2019; 18 (6): 65–75. https://doi.org/10.20953/1726-1678-2019-6-65-75.; Torshin I.Yu. Sensing the change: from molecular genetics to personalized medicine. Nova Science Pub Inc.; 2012: 366 pp.; Huang Z.L., Urade Y., Hayaishi O. The role of adenosine in the regulation of sleep. Curr Top Med Chem. 2011; 11 (8): 1047–57. https://doi.org/10.2174/156802611795347654.; Schettler G. The role of the physician in political environmental discussions. Offentl Gesundheitswes. 1990; 52 (Suppl. 1): 7–11 (in German).; Chen Z., Xiong C., Pancyr C., et al. Prolonged adenosine A1 receptor activation in hypoxia and pial vessel disruption focal cortical ischemia facilitates clathrin-mediated AMPA receptor endocytosis and longlasting synaptic inhibition in rat hippocampal CA3-CA1 synapses: differential regula. J Neurosci. 2014; 34 (29): 9621–43. https://doi.org/10.1523/JNEUROSCI.3991-13.2014.; Atkinson M.R., Townsend-Nicholson A., Nicholl J.K., et al. Cloning, characterisation and chromosomal assignment of the human adenosine A3 receptor (ADORA3) gene. Neurosci Res. 1997; 29 (1): 73–9. https://doi.org/10.1016/s0168-0102(97)00073-4.; Wan T.C., Ge Z.D., Tampo A., et al. The A3 adenosine receptor agonist CP-532,903 [N6-(2,5-dichlorobenzyl)-3'-aminoadenosine-5'N-methylcarboxamide] protects against myocardial ischemia/ reperfusion injury via the sarcolemmal ATP-sensitive potassium channel. J Pharmacol Exp Ther. 2008; 324 (1): 234–43. https://doi.org/10.1124/jpet.107.127480.; Smith R.G., Leonard R., Bailey A.R., et al. Growth hormone secretagogue receptor family members and ligands. Endocrine. 2001; 14 (1): 9–14. https://doi.org/10.1385/ENDO:14:1:009.; Huang Z., Chen C., Guan K., et al. Protective role of ghrelin against 6PPD-quinone-induced neurotoxicity in zebrafish larvae (Danio rerio) via the GHSR pathway. Ecotoxicol Environ Saf. 2024; 285: 117031. https://doi.org/10.1016/j.ecoenv.2024.117031.; Salpietro V., Dixon C.L., Guo H., et al. AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nat Commun. 2019; 10 (1): 3094. https://doi.org/10.1038/s41467-019-10910-w.; Kolleker A., Zhu J.J., Schupp B.J., et al. Glutamatergic plasticity by synaptic delivery of GluR-B(long)-containing AMPA receptors. Neuron. 2003; 40 (6): 1199–212. https://doi.org/10.1016/s0896-6273(03)00722-0.; Qin X., Zaki M.G., Chen Z., et al. Adenosine signaling and clathrinmediated endocytosis of glutamate AMPA receptors in delayed hypoxic injury in rat hippocampus: role of casein kinase 2. Mol Neurobiol. 2021; 58 (5): 1932–51. https://doi.org/10.1007/s12035-020-02246-0.; Kozich V., Sokolová J., Klatovská V., et al. Cystathionine betasynthase mutations: effect of mutation topology on folding and activity. Hum Mutat. 2010; 31 (7): 809–19. https://doi.org/10.1002/humu.21273.; Casique L., Kabil O., Banerjee R., et al. Characterization of two pathogenic mutations in cystathionine beta-synthase: different intracellular locations for wild-type and mutant proteins. Gene. 2013; 531 (1): 117–24. https://doi.org/10.1016/j.gene.2013.08.021.; Witucki Ł., Jakubowski H. Homocysteine metabolites inhibit autophagy, elevate amyloid beta, and induce neuropathy by impairing Phf8/H4K20me1-dependent epigenetic regulation of mTOR in cystathionine β-synthase-deficient mice. J Inherit Metab Dis. 2023; 46 (6): 1114–30. https://doi.org/10.1002/jimd.12661.; Wang F., Zhou H., Zhang X. SAM, a cystathionine beta-synthase activator, promotes hydrogen sulfide to promote neural repair resulting from massive cerebral infarction induced by middle cerebral artery occlusion. Metab Brain Dis. 2022; 37 (5): 1641–54. https://doi.org/10.1007/s11011-022-00976-9.; Yin W.L., Yin W.G., Huang B.S., Wu L.X. Neuroprotective effects of lentivirus-mediated cystathionine-beta-synthase overexpression against 6-OHDA-induced Parkinson's disease rats. Neurosci Lett. 2017; 657: 45–52. https://doi.org/10.1016/j.neulet.2017.07.019.; Shields D.J., Lingrell S., Agellon L.B., et al. Localization-independent regulation of homocysteine secretion by phosphatidylethanolamine N-methyltransferase. J Biol Chem. 2005; 280 (29): 27339–44. https:// doi.org/10.1074/jbc.M504658200.; Wittmann G., Liposits Z., Lechan R.M., Fekete C. Medullary adrenergic neurons contribute to the cocaineand amphetamineregulated transcript-immunoreactive innervation of thyrotropinreleasing hormone synthesizing neurons in the hypothalamic paraventricular nucleus. Brain Res. 2004; 1006 (1): 1–7. https://doi.org/10.1016/j.brainres.2003.12.049.; Alarcón C.R., Goodarzi H., Lee H., et al. HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. 2015; 162 (6): 1299–308. https://doi.org/10.1016/j.cell.2015.08.011.; Ke S., Pandya-Jones A., Saito Y., et al. m(6)A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev. 2017; 31 (10): 990–1006. https://doi.org/10.1101/gad.301036.117.; Wu L., Ning P., Liang Y., et al. Methyltransferase METTL3 regulates neuropathic pain through m6A methylation modification of SOCS1. Neuropharmacology. 2024; 261: 110176. https://doi.org/10.1016/j.neuropharm.2024.110176.; Dermentzaki G., Furlan M., Tanaka I., et al. Depletion of Mettl3 in cholinergic neurons causes adult-onset neuromuscular degeneration. Cell Rep. 2024; 43 (4): 113999. https://doi.org/10.1016/j.celrep.2024.113999.; Ming Y., Deng Z., Tian X., et al. m6A Methyltransferase METTL3 reduces hippocampal neuron apoptosis in a mouse model of autism through the MALAT1/SFRP2/Wnt/β-catenin axis. Psychiatry Investig. 2022; 19 (10): 771–87. https://doi.org/10.30773/pi.2021.0370.; Liu B., Xing Z., Song F., et al. METTL3-mediated ANXA2 inhibition confers neuroprotection in ischemic stroke: evidence from in vivo and in vitro studies. FASEB J. 2023; 37 (7): e22974. https://doi.org/10.1096/fj.202300246R.; Kato M., Wynn R.M., Chuang J.L., et al. Structural basis for inactivation of the human pyruvate dehydrogenase complex by phosphorylation: role of disordered phosphorylation loops. Structure. 2008; 16 (12): 1849–59. https://doi.org/10.1016/j.str.2008.10.010.; Ferreira T., Polavarapu K., Olimpio C., et al. Variants in mitochondrial disease genes are common causes of inherited peripheral neuropathies. J Neurol. 2024; 271 (6): 3546–53. https://doi.org/10.1007/s00415-024-12319-y.; Mizusawa A., Watanabe A., Yamada M., et al. BDK deficiency in cerebral cortex neurons causes neurological abnormalities and affects endurance capacity. Nutrients. 2020; 12 (8): 2267. https://doi.org/10.3390/nu12082267.; Joshi M.A., Jeoung N.H., Obayashi M., et al. Impaired growth and neurological abnormalities in branched-chain alpha-keto acid dehydrogenase kinase-deficient mice. Biochem J. 2006; 400 (1): 153–62. https://doi.org/10.1042/BJ20060869.; Li T., Zhao L., Li Y., Dang M., et al. PPM1K mediates metabolic disorder of branched-chain amino acid and regulates cerebral ischemiareperfusion injury by activating ferroptosis in neurons. Cell Death Dis. 2023; 14 (9): 634. https://doi.org/10.1038/s41419-023-06135-x.; Gao R., Liu Z., Meng M., et al. Neurogenesis-associated protein, a potential prognostic biomarker in anti-PD-1 based kidney renal clear cell carcinoma patient therapeutics. Pharmaceuticals. 2024; 17 (4): 451. https://doi.org/10.3390/ph17040451.; Pinson A., Xing L., Namba T., et al. Human TKTL1 implies greater neurogenesis in frontal neocor tex of modern humans than Neanderthals. Science. 2022; 377 (6611): eabl6422. https://doi.org/10.1126/science.abl6422.; Coy J.F., Dressler D., Wilde J., Schubert P. Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. Clin Lab. 2005; 51 (5–6): 257–73.; Liu Y., Meng F., Wang J., et al. A novel oxoglutarate dehydrogenaselike mediated miR-214/TWIST1 negative feedback loop inhibits pancreatic cancer growth and metastasis. Clin Cancer Res. 2019; 25 (17): 5407–21. https://doi.org/10.1158/1078-0432.CCR-18-4113.; Yap Z.Y., Efthymiou S., Seiffert S., et al. Bi-allelic variants in OGDHL cause a neurodevelopmental spectrum disease featuring epilepsy, hearing loss, visual impairment, and ataxia. Am J Hum Genet. 2021; 108 (12): 2368–84. https://doi.org/10.1016/j.ajhg.2021.11.003.; Громова О.А., Торшин И.Ю. Систематический анализ экспериментальной и клинической фармакологии никотинамида и перспективы лечения атеросклероза. Экспериментальная и клиническая гастроэнтерология. 2022; 10: 111–25. https://doi.org/10.31146/1682-8658-ecg-206-10-111-125.; Kostylina G., Simon D., Fey M.F., et al. Neutrophil apoptosis mediated by nicotinic acid receptors (GPR109A). Cell Death Differ. 2008; 15 (1): 134–42. https://doi.org/10.1038/sj.cdd.4402238.; Wuerch E., Urgoiti G.R., Yong V.W. The promise of niacin in neurology. Neurotherapeutics. 2023; 20 (4): 1037–54. https://doi.org/10.1007/s13311-023-01376-2.; Challa S., Khulpateea B.R., Nandu T., et al. Ribosome ADPribosylation inhibits translation and maintains proteostasis in cancers. Cell. 2021; 184 (17): 4531–46.e26. https://doi.org/10.1016/j.cell.2021.07.005.; Berger F., Lau C., Dahlmann M., Ziegler M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J Biol Chem. 2005; 280 (43): 36334–41. https://doi.org/10.1074/jbc.M508660200.; Kotaka M., Gover S., Vandeputte-Rutten L., et al. Structural studies of glucose-6-phosphate and NADP+ binding to human glucose-6phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr. 2005; 61 (Pt. 5): 495–504. https://doi.org/10.1107/S0907444905002350.; Sun Q., Zhang B.Y., Zhang P.A., et al. Downregulation of glucose-6-phosphate dehydrogenase contributes to diabetic neuropathic pain through upregulation of toll-like receptor 4 in rats. Mol Pain. 2019; 15: 1744806919838659. https://doi.org/10.1177/1744806919838659.; Chen X., Gu X., Shan Y., et al. Identification of a novel human lactate dehydrogenase gene LDHAL6A, which activates transcriptional activities of AP1(PMA). Mol Biol Rep. 2009; 36 (4): 669–76. https://doi.org/10.1007/s11033-008-9227-2.; Yuan Z., Zhang X., Sengupta N., et al. SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol Cell. 2007; 27 (1): 149–62. https://doi.org/10.1016/j.molcel.2007.05.029.; Uhl M., Csernok A., Aydin S., et al. Role of SIRT1 in homologous recombination. DNA Repair. 2010; 9 (4): 383–93. https://doi.org/10.1016/j.dnarep.2009.12.020.; Vaquero A., Scher M., Lee D., et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell. 2004; 16 (1): 93–105. https://doi.org/10.1016/j.molcel.2004.08.031.; Bosch-Presegué L., Raurell-Vila H., Marazuela-Duque A., et al. Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection. Mol Cell. 2011; 42 (2): 210–23. https://doi.org/10.1016/j.molcel.2011.02.034.; Yeung F., Hoberg J.E., Ramsey C.S., et al. Modulation of NF-kappaBdependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004; 23 (12): 2369–80. https://doi.org/10.1038/sj.emboj.7600244.; Sundaresan N.R., Pillai V.B., Wolfgeher D., et al. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal. 2011; 4 (182): ra46. https://doi.org/10.1126/scisignal.2001465.; Wang J., Chen J. SIRT1 regulates autoacetylation and histone acetyltransferase activity of TIP60. J Biol Chem. 2010; 285 (15): 11458–64. https://doi.org/10.1074/jbc.M109.087585.; Thapa R., Moglad E., Afzal M., et al. The role of sirtuin 1 in ageing and neurodegenerative disease: a molecular perspective. Ageing Res Rev. 2024; 102: 102545. https://doi.org/10.1016/j.arr.2024.102545.; Zach S., Felk S., Gillardon F. Signal transduction protein array analysis links LRRK2 to Ste20 kinases and PKC zeta that modulate neuronal plasticity. PLoS One. 2010; 5 (10): e13191. https://doi.org/10.1371/journal.pone.0013191.; Piccoli G., Onofri F., Cirnaru M.D., et al. Leucine-rich repeat kinase 2 binds to neuronal vesicles through protein interactions mediated by its C-terminal WD40 domain. Mol Cell Biol. 2014; 34 (12): 2147–61. https://doi.org/10.1128/MCB.00914-13.; Gómez-Suaga P., Luzón-Toro B., Churamani D., et al. Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum Mol Genet. 2012; 21 (3): 511–25. https://doi.org/10.1093/hmg/ddr481.; Громова О.А., Стаховская Л.В., Торшин И.Ю., Томилова И.К. Прием метформина провоцирует нарушения гомеостаза витамина В12. Consilium Medicum. 2017; 19 (4): 58–64.; Wolthers K.R., Toogood H.S., Jowitt T.A., et al. Crystal structure and solution characterization of the activation domain of human methionine synthase. FEBS J. 2007; 274 (3): 738–50. https://doi.org/10.1111/j.1742-4658.2006.05618.x.; Hassan Z., Coelho D., Bossenmeyer-Pourié C., et al. Cognitive impairment is associated with AMPAR glutamatergic dysfunction in a mouse model of neuronal methionine synthase deficiency. Cells. 2023; 12 (9): 1267. https://doi.org/10.3390/cells12091267.; Takahashi-Íñiguez T., García-Arellano H., Trujillo-Roldán M.A., Flores M.E. Protection and reactivation of human methylmalonyl-CoA mutase by MMAA protein. Biochem Biophys Res Commun. 2011; 404 (1): 443–7. https://doi.org/10.1016/j.bbrc.2010.11.141.; Wolthers K.R., Lou X., Toogood H.S., et al. Mechanism of coenzyme binding to human methionine synthase reductase revealed through the crystal structure of the FNR-like module and isothermal titration calorimetry. Biochemistry. 2007; 46 (42): 11833–44. https://doi.org/10.1021/bi701209p.; Jadavji N.M., Bahous R.H., Deng L., et al. Mouse model for deficiency of methionine synthase reductase exhibits short-term memory impairment and disturbances in brain choline metabolism. Biochem J. 2014; 461 (2): 205–12. https://doi.org/10.1042/BJ20131568.; Wolthers K.R., Scrutton N.S. Cobalamin uptake and reactivation occurs through specific protein interactions in the methionine synthasemethionine synthase reductase complex. FEBS J. 2009; 276 (7): 1942–51. https://doi.org/10.1111/j.1742-4658.2009.06919.x.; Kim J., Gherasim C., Banerjee R. Decyanation of vitamin B12 by a trafficking chaperone. Proc Natl Acad Sci USA. 2008; 105 (38): 14551–4. https://doi.org/10.1073/pnas.0805989105.; Kim J., Hannibal L., Gherasim C., et al. A human vitamin B12 trafficking protein uses glutathione transferase activity for processing alkylcobalamins. J Biol Chem. 2009; 284 (48): 33418–24. https://doi.org/10.1074/jbc.M109.057877.; Taylor J.M., Allen A.M., Graham A. Targeting mitochondrial 18 kDa translocator protein (TSPO) regulates macrophage cholesterol efflux and lipid phenotype. Clin Sci. 2014; 127 (10): 603–13. https://doi.org/10.1042/CS20140047.; Liu J., Huang J., Zhang Z., Zhang R., et al. Translocator protein 18 kDa (TSPO) as a novel therapeutic target for chronic pain. Neural Plast. 2022; 2022: 8057854. https://doi.org/10.1155/2022/8057854.; Bettendorff L., Goessens G., Sluse F., et al. Thiamine deficiency in cultured neuroblastoma cells: effect on mitochondrial function and peripheral benzodiazepine receptors. J Neurochem. 1995; 64 (5): 2013–21. https://doi.org/10.1046/j.1471-4159.1995.64052013.x.; El Hajj Chehadeh S., Dreumont N., Willekens J., et al. Early methyl donor deficiency alters cAMP signaling pathway and neurosteroidogenesis in the cerebellum of female rat pups. Am J Physiol Endocrinol Metab. 2014; 307 (11): E1009–19. https://doi.org/10.1152/ajpendo.00364.2014.; Chen K., Wang T., Li Y., et al. Rhodojaponin VI indirectly targets Cav2.2 channels via N-ethylmaleimide-sensitive fusion protein to alleviate neuropathic pain. Acta Pharm Sin B. 2023; 13 (3): 1326–36. https://doi.org/10.1016/j.apsb.2023.01.021.; Huang S.K., Lu C.W., Lin T.Y., Wang S.J. Neuroprotective role of the B vitamins in the modulation of the central glutamatergic neurotransmission. CNS Neurol Disord Drug Targets. 2022; 21 (4): 292–301. https://doi.org/10.2174/1871527320666210902165739.; https://www.pharmacoeconomics.ru/jour/article/view/1103
-
4Academic Journal
Authors: Mirzəyeva, T.N., Əkbərov, E.Ç., Həsənov, R.P., Mirzəyev, M.İ.
Source: Azerbaijan Medical Journal. :139-144
Subject Terms: diabetic polyneuropathy, диабетическая полинейропатия, morphological changes, миелиновые нервы, diabetik polineyropatiya, morfoloji dəyişikliklər, myelinated nerves, mielinli sinirlər, морфологические изменения, 3. Good health
-
5Academic Journal
Authors: S. V. Fomina, V. D. Zavadovskaya, Iu. G. Samoilova, M. V. Koshmeleva, D. A. Kachanov, E. I. Trifonova, M. A. Zorkaltsev, V. Е. Yun, С. В. Фомина, В. Д. Завадовская, Ю. Г. Самойлова, М. В. Кошмелева, Д. А. Качанов, Е. И. Трифонова, М. А. Зоркальцев, В. Э. Юн
Contributors: Авторы заявляют об отсутствии финансирования.
Source: Medical Visualization; Том 28, № 4 (2024); 133-141 ; Медицинская визуализация; Том 28, № 4 (2024); 133-141 ; 2408-9516 ; 1607-0763
Subject Terms: подростки, diabetic polyneuropathy, ultrasound, cross-sectional area, ultrasound elastography, electroneuromyography, children, teenagers, диабетическая полинейропатия, ультразвуковые исследование, площадь поперечного сечения, ультразвуковая эластография, электронейромиография, дети
File Description: application/pdf
Relation: https://medvis.vidar.ru/jour/article/view/1437/889; https://medvis.vidar.ru/jour/article/downloadSuppFile/1437/2301; Kallinikou D., Soldatou A., Tsentidis C. et al. Diabetic neuropathy in children and adolescents with type 1 diabetes mellitus: Diagnosis, pathogenesis, and associated genetic markers. Diabetes Metab. Res. Rev. 2019; 35 (7): e3178. https://doi.org/10.1002/dmrr.3178; Дедов И.И., Шестакова М.В., Викулова О.К., Железнякова А.В., Исаков М.А. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клинико-статистический анализ по данным регистра сахарного диабета на 01.01.2021. Сахарный диабет. 2021; 24 (3): 204–221. https://doi.org/10.14341/DM12759; Sloan G., Selvarajah D., Tesfaye S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat. Rev. Endocrinol. 2021; 17: 400–420. https://doi.org/10.1038/s41574-021-00496-z; Borire A.A., Issar T., Kwai N.C. et al. Correlation between markers of peripheral nerve function and structure in type 1 diabetes. Diabetes Metab. Res. Rev. 2018; 34 (7): e3028. https://doi.org/10.1002/dmrr.3028.; Эластография сдвиговых волн. Анализ клинических примеров (практическое руководство для последипломной профессиональной переподготовки врачей): Учебное пособие для использования в учебном процессе образовательных учреждений, реализующих программы высшего образования по специальности 31.08.11 Ультразвуковая диагностика (уровень ординатуры). 2-е изд., перераб. и доп. / Под ред. А.В. Борсукова. СИМК, 2022. 468 с. ISBN 978-5-91894-102; Фомина С.В., Завадовская В.Д., Самойлова Ю.Г., Кудлай Д.А., Кошмелева М.В., Качанов Д.А., Трифонова Е.И., Зоркальцев М.А., Юн В.Э. Ультразвуковая оценка периферических нервов у пациентов с сахарным диабетом типа 1 различной длительности в детском и подростковом возрасте. Врач. 2023; 34 (12): 17–24. https://doi.org/10.29296/25877305-2023-12-04; Zakrzewski J., Zakrzewska K., Pluta K. et al. Ultrasound elastography in the evaluation of peripheral neuropathies: a systematic review of the literature. Pol. J. Radiol. 2019; 84: e581–e591. https://doi.org/10.5114/pjr.2019.91439; Wang C., Wang H., Zhou Y. et al. Evaluation of the clinical value of shear wave elastography for early detection and diagnosis of diabetic peripheral neuropathy: a controlled preliminary prospective clinical study. BMC Musculoskelet. Disord. 2022; 23 (1): 1120. https://doi.org/10.1186/s12891-022-06085-z; Никитин С.С., Муртазина А.Ф., Дружинин Д.С. Блок проведения возбуждения по периферическому нерву как электрофизиологический феномен: обзор литературы. Нервно-мышечные болезни. 2019; 9 (1): 12–23. https://doi.org/10.17650/2222-8721-2019-9-1-12-23; Aslan M., Aslan A., Emeksiz H.C. et al. Assessment of Peripheral Nerves With Shear Wave Elastography in Type 1 Diabetic Adolescents Without Diabetic Peripheral Neuropathy. J. Ultrasound Med. 2019; 38 (6): 1583–1596. https://doi.org/10.1002/jum.14848; Данилова М.Г., Салтыкова В.Г., Усенко Е.Е. Нормальная эхографическая картина периферических нервов нижних конечностей у детей. Ультразвуковая и функциональная диагностика. 2018; 2: 59–74. https://doi.org/10.24835/1607-0771-2018-2-59-74; Goyal K., Aggarwal P., Gupta M. Ultrasound evaluation of peripheral nerves of the lower limb in diabetic peripheral neuropathy. Eur. J. Radiol. 2021; 145: 110058. https://doi.org/10.1016/j.ejrad.2021.110058; https://medvis.vidar.ru/jour/article/view/1437
-
6Academic Journal
Authors: D. Kh. Khaibullina, Yu. N. Maksimov, A. R. Khaibullina, Д. Х. Хайбуллина, Ю. Н. Максимов, А. Р. Хайбуллина
Source: Meditsinskiy sovet = Medical Council; № 5 (2024); 70-81 ; Медицинский Совет; № 5 (2024); 70-81 ; 2658-5790 ; 2079-701X
Subject Terms: атеросклероз, diabetic polyneuropathy, tunnel neuropathy, inflammation, Alzheimer’s disease, multiple sclerosis, radiculopathy, polyneuropathy, COVID-19, atherosclerosis, диабетическая полинейропатия, туннельная нейропатия, воспаление, болезнь Альцгеймера, рассеянный склероз, радикулопатия, полинейропатия
File Description: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/8223/7246; Snell EE, Strong FM, Peterson WH. Growth factors for bacteria: Fractionation and properties of an accessory factor for lactic acid bacteria. Biochem J. 1937;31(10):1789–1799. https://doi.org/10.1042/bj0311789.; Reed LJ, DeBusk BG, Gunsalus IC, Hornberger CS Jr. Crystalline alpha-lipoic acid; a catalytic agent associated with pyruvate dehydrogenase. Science. 1951;114(2952):93–94. https://doi.org/10.1126/science.114.2952.93.; Reed LJ. The chemistry and function of lipoic acid. Adv Enzymol Relat Subj Biochem. 1957;18:319–347. https://doi.org/10.1002/9780470122631.ch8.; Усачева АМ, Черников АВ, Карманова ЕЕ, Брусков ВИ. Фармакологические аспекты применения липоевой кислоты (обзор). Химико-фармацевтический журнал. 2021;55(11):9–17. https://doi.org/10.30906/0023-1134-2021-55-11-9-17.; Tibullo D, Li Volti G, Giallongo C, Grasso S, Tomassoni D, Anfuso CD et al. Biochemical and clinical relevance of alpha lipoic acid: antioxidant and anti-inflammatory activity, molecular pathways and therapeutic potential. Inflamm Res. 2017;66(11):947–959. https://doi.org/10.1007/s00011-017-1079-6.; Teichert J, Hermann R, Ruus P, Preiss R. Plasma kinetics, metabolism, and urinary excretion of alpha-lipoic acid following oral administration in healthy volunteers. J Clin Pharmacol. 2003;43(11):1257–1267. https://doi.org/10.1177/0091270003258654.; Uchida R, Okamoto H, Ikuta N, Terao K, Hirota T. Investigation of Enantioselective Membrane Permeability of α-Lipoic Acid in Caco-2 and MDCKII Cell. Int J Mol Sci. 2016;17(2):155. https://doi.org/10.3390/ijms17020155.; Kobayashi Y, Ito R, Saito K. Enantiomeric determination of α-lipoic acid in urine by LC/MS/MS. J Pharm Biomed Anal. 2019;166:435–439. https://doi.org/10.1016/j.jpba.2019.01.042.; Lechner S, Steimbach RR, Wang L, Deline ML, Chang YC, Fromme T et al. Chemoproteomic target deconvolution reveals Histone Deacetylases as targets of (R)-lipoic acid. Nat Commun. 2023;14(1):3548. https://doi.org/10.1038/s41467-023-39151-8.; Keith DJ, Butler JA, Bemer B, Dixon B, Johnson S, Garrard M et al. Age and gender dependent bioavailability of R- and R,S-α-lipoic acid: a pilot study. Pharmacol Res. 2012;66(3):199–206. https://doi.org/10.1016/j.phrs.2012.05.002.; Salehi B, Berkay Yılmaz Y, Antika G, Boyunegmez Tumer T, Fawzi Mahomoodally M, Lobine D et al. Insights on the Use of α-Lipoic Acid for Therapeutic Purposes. Biomolecules. 2019;9(8):356. https://doi.org/10.3390/biom9080356.; Booker SJ. Unraveling the pathway of lipoic acid biosynthesis. Chem Biol. 2004;11(1):10–12. https://doi.org/10.1016/j.chembiol.2004.01.002.; Morikawa T, Yasuno R, Wada H. Do mammalian cells synthesize lipoic acid? Identification of a mouse cDNA encoding a lipoic acid synthase located in mitochondria. FEBS Lett. 2001;498(1):16–21. https://doi.org/10.1016/s0014-5793(01)02469-3.; Sulo P, Martin NC. Isolation and characterization of LIP5. A lipoate biosynthetic locus of Saccharomyces cerevisiae. J Biol Chem. 1993;268(23):17634–17639. Аvailable at: https://pubmed.ncbi.nlm.nih.gov/8349643.; Thomsen-Zieger N, Schachtner J, Seeber F. Apicomplexan parasites contain a single lipoic acid synthase located in the plastid. FEBS Lett. 2003;547(1-3):80–86. https://doi.org/10.1016/s0014-5793(03)00673-2.; Gueguen V, Macherel D, Jaquinod M, Douce R, Bourguignon J. Fatty acid and lipoic acid biosynthesis in higher plant mitochondria. J Biol Chem. 2000;275(7):5016–5025. https://doi.org/10.1074/jbc.275.7.5016.; Amenta F, Buccioni M, Ben DD, Lambertucci C, Navia AM, Ngouadjeu Ngnintedem MA et al. Ex-vivo absorption study of lysine R-lipoate salt, a new pharmaceutical form of R-ALA. Eur J Pharm Sci. 2018;118:200–207. https://doi.org/10.1016/j.ejps.2018.03.025.; Packer L, Tritschler HJ, Wessel K. Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic Biol Med. 1997;22(1-2):359–378. https://doi.org/10.1016/s0891-5849(96)00269-9.; Wang JQ, Ling X, Wang HJ, Chen FE. α-Lipoic acid chemistry: the past 70 years. RSC Adv. 2023;13(51):36346–36363. https://doi.org/10.1039/d3ra07140e.; Cakatay U. Pro-oxidant actions of alpha-lipoic acid and dihydrolipoic acid. Med Hypotheses. 2006;66(1):110–117. https://doi.org/10.1016/j.mehy.2005.07.020.; Shay KP, Michels AJ, Li W, Kong AN, Hagen TM. Cap-independent Nrf2 translation is part of a lipoic acid-stimulated detoxification stress response. Biochim Biophys Acta. 2012;1823(6):1102–1109. https://doi.org/10.1016/j.bbamcr.2012.04.002.; Shi C, Zhou X, Zhang J, Wang J, Xie H, Wu Z. α-Lipoic acid protects against the cytotoxicity and oxidative stress induced by cadmium in HepG2 cells through regeneration of glutathione by glutathione reductase via Nrf2/ ARE signaling pathway. Environ Toxicol Pharmacol. 2016;45:274–281. https://doi.org/10.1016/j.etap.2016.06.003.; Biewenga GP, Haenen GR, Bast A. The pharmacology of the antioxidant lipoic acid. Gen Pharmacol. 1997;29(3):315–331. https://doi.org/10.1016/s0306-3623(96)00474-0.; Балаболкин МИ, Креминская ВМ, Клебанова ЕМ. Роль окислительного стресса в патогенезе диабетической нейропатии и возможность его коррекции препаратами α-липоевой кислоты. Проблемы эндокринологии. 2005;51(3):22–32. Режим доступа: https://www.probl-endojournals.ru/jour/article/view/10787.; Venkatraman MS, Chittiboyina A, Meingassner J, Ho CI, Varani J, Ellis CN et al. Alpha-Lipoic acid-based PPARgamma agonists for treating inflammatory skin diseases. Arch Dermatol Res. 2004;296(3):97–104. https://doi.org/10.1007/s00403-004-0480-5.; Sen CK. Redox signaling and the emerging therapeutic potential of thiol antioxidants. Biochem Pharmacol. 1998;55(11):1747–1758. https://doi.org/10.1016/s0006-2952(97)00672-2.; Kihara M, Low PA. Impaired vasoreactivity to nitric oxide in experimental diabetic neuropathy. Exp Neurol. 1995;132(2):180–185. https://doi.org/10.1016/0014-4886(95)90023-3.; Kowluru RA. Effect of advanced glycation end products on accelerated apoptosis of retinal capillary cells under in vitro conditions. Life Sci. 2005;76(9):1051–1060. https://doi.org/10.1016/j.lfs.2004.10.017.; Mîinea C, Kuruvilla R, Merrikh H, Eichberg J. Altered arachidonic acid biosynthesis and antioxidant protection mechanisms in Schwann cells grown in elevated glucose. J Neurochem. 2002;81(6):1253–1262. https://doi.org/10.1046/j.1471-4159.2002.00912.x.; Packer L, Witt EH, Tritschler HJ. alpha-Lipoic acid as a biological antioxidant. Free Radic Biol Med. 1995;19(2):227–250. https://doi.org/10.1016/0891-5849(95)00017-r.; Murase K, Hattori A, Kohno M, Hayashi K. Stimulation of nerve growth factor synthesis/secretion in mouse astroglial cells by coenzymes. Biochem Mol Biol Int. 1993;30(4):615–621. Available at: https://pubmed.ncbi.nlm.nih.gov/8401318/.; Papanas N, Ziegler D. Efficacy of α-lipoic acid in diabetic neuropathy. Expert Opin Pharmacother. 2014;15(18):2721–2731. https://doi.org/10.1517/14656566.2014.972935.; Dy SM, Bennett WL, Sharma R, Zhang A, Waldfogel JM, Nesbit SA et al. Preventing Complications and Treating Symptoms of Diabetic Peripheral Neuropathy. Comparative Effectiveness Review No. 187. (Prepared by the Johns Hopkins University Evidence-based Practice Center under Contract No. 290-2015- 00006-I.) AHRQ Publication No. 17-EHC005-EF. Rockville, MD: Agency for Healthcare Research and Quality; 2017. Available at: https://www.ncbi.nlm.nih.gov/books/NBK442335.; Строков ИА, Оганов ВВ. Патогенез, диагностика и патогенетическая терапия диабетической полинейропатии. Неврология, нейропсихиатрия, психосоматика. 2021;13(3):99–106. https://doi.org/10.14412/2074-2711-2021-3-99-106.; Mijnhout GS, Kollen BJ, Alkhalaf A, Kleefstra N, Bilo HJ. Alpha lipoic Acid for symptomatic peripheral neuropathy in patients with diabetes: a meta-analysis of randomized controlled trials. Int J Endocrinol. 2012;2012:456279. https://doi.org/10.1155/2012/456279.; Capece U, Moffa S, Improta I, Di Giuseppe G, Nista EC, Cefalo CMA et al. Alpha-Lipoic Acid and Glucose Metabolism: A Comprehensive Update on Biochemical and Therapeutic Features. Nutrients. 2022;15(1):18. https://doi.org/10.3390/nu15010018.; Silsby M, Feldman EL, Dortch RD, Roth A, Haroutounian S, Rajabally YA et al. Advances in diagnosis and management of distal sensory polyneuropathies. J Neurol Neurosurg Psychiatry. 2023;94(12):1025–1039. https://doi.org/10.1136/jnnp-2021-328489.; Девликамова ФИ, Максимов ЮН, Хайбуллина ДХ. Радикулопатия у пациента с диабетической полинейропатией: сложности диагностики и терапии. Медицинский совет. 2022;16(2):146–151. https://doi.org/10.21518/2079-701X-2022-16-2-146-151.; Ахмеджанова ЛТ, Баринов АН, Строков ИА. Диабетические и недиабетические полинейропатии у пациентов с сахарным диабетом. Журнал неврологии и психиатрии им. С.С. Корсакова. 2018;118(4):113–120. https://doi.org/10.17116/jnevro201811841113-120.; Maffi P, Secchi A. The Burden of Diabetes: Emerging Data. Dev Ophthalmol. 2017;60:1–5. https://doi.org/10.1159/000459641.; Ziegler D, Hanefeld M, Ruhnau KJ, Meiner HP, Lobisch M, Schotte K, Gries FA. Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant alpha-lipoic acid. A 3-week multicentre randomized controlled trial (ALADIN Study). Diabetologia. 1995;38(12):1425–1433. https://doi.org/10.1007/BF00400603.; Ziegler D, Ametov A, Barinov A, Dyck PJ, Gurieva I, Low PA et al. Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care. 2006;29(11):2365–2370. https://doi.org/10.2337/dc06-1216.; Ziegler D, Low PA, Litchy WJ, Boulton AJ, Vinik AI, Freeman R et al. Efficacy and safety of antioxidant treatment with α-lipoic acid over 4 years in diabetic polyneuropathy: the NATHAN 1 trial. Diabetes Care. 2011;34(9):2054–2060. https://doi.org/10.2337/dc11–0503.; Agathos E, Tentolouris A, Eleftheriadou I, Katsaouni P, Nemtzas I, Petrou A et al. Effect of α-lipoic acid on symptoms and quality of life in patients with painful diabetic neuropathy. J Int Med Res. 2018;46(5):1779–1790. https://doi.org/10.1177/0300060518756540.; Didangelos T, Karlafti E, Kotzakioulafi E, Kontoninas Z, Margaritidis C, Giannoulaki P, Kantartzis K. Efficacy and Safety of the Combination of Superoxide Dismutase, Alpha Lipoic Acid, Vitamin B12, and Carnitine for 12 Months in Patients with Diabetic Neuropathy. Nutrients. 2020;12(11):3254. https://doi.org/10.3390/nu12113254.; Mrakic-Sposta S, Vezzoli A, Maderna L, Gregorini F, Montorsi M, Moretti S et al. R(+)-Thioctic Acid Effects on Oxidative Stress and Peripheral Neuropathy in Type II Diabetic Patients: Preliminary Results by Electron Paramagnetic Resonance and Electroneurography. Oxid Med Cell Longev. 2018;2018:1767265. https://doi.org/10.1155/2018/1767265.; Ziegler D, Nowak H, Kempler P, Vargha P, Low PA. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis. Diabet Med. 2004;21(2):114–121. https://doi.org/10.1111/j.1464-5491.2004.01109.x.; Hsieh RY, Huang IC, Chen C, Sung JY. Effects of Oral Alpha-Lipoic Acid Treatment on Diabetic Polyneuropathy: A Meta-Analysis and Systematic Review. Nutrients. 2023;15(16):3634. https://doi.org/10.3390/nu15163634.; Prado MB Jr, Adiao KJB. Ranking Alpha Lipoic Acid and Gamma Linolenic Acid in Terms of Efficacy and Safety in the Management of Adults With Diabetic Peripheral Neuropathy: A Systematic Review and Network Metaanalysis. Can J Diabetes. https://doi.org/10.1016/j.jcjd.2024.01.007.; Ran GL, Li YP, Lu LC, Lan SH. Disease-modifying therapies for diabetic peripheral neuropathy: A systematic review and meta-analysis of randomized controlled trials. J Diabetes Complications. 2024;38(2):108691. https://doi.org/10.1016/j.jdiacomp.2024.108691.; Zhao M, Chen JY, Chu YD, Zhu YB, Luo L, Bu SZ. Efficacy of epalrestat plus α-lipoic acid combination therapy versus monotherapy in patients with diabetic peripheral neuropathy: a meta-analysis of 20 randomized controlled trials. Neural Regen Res. 2018;13(6):1087–1095. https://doi.org/10.4103/1673-5374.233453.; Frediani JK, Lal AA, Kim E, Leslie SL, Boorman DW, Singh V. The role of diet and non-pharmacologic supplements in the treatment of chronic neuropathic pain: A systematic review. Pain Pract. 2024;24(1):186–210. https://doi.org/10.1111/papr.13291.; Baicus C, Purcarea A, von Elm E, Delcea C, Furtunescu FL. Alpha-lipoic acid for diabetic peripheral neuropathy. Cochrane Database Syst Rev. 2024;1(1):CD012967. https://doi.org/10.1002/14651858.CD012967.pub2.; El-Nahas MR, Elkannishy G, Abdelhafez H, Elkhamisy ET, El-Sehrawy AA. Oral Alpha Lipoic Acid Treatment for Symptomatic Diabetic Peripheral Neuropathy: A Randomized Double-Blinded Placebo-Controlled Study. Endocr Metab Immune Disord Drug Targets. 2020;20(9):1531–1534. https://doi.org/10.2174/1871530320666200506081407.; Чуканова ЕИ. Влияние Тиоктацида на клинические проявления и течение дисциркуляторной энцефалопатии. РМЖ. 2010;18(16):1027–1030. Режим доступа: https://www.rmj.ru/articles/nevrologiya/Vliyanie_Tioktacida_na_klinicheskie_proyavleniya_i_techenie_discirkulyatornoy_encefalopatii/; Чуканова ЕИ, Чуканова АС. Применение антиоксидантных препаратов в комплексной патогенетической терапии сосудистых когнитивных нарушений. РМЖ. 2014;22(10):759–761. Режим доступа: https://www.rmj.ru/articles/klinicheskaya_farmakologiya/Primenenie_antioksidantnyh_preparatov_v_kompleksnoy_patogeneticheskoy_terapii_sosudistyh_kognitivnyh_narusheniy/?ysclid=lump63w3ft346686237.; Есин РГ, Хайруллин ИХ, Есин ОР. Диабетическая энцефалопатия: современные представления и потенциальные терапевтические стратегии. Журнал неврологии и психиатрии им. С.С. Корсакова. 2021;121(7):49–54. https://doi.org/10.17116/jnevro202112107149.; Gilron I, Robb S, Tu D, Holden RR, Jackson AC, Duggan S, Milev R. Randomized, double-blind, controlled trial of a combination of alphalipoic acid and pregabalin for neuropathic pain: the PAIN-CARE trial. Pain. 2024;165(2):461–469. https://doi.org/10.1097/j.pain.0000000000003038.; Скляр ИА, Воробьева ОВ, Шаряпова РБ, Садеков РК. Тиоктацид в лечении алкогольной полинейропатии. Эффективная фармакотерапия. 2001;(2):39–41. Режим доступа: https://umedp.ru/articles/alkogolnaya_polinevropatiya_patogenez_klinika_lechenie.html.; Ковражкина ЕА, Айриян НЮ, Серкин ГВ, Глушков КС, Павлов НА, Гехт АБ и др. Возможности и перспективы применения берлитиона для лечения алкогольной полинейропатии. Журнал неврологии и психиатрии им. С.С. Корсакова. 2004;104(2):33–37. https://pubmed.ncbi.nlm.nih.gov/15002318.; Pirlich M, Kiok K, Sandig G, Lochs H, Grune T. Alpha-lipoic acid prevents ethanol-induced protein oxidation in mouse hippocampal HT22 cells. Neurosci Lett. 2002;328(2):93–96. https://doi.org/10.1016/s0304-3940(02)00415-9.; Dinicola S, Fuso A, Cucina A, Santiago-Reyes M, Verna R, Unfer V et al. Natural products - alpha-lipoic acid and acetyl-L-carnitine – in the treatment of chemotherapy-induced peripheral neuropathy. Eur Rev Med Pharmacol Sci. 2018;22(14):4739–4754. https://doi.org/10.26355/eurrev_201807_15534.; Werida RH, Elshafiey RA, Ghoneim A, Elzawawy S, Mostafa TM. Role of alpha-lipoic acid in counteracting paclitaxel- and doxorubicin-induced toxicities: a randomized controlled trial in breast cancer patients. Support Care Cancer. 2022;30(9):7281–7292. https://doi.org/10.1007/s00520-022-07124-0.; Lee DW, Park HC, Kim DH. Protective effect of alpha-lipoic acid and epalrestat on oxaliplatin-induced peripheral neuropathy in zebrafish. Muscle Nerve. 2024;69(4):498–503. https://doi.org/10.1002/mus.28047.; Frank J, Kisters K, Stirban OA, Obeid R, Lorkowski S, Wallert M et al. The role of biofactors in the prevention and treatment of age-related diseases. Biofactors. 2021;47(4):522–550. https://doi.org/10.1002/biof.1728.; Dieter F, Esselun C, Eckert GP. Redox Active α-Lipoic Acid Differentially Improves Mitochondrial Dysfunction in a Cellular Model of Alzheimer and Its Control Cells. Int J Mol Sci. 2022;23(16):9186. https://doi.org/10.3390/ijms23169186.; Tóth F, Cseh EK, Vécsei L. Natural Molecules and Neuroprotection: Kynurenic Acid, Pantethine and α-Lipoic Acid. Int J Mol Sci. 2021;22(1):403. https://doi.org/10.3390/ijms22010403.; Литвиненко ИВ, Красаков ИВ, Бисага ГН, Скулябин ДИ, Полтавский ИД. Современная концепция патогенеза нейродегенеративных заболеваний и стратегия терапии. Журнал неврологии и психиатрии им. C.C. Корсакова. 2017;117(6-2):3–10. https://doi.org/10.17116/jnevro2017117623-10.; Dos Santos SM, Romeiro CFR, Rodrigues CA, Cerqueira ARL, Monteiro MC. Mitochondrial Dysfunction and Alpha-Lipoic Acid: Beneficial or Harmful in Alzheimer’s Disease?. Oxid Med Cell Longev. 2019;2019:8409329. https://doi.org/10.1155/2019/8409329.; Yadav V, Marracci G, Lovera J, Woodward W, Bogardus K, Marquardt W et al. Lipoic acid in multiple sclerosis: a pilot study. Mult Scler. 2005;11(2):159–165. https://doi.org/10.1191/1352458505ms1143oa.; Хабиров ФА, Есин РГ, Хайбуллин ТИ, Рогожин АА, Бабичева НН, Аверьянова ЛА, Гранатов ЕВ. Cенсорные расстройства при рассеянном склерозе и возможности их коррекции тиоктовой кислотой. Неврологический вестник. 2010;XLII(1):37–40. Режим доступа: https://journals.eco-vector.com/1027-4898/article/view/13578.; Xie H, Yang X, Cao Y, Long X, Shang H, Jia Z. Role of lipoic acid in multiple sclerosis. CNS Neurosci Ther. 2022;28(3):319–331. https://doi.org/10.1111/cns.13793.; Тарасова СВ, Курапов МА. Опыт применения препаратов тиоктовой кислоты в комплексном лечении пациентов с обострением рассеянного склероза. Фарматека. 2014;(19):59–63. Режим доступа: https://pharmateca.ru/ru/archive/article/30537?ysclid=lumqbyu1tl781535135.; Spain R, Powers K, Murchison C, Heriza E, Winges K, Yadav V et al. Lipoic acid in secondary progressive MS: A randomized controlled pilot trial. Neurol Neuroimmunol Neuroinflamm. 2017;4(5):e374. https://doi.org/10.1212/NXI.0000000000000374.; Loy BD, Fling BW, Horak FB, Bourdette DN, Spain RI. Effects of lipoic acid on walking performance, gait, and balance in secondary progressive multiple sclerosis. Complement Ther Med. 2018;41:169–174. https://doi.org/10.1016/j.ctim.2018.09.006.; Ranieri M, Sciuscio M, Cortese AM, Santamato A, Di Teo L, Ianieri G et al. The use of alpha-lipoic acid (ALA), gamma linolenic acid (GLA) and rehabilitation in the treatment of back pain: effect on health-related quality of life. Int J Immunopathol Pharmacol. 2009;22(3 Suppl):45–50. https://doi.org/10.1177/03946320090220S309.; Latini E, Bonasia G, Petroselli L, Mazzola M, Musa F, Santoboni F et al. Alpha-Lipoic Acid, Palmitoylethanolamide, Myrrh, and Oxygen-Ozone Therapy Improve Pharmacological Therapy in Acute Painful Lumbosacral Radiculopathy due to Herniated Disc. Pain Physician. 2023;26(4):E363–E373. Аvailable at: https://pubmed.ncbi.nlm.nih.gov/37535783/.; Bonetti M, Lauritano D, Ottaviani GM, Fontana A, Zambello A, Della Gatta L et al. Oxygen-Ozone Therapy Associated with Alpha Lipoic Acid Plus Palmitoylethanolamide and Myrrh versus Ozone Therapy in the Combined Treatment of Sciatic Pain Due to Herniated Discs: Observational Study on 318 Patients. Int J Environ Res Public Health. 2022;19(9):5716. https://doi.org/10.3390/ijerph19095716.; Scaturro D, Vitagliani F, Tomasello S, Sconza C, Respizzi S, Letizia Mauro G. Combined Rehabilitation with Alpha Lipoic Acid, Acetyl-L-Carnitine, Resveratrol, and Cholecalciferolin Discogenic Sciatica in Young People: A Randomized Clinical Trial. Medicina (Kaunas). 2023;59(12):2197. https://doi.org/10.3390/medicina59122197.; Abdelrahman KA, Ibrahim AS, Osman AM, Aly MG, Ali AS, Farrag WS. Alpha lipoic acid with pulsed radiofrequency in treatment of chronic lumbosacral radicular pain: A prospective, randomized study. Medicine (Baltimore). 2021;100(24):e26344. https://doi.org/10.1097/MD.0000000000026344.; Senoglu M, Nacitarhan V, Kurutas EB, Senoglu N, Altun I, Atli Y, Ozbag D. Intraperitoneal Alpha-Lipoic Acid to prevent neural damage after crush injury to the rat sciatic nerve. J Brachial Plex Peripher Nerve Inj. 2009;4:22. https://doi.org/10.1186/1749-7221-4-22.; Yildirim CH, Yucetas SC, Kaya M, Ozic C, Balioğlu MB, Ustun H et al. Alphalipoic acid inhibits peridural fibrosis following laminectomy through the inactivation of TGF-β1, PDGF, PAI-1 and IL-6 expressions. Turk Neurosurg. 2015;25(1):90–99. https://doi.org/10.5137/1019-5149.JTN.10447-14.1.; Boriani F, Granchi D, Roatti G, Merlini L, Sabattini T, Baldini N. Alpha-lipoic Acid After Median Nerve Decompression at the Carpal Tunnel: A Randomized Controlled Trial. J Hand Surg Am. 2017;42(4):236–242. https://doi.org/10.1016/j.jhsa.2017.01.011.; Monroy Guízar EA, García Benavides L, Ambriz Plascencia AR, Pascoe González S, Totsuka Sutto SE, Cardona Muñoz EG, Méndez-Del Villar M. Effect of Alpha-Lipoic Acid on Clinical and Neurophysiologic Recovery of Carpal Tunnel Syndrome: A Double-Blind, Randomized Clinical Trial. J Med Food. 2018;21(5):521–526. https://doi.org/10.1089/jmf.2017.0056.; Gülsah Ö, Bekir DE. Efficacy of intravenous alpha lipoic acid in the treatment of neuropatic pain due to carpal tunnel syndrome. Ideggyogy Sz. 2023;76(9-10):319–326. https://doi.org/10.18071/isz.76.0319.; Passiatore M, Perna A, De-Vitis R, Taccardo G. The Use of Alfa-Lipoic Acid-R (ALA-R) in Patients with Mild-Moderate Carpal Tunnel Syndrome: A Randomised Controlled Open Label Prospective Study. Malays Orthop J. 2020;14(1):1–6. https://doi.org/10.5704/MOJ.2003.001.; Saboori S, Falahi E, Eslampour E, Zeinali Khosroshahi M, Yousefi Rad E. Effects of alpha-lipoic acid supplementation on C-reactive protein level: A systematic review and meta-analysis of randomized controlled clinical trials. Nutr Metab Cardiovasc Dis. 2018;28(8):779–786. https://doi.org/10.1016/j.numecd.2018.04.003.; Đukić L, Trajković L, Knežević T, Dimitrijević J, Krstić D, Stojanović M. The Effect of α-lipoic Acid on C-Reactive Protein Level: A Meta-analysis of Randomized, Double-Blind, and Placebo-Controlled Studies. Dose Response. 2022;20(4):15593258221126827. https://doi.org/10.1177/15593258221126827.; Vajdi M, Mahmoudi-Nezhad M, Farhangi MA. An updated systematic review and dose-response meta-analysis of the randomized controlled trials on the effects of alpha-lipoic acid supplementation on inflammatory biomarkers. Int J Vitam Nutr Res. 2023;93(2):164–177. https://doi.org/10.1024/0300-9831/a000702.; Pagano G, Manfredi C, Pallardó FV, Lyakhovich A, Tiano L, Trifuoggi M. Potential roles of mitochondrial cofactors in the adjuvant mitigation of proinflammatory acute infections, as in the case of sepsis and COVID-19 pneumonia. Inflamm Res. 2021;70(2):159–170. https://doi.org/10.1007/s00011-020-01423-0.; Rochette L, Ghibu S. Mechanics Insights of Alpha-Lipoic Acid against Cardiovascular Diseases during COVID-19 Infection. Int J Mol Sci. 2021;22(15):7979. https://doi.org/10.3390/ijms22157979.; Uberti F, Ruga S, Farghali M, Galla R, Molinari C. A Combination of α-Lipoic Acid (ALA) and Palmitoylethanolamide (PEA) Blocks Endotoxin-Induced Oxidative Stress and Cytokine Storm: A Possible Intervention for COVID-19. J Diet Suppl. 2023;20(2):133–155. https://doi.org/10.1080/19390211.2021.1966152.; Barletta MA, Marino G, Spagnolo B, Bianchi FP, Falappone PCF, Spagnolo L, Gatti P. Coenzyme Q10 + alpha lipoic acid for chronic COVID syndrome. Clin Exp Med. 2023;23(3):667–678. https://doi.org/10.1007/s10238-022-00871-8.; Figueiredo LP, Paim PVDSL, Cerqueira-Silva T, Barreto CC, Lessa MM. Alpha-lipoic acid does not improve olfactory training results in olfactory loss due to COVID-19: a double-blind randomized trial. Braz J Otorhinolaryngol. 2024;90(1):101356. https://doi.org/10.1016/j.bjorl.2023.101356.; Indika NR, Frye RE, Rossignol DA, Owens SC, Senarathne UD, Grabrucker AM et al. The Rationale for Vitamin, Mineral, and Cofactor Treatment in the Precision Medical Care of Autism Spectrum Disorder. J Pers Med. 2023;13(2):252. https://doi.org/10.3390/jpm13020252.; Abu-Zaid A, Baradwan S, Bukhari IA, Alyousef A, Abuzaid M, Saleh SAK et al. The effect of alpha-lipoic acid supplementation on anthropometric, glycemic, lipid, oxidative stress, and hormonal parameters in individuals with polycystic ovary syndrome: a systematic review and meta-analysis of randomized clinical trials. Obstet Gynecol Sci. 2024;67(1):17–29. https://doi.org/10.5468/ogs.23206.; Dong L, Zhang X, Yang F, Li J, Yu X, Li Y. Effect of oral alpha-lipoic acid (ALA) on the treatment of male infertility: A protocol for systematic review and meta-analysis. Medicine (Baltimore). 2019;98(51):e18453. https://doi.org/10.1097/MD.0000000000018453.; Kucukgoncu S, Zhou E, Lucas KB, Tek C. Alpha-lipoic acid (ALA) as a supplementation for weight loss: results from a meta-analysis of randomized controlled trials. Obes Rev. 2017;18(5):594–601. https://doi.org/10.1111/obr.12528.; Mahmoudi-Nezhad M, Vajdi M, Farhangi MA. An updated systematic review and dose-response meta-analysis of the effects of α-lipoic acid supplementation on glycemic markers in adults. Nutrition. 2021;82:111041. https://doi.org/10.1016/j.nut.2020.111041.; Sun F, Jiang D, Cai J. Effects of valsartan combined with α-lipoic acid on renal function in patients with diabetic nephropathy: a systematic review and meta-analysis. BMC Endocr Disord. 2021;21(1):178. https://doi.org/10.1186/s12902-021-00844-0.; Ajith TA. Alpha-lipoic acid: A possible pharmacological agent for treating dry eye disease and retinopathy in diabetes. Clin Exp Pharmacol Physiol. 2020;47(12):1883–1890. https://doi.org/10.1111/1440-1681.13373.; Vajdi M, Abbasalizad Farhangi M. Alpha-lipoic acid supplementation significantly reduces the risk of obesity in an updated systematic review and dose response meta-analysis of randomised placebo-controlled clinical trials. Int J Clin Pract. 2020;74(6):e13493. https://doi.org/10.1111/ijcp.13493.; Haghighatdoost F, Hariri M. Does alpha-lipoic acid affect lipid profile? A meta-analysis and systematic review on randomized controlled trials. Eur J Pharmacol. 2019;847:1–10. https://doi.org/10.1016/j.ejphar.2019.01.001.; Fogacci F, Rizzo M, Krogager C, Kennedy C, Georges CMG, Knežević T et al. Safety Evaluation of α-Lipoic Acid Supplementation: A Systematic Review and Meta-Analysis of Randomized Placebo-Controlled Clinical Studies. Antioxidants (Basel). 2020;9(10):1011. https://doi.org/10.3390/antiox9101011.
-
7Academic Journal
Authors: Slobodin, T.M., Maslova, I.H.
Source: INTERNATIONAL NEUROLOGICAL JOURNAL; No. 6.100 (2018); 17-22
МЕЖДУНАРОДНЫЙ НЕВРОЛОГИЧЕСКИЙ ЖУРНАЛ; № 6.100 (2018); 17-22
МІЖНАРОДНИЙ НЕВРОЛОГІЧНИЙ ЖУРНАЛ; № 6.100 (2018); 17-22Subject Terms: neuropathic pain, прегабалін, диабетическая полинейропатия, прегабалин, болевой синдром, мемантин, нейропатическая боль, 3. Good health, нейропатичний біль, фіброміалгія, діабетична полінейропатія, diabetic polyneuropathy, фибромиалгия, больовий синдром, fibromyalgia, pregabalin, memantine, pain syndrome
File Description: application/pdf
Access URL: http://inj.zaslavsky.com.ua/article/view/146453
-
8Academic Journal
Authors: V.I. Romanenko
Source: INTERNATIONAL NEUROLOGICAL JOURNAL; Том 16, № 2 (2020); 70-75
МЕЖДУНАРОДНЫЙ НЕВРОЛОГИЧЕСКИЙ ЖУРНАЛ; Том 16, № 2 (2020); 70-75
МІЖНАРОДНИЙ НЕВРОЛОГІЧНИЙ ЖУРНАЛ; Том 16, № 2 (2020); 70-75Subject Terms: хроническая боль, нейропатия, диабетическая полинейропатия, уридин, холин, витамины группы В, chronic pain, neuropathy, diabetic polyneuropathy, uridine, choline, B vitamins, хронічний біль, нейропатія, діабетична полінейропатія, холін, вітаміни групи В, 3. Good health
File Description: application/pdf
Access URL: http://inj.zaslavsky.com.ua/article/view/200966
-
9Academic Journal
Source: Здоров'я суспільства-Zdorov'a suspil'stva; Том 8, № 5 (2019); 174-178
Health of Society; Том 8, № 5 (2019); 174-178
Здоровье общества-Zdorov'a suspil'stva; Том 8, № 5 (2019); 174-178Subject Terms: 03 medical and health sciences, 0302 clinical medicine, диабетическая полинейропатия, осложнения, сопутствующая патология, гликированный гемоглобін, сахарный диабет, diabetic polyneuropathy, complications, concomitant pathology, glycated hemoglobin, diabetes mellitus, діабетична полінейропатія, ускладнення, супутня патологія, глікований гемоглобін, цукровий діабет, 3. Good health
File Description: application/pdf
-
10Academic Journal
Authors: Shkala, L.V., Mishanich, G.I., Shkala, O.V., Cherpak, O.V., Karapetyan, E.A., Volkovskaya, T.G.
Source: Mìžnarodnij Endokrinologìčnij Žurnal, Vol 14, Iss 3, Pp 235-239 (2018)
INTERNATIONAL JOURNAL OF ENDOCRINOLOGY; Том 14, № 3 (2018); 235-239
Международный эндокринологический журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 14, № 3 (2018); 235-239
Міжнародний ендокринологічний журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 14, № 3 (2018); 235-239Subject Terms: diabetes mellitus type 2, 03 medical and health sciences, сахарный диабет 2-го типа, диабетическая полинейропатия, диабетическая кардиомиопатия, сердечно-сосудистые поражения, 0302 clinical medicine, 13. Climate action, cardiovascular disorders, цукровий діабет 2-го типу, діабетична нейропатія, діабетична кардіоміопатія, серцево-судинні ураження, diabetic neuropathy, diabetic cardiomyopathy, RC648-665, Diseases of the endocrine glands. Clinical endocrinology, 3. Good health
File Description: application/pdf
-
11Academic Journal
Authors: K. Singh, T. Yuzvenko, D. Kogut
Source: Mìžnarodnij Endokrinologìčnij Žurnal, Vol 15, Iss 7, Pp 576-579 (2019)
INTERNATIONAL JOURNAL OF ENDOCRINOLOGY (Ukraine); Том 15, № 7 (2019); 576-579
Международный эндокринологический журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 15, № 7 (2019); 576-579
Міжнародний ендокринологічний журнал-Mìžnarodnij endokrinologìčnij žurnal; Том 15, № 7 (2019); 576-579Subject Terms: цукровий діабет, мікросудинні ускладнення, транскетолаза, діабетична полінейропатія, тіамін, алітіамін, огляд, microvascular complications, review, сахарный диабет, микрососудистые осложнения, диабетическая полинейропатия, тиамин, аллитиамин, обзор, RC648-665, Diseases of the endocrine glands. Clinical endocrinology, 3. Good health, thiamine, allithiamines, 03 medical and health sciences, diabetic polyneuropathy, 0302 clinical medicine, diabetes mellitus, transketolase
File Description: application/pdf
Access URL: http://iej.zaslavsky.com.ua/article/download/186062/190192
https://doaj.org/article/afc58db434c54656a44301342d3df113
https://cyberleninka.ru/article/n/transketolase-activators-as-a-novel-therapy-their-significance-in-the-pathogenesis-and-treatment-of-diabetic-microvascular-complications
https://cyberleninka.ru/article/n/transketolase-activators-as-a-novel-therapy-their-significance-in-the-pathogenesis-and-treatment-of-diabetic-microvascular-complications/pdf
http://iej.zaslavsky.com.ua/article/download/186062/190192
http://iej.zaslavsky.com.ua/article/view/186062
http://iej.zaslavsky.com.ua/article/view/186062 -
12Academic Journal
Source: Офтальмология. Восточная Европа. :521-531
Subject Terms: 03 medical and health sciences, 0302 clinical medicine, сахарный диабет, bacterial corneal ulcer, diabetic polyneuropathy, диабетическая полинейропатия, diabetes mellitus, bacterial keratitis, autologous blood serum, бактериальный кератит, бактериальная язва роговицы, 3. Good health, аутологическая сыворотка крови
-
13
-
14Academic Journal
Authors: F. I. Devlikamova, Yu. N. Maksimov, D. Kh. Khaibullina, Ф. И. Девликамова, Ю. Н. Максимов, Д. Х. Хайбуллина
Source: Meditsinskiy sovet = Medical Council; № 2 (2022); 146-151 ; Медицинский Совет; № 2 (2022); 146-151 ; 2658-5790 ; 2079-701X
Subject Terms: лечение, back pain, neuropathic pain, radiculopathy, radicular compression syndrome, diabetic polyneuropathy, musculoskeletal pain, pain syndrome, diagnosis, treatment, боль в спине, нейропатическая боль, радикулопатия, компрессионно-корешковый синдром, диабетическая полинейропатия, скелетно-мышечная боль, болевой синдром, диагностика
File Description: application/pdf
Relation: https://www.med-sovet.pro/jour/article/view/6756/6098; van Hecke O., Austin S.K., Khan R.A., Smith B.H., Torrance N. Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain. 2014;155(4):654–662. https://doi.org/10.1016/j.pain.2013.11.013.; Давыдов О.С., Кукушкин М.Л. Фенотипы невропатической боли. Патогенез. 2018;16(3):151–153. https://doi.org/10.25557/2310-0435.2018.03.151-153.; Jensen T.S., Baron R., Haanpää M., Kalso E., Loeser J.D., Rice A.S.C., Treede R.-D. A new definition of neuropathic pain. Pain. 2011;152(10):2204–2205. https://doi.org/10.1016/j.pain.2011.06.017.; Schaefer C., Mann R., Sadosky A., Daniel S., Parsons B., Nieshoff E. et al. Burden of illness associated with peripheral and central neuropathic pain among adults seeking treatment in the United States: a patient-centered evaluation. Pain Med. 2014;15(12):2105–2119. https://doi.org/10.1111/pme.12502.; Яхно Н.Н., Кукушкин М.Л., Давыдов О.С., Данилов А.Б., Амелин А.В., Алексеев В.В. и др. Результаты Российского эпидемиологического исследования распространенности невропатической боли (EPIC Study). Лечение невропатической боли. Consilium Medicum. Неврология (Прил.). 2008;(2):64–70. Режим доступа: https://omnidoctor.ru/library/izdaniya-dlya-vrachey/consilium-medicum/cm2008/nevro2008_pril/nevro2009_2_pril/rezultaty-rossiyskogo-epidemiologicheskogoissledovaniya-rasprostranennosti-nevropaticheskoy-boli-ep/.; Яхно Н.Н., Кукушкин М.Л., Чурюканов М.В., Сыровегин А.В. Результаты открытого мультицентрового исследования «МЕРИДИАН» по оценке распространенности болевых синдромов в амбулаторной практике и терапевтических предпочтений врачей. Российский журнал боли. 2012;(3–4):10–14. Режим доступа: https://painrussia.ru/russian-Journal-of-Pain/36%2012.pdf.; Bennett M.I., Attal N., Backonja M.M., Baron R., Bouhassira D., Freynhagen R. et al. Using screening tools to identify neuropathic pain. Pain. 2007;127(3):199–203. https://doi.org/10.1016/j.pain.2006.10.034.; Bouhassira D., Attal N., Alchaar H., Boureau F., Brochet B., Bruxelle J. et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain. 2005;114(1–2):29–36. https://doi.org/10.1016/j.pain.2004.12.010.; Jiang M.-S., Yuan Y., Gu Z.-X., Zhuang S.-L. Corneal confocal microscopy for assessment of diabetic peripheral neuropathy: a meta-analysis. Br J Ophthalmol. 2016;100(1):9–14. https://doi.org/10.1136/bjophthalmol-2014-306038.; Haanpää M., Attal N., Backonja M., Baron R., Bennett M., Bouhassira D. et al. NeuPSIG guidelines on neuropathic pain assessment. Pain. 2011;152(1):14–27. https://doi.org/10.1016/j.pain.2010.07.031.; Давыдов О.С., Яхно Н.Н., Кукушкин М.Л., Чурюканов М.В., Абузарова Г.Р., Амелин А.В. и др. Невропатическая боль: клинические рекомендации по диагностике и лечению Российского общества по изучению боли. Российский журнал боли. 2018;(4):5–37. https://doi.org/10.25731/RASP.2018.04.025.; Baron R., Binder A., Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol. 2010;9(8):807–819. https://doi.org/10.1016/S1474-4422(10)70143-5.; Colloca L., Ludman T., Bouhassira D., Baron R., Dickenson A.H., Yarnitsky D. et al. Neuropathic pain. Nat Rev Dis Primers. 2017;3:17002. https://doi.org/10.1038/nrdp.2017.2.; Строков И.А., Фокина А.С., Головачева В.А., Кочетов А.Г. Эффективность тиолепты при диабетической полинейропатии (по данным исследования ЭТИКА). Журнал неврологии и психиатрии им. C.C. Корсакова. 2013;(5):36–40. Режим доступа: https://www.mediasphera.ru/issues/zhurnal-nevrologii-ipsikhiatrii-im-s-s-korsakova/2013/5/downloads/ru/031997-7298201357.; Finnerup N.B., Attal N., Haroutounian S., McNicol E., Baron R., Dworkin R.H. et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015;14(2):162–173. https://doi.org/10.1016/S1474-4422(14)70251-0.; Moore R.A., Derry S., Aldington D., Cole P., Wiffen P.J. Amitriptyline for neuropathic pain in adults. Cochrane Database Syst Rev. 2015;2015(7):CD008242. https://doi.org/10.1002/14651858.cd008242.pub3.; Gallagher H.C., Gallagher R.M., Butler M., Buggy D.J., Henman M.C. Venlafaxine for neuropathic pain in adults. Cochrane Database Syst Rev. 2015;2015(8):CD011091. https://doi.org/10.1002/14651858.CD011091.pub2.; Lunn M.P., Hughes R.A., Wiffen P.J. Duloxetine for treating painful neuropathy or chronic pain. Cochrane Database Syst Rev. 2009;(4):CD007115. https://doi.org/10.1002/14651858.CD007115.pub2.; Wiffen P.J., Derry S., Bell R.F., Rice A.S., Tölle T.R., Phillips T., Moore R.A. Gabapentin for chronic neuropathic pain in adults. Cochrane Database Syst Rev. 2017;6(6):CD007938. https://doi.org/10.1002/14651858.CD007938.pub4.; Wiffen P.J., Derry S., Moore R.A., Aldington D., Cole P., Rice A.S.C. et al. Antiepileptic drugs for neuropathic pain and fibromyalgia – an overview of Cochrane reviews. Cochrane Database Syst Rev. 2013;2013(11):CD010567. https://doi.org/10.1002/14651858.CD010567.pub2.; Derry S., Rice A.S., Cole P., Tan T., Moore R.A. Topical capsaicin (high concentration) for chronic neuropathic pain in adults. Cochrane Database Syst Rev. 2017;1(1):CD007393. https://doi.org/10.1002/14651858.CD007393.pub4.; van Nooten F., Treur M., Pantiri K., Stoker M., Charokopou M. Capsaicin 8% Patch Versus Oral Neuropathic Pain Medications for the Treatment of Painful Diabetic Peripheral Neuropathy: A Systematic Literature Review and Network Metaanalysis. Clin Ther. 2017;39(4):787–803.e18. https://doi.org/10.1016/j.clinthera.2017.02.010.; Duehmke R.M., Derry S., Wiffen P.J., Bell R.F., Aldington D., Moore R.A. Tramadol for neuropathic pain in adults. Cochrane Database Syst Rev. 2017;6(6):CD003726. https://doi.org/10.1002/14651858.CD003726.pub4.; Cooper T.E., Chen J., Wiffen P.J., Derry S., Carr D.B., Aldington D. et al. Morphine for chronic neuropathic pain in adults. Cochrane Database Syst Rev. 2017;5(5):CD011669. https://doi.org/10.1002/14651858.CD011669.pub2; Gaskell H., Moore R.A., Derry S., Stannard C. Oxycodone for pain in fibromyalgia in adults. Cochrane Database Syst Rev. 2016;9(9):CD012329. https://doi.org/10.1002/14651858.cd012329.; Строков И.А., Оганов В.В. Патогенез, диагностика и патогенетическая терапия диабетической полиневропатии. Неврология, нейропсихиатрия, психосоматика. 2021;13(3):99–106. https://doi.org/10.14412/2074-2711-2021-3-99-106.; Papanas N., Ziegler D. Efficacy of α-lipoic acid in diabetic neuropathy. Expert Opin Pharmacother. 2014;15(18):2721–2731. https://doi.org/10.1517/14656566.2014.972935.; Mijnhout G.S., Kollen B.J., Alkhalaf A., Kleefstra N., Bilo H.J.G. Alpha lipoic Acid for symptomatic peripheral neuropathy in patients with diabetes: a meta-analysis of randomized controlled trials. Int J Endocrinol. 2012;2012:456279. https://doi.org/10.1155/2012/456279.; Ziegler D., Nowak H., Kempler P., Vargha P., Low P.A. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis. Diabet Med. 2004;21(2):114–121. https://doi.org/10.1111/j.1464-5491.2004.01109.x.; Dy S.M., Bennett W.L., Sharma R., Zhang A., Waldfogel J.M., Nesbit S.A. et al. Preventing Complications and Treating Symptoms of Diabetic Peripheral Neuropathy. Rockville (MD): Agency for Healthcare Research and Quality (US); 2017. Available at: http://www.ncbi.nlm.nih.gov/books/NBK442335/.; Ziegler D., Low P.A., Litchy W.J., Boulton A.J.M., Vinik A.I., Freeman R. et al. Efficacy and safety of antioxidant treatment with α-lipoic acid over 4 years in diabetic polyneuropathy: the NATHAN 1 trial. Diabetes Care. 2011;34(9):2054–2060. https://doi.org/10.2337/dc11-0503.; Строков И.А., Фокина А.С. Альфа-липоевая кислота – основное фармакологическое лечение диабетической полиневропатии в стационаре и поликлинике. Медицинский совет. 2016;(17):28–33. https://doi.org/10.21518/2079-701X-2016-17-28-33.; Воробьева О.В. Альфа-липоевая кислота – спектр клинического применения. Медицинский алфавит. 2012;3(15):71–77. Режим доступа: https://medi.ru/info/3593/.; Шавловская О.А. Эффективность тиоктовой (альфа-липоевой) кислоты в терапии диабетической полинейропатии. Эффективная фармакотерапия. 2016;(12):8–14. Режим доступа: https://umedp.ru/articles/effektivnost_tioktovoy_alfalipoevoy_kisloty_v_terapii_diabeticheskoy_polineyropatii_.html.; Ranieri M., Sciuscio M., Cortese A.M., Santamato A., Teo L.D., Ianieri G. et al. The use of alpha-lipoic acid (ALA), gamma linolenic acid (GLA) and rehabilitation in the treatment of back pain: effect on health-related quality of life. Int J Immunopathol Pharmacol. 2009;22(3 Suppl):45–50. https://doi.org/10.1177/03946320090220S309.; Logan A.C., Wong C. Chronic fatigue syndrome: oxidative stress and dietary modifications. Altern Med Rev. 2001;6(5):450–459. Available at: https://pubmed.ncbi.nlm.nih.gov/11703165/.
-
15Academic Journal
Authors: Bakaliuk, T. H., Makarchuk, N. R., Stelmakh, H. O.
Source: Achievements of Clinical and Experimental Medicine; No. 4 (2020); 30-35 ; Достижения клинической и экспериментальной медицины; № 4 (2020); 30-35 ; Здобутки клінічної і експериментальної медицини; № 4 (2020); 30-35 ; 2415-8836 ; 1811-2471 ; 10.11603/1811-2471.2020.v.i4
Subject Terms: diabetes mellitus, diabetic polyneuropathy, dosed therapeutic gait, polarizing light, сахарный диабет, диабетическая полинейропатия, дозированная лечебная ходьба, поляризирующий свет, цукровий діабет, діабетична полінейропатія, дозована лікувальна ходьба, поляризуюче світло
File Description: application/pdf
-
16Academic Journal
Source: Family Medicine; No. 2-3 (2021); 28-33
Семейная медицина; № 2-3 (2021); 28-33
Сімейна медицина; № 2-3 (2021); 28-33Subject Terms: диабетическая полинейропатия, cardiovascular pathology, diabetic angiopathy, transsyndromic comorbidity, транссиндромальная коморбидность, діабетична ангіопатія, 3. Good health, транссиндромальна коморбідність, 03 medical and health sciences, діабетична полінейропатія, 0302 clinical medicine, diabetic polyneuropathy, кардіоваскулярна патологія, echocardiography, кардиоваскулярная патология, 616.379-008.64: 616.1, лінійна швидкість кровообігу, ехокардіоскопія, диабетическая ангиопатия, linear velocity of blood flow, линейная скорость кровообращения, эхокардиоскопия
File Description: application/pdf
-
17Academic Journal
Source: Сімейна медицина; № 5-6 (2020); 36-40
Family Medicine; No. 5-6 (2020); 36-40
Семейная медицина; № 5-6 (2020); 36-40Subject Terms: щитоподібна залоза, диабетическая полинейропатия, індекс маси тіла, индекс оценки боли, 616.379-008.64:616.85:616.441, индекс массы тела, body mass index, супутні хвороби, comorbidities, 3. Good health, thyroid, сопутствующие болезни, діабетична полінейропатія, diabetic polyneuropathy, index of pain rating, індекс оцінювання болю, щитовидная железа
File Description: application/pdf
-
18Academic Journal
Authors: Ivanova, A. S., Dorofeeva, A. D., Pilina, G. S., Vikhareva, E. G., Иванова, А. С., Дорофеева, А. Д., Пилина, Г. С., Вихарева, Е. Г.
Source: Сборник статей
Subject Terms: PEDIATRICS, DIABETES MELLITUS, NEUROLOGY, DIABETIC POLYNEUROPATHY, ПЕДИАТРИЯ, САХАРНЫЙ ДИАБЕТ, НЕВРОЛОГИЯ, ДИАБЕТИЧЕСКАЯ ПОЛИНЕЙРОПАТИЯ
File Description: application/pdf
Relation: Сборник статей "V Международная (75 Всероссийская) научно-практическая конференция "Актуальные вопросы современной медицинской науки и здравоохранения". 2020. №2; http://elib.usma.ru/handle/usma/3198
Availability: http://elib.usma.ru/handle/usma/3198
-
19Academic Journal
Authors: Martyniuk, L. P., Makarchuk, N. R.
Source: Achievements of Clinical and Experimental Medicine; No. 3 (2018); 91-98 ; Достижения клинической и экспериментальной медицины; № 3 (2018); 91-98 ; Здобутки клінічної і експериментальної медицини; № 3 (2018); 91-98 ; 2415-8836 ; 1811-2471 ; 10.11603/1811-2471.2018.v0.i3
Subject Terms: diabetic polyneuropathy, oxidative stress, lipid metabolism, keltican, polarizing light, диабетическая полинейропатия, оксидативный стресс, липидный обмен, келтикан, поляризованный свет, діабетична полінейропатія, оксидативний стрес, ліпідний обмін, келтікан, поляризуюче світло
File Description: application/pdf
Relation: https://ojs.tdmu.edu.ua/index.php/zdobutky-eks-med/article/view/9284/9111; https://repository.tdmu.edu.ua//handle/123456789/13883
-
20Academic Journal
Authors: Yarema, N. I., Khomitska, A. I., Savchenko, I. P., Radetska, L. V., Naumova, L. V., Kotsyuba, O. I.
Source: Achievements of Clinical and Experimental Medicine; No. 3 (2017) ; Достижения клинической и экспериментальной медицины; № 3 (2017) ; Здобутки клінічної і експериментальної медицини; № 3 (2017) ; 2415-8836 ; 1811-2471 ; 10.11603/1811-2471.2017.v1.i3
Subject Terms: stable ischemic heart disease, left ventricle diastolic dysfunction, diabetes mellitus type 2, diabetic neuropathy of the lower extremities, oxygenation of arterial and venous blood, alpha-lipoic acid, стабильная ишемическая болезнь сердца, диастолическая дисфункция левого желудочка, сахарный диабет 2 типа, диабетическая полинейропатия нижних конечностей, оксигенация артериальной и венозной крови, альфа-липоевая кислота, стабільна ішемічна хвороба серця, діастолічна дисфункція лівого шлуночка, цукровий діабет 2 типу, діабетична полінейропатія нижніх кінцівок, оксигенація артеріальної та венозної крові, альфа-ліпоєва кислота
File Description: application/pdf; application/vnd.openxmlformats-officedocument.wordprocessingml.document
Relation: https://ojs.tdmu.edu.ua/index.php/zdobutky-eks-med/article/view/7954/7668; https://ojs.tdmu.edu.ua/index.php/zdobutky-eks-med/article/view/7954/8793; https://ojs.tdmu.edu.ua/index.php/zdobutky-eks-med/article/view/7954/8794; https://repository.tdmu.edu.ua//handle/123456789/13745