-
1Academic Journal
Source: Российские биомедицинские исследования, Vol 8, Iss 3 (2024)
-
2Academic Journal
Source: Сверхкритические Флюиды: Теория и Практика. 16:83-87
Subject Terms: децеллюляризация, сверх-критический флюид, коллагеновый каркас, протез крестообразной связки, биосовместимый материал, материалы ксеногенного происхождения
-
3Academic Journal
Authors: A. D. Belova, E. A. Nemets, D. D. Filin, A. S. Ponomareva, L. A. Kirsanova, Yu. B. Basok, V. I. Sevastianov, А. Д. Белова, Е. А. Немец, Д. Д. Филин, А. С. Пономарева, Л. А. Кирсанова, Ю. Б. Басок, В. И. Севастьянов
Source: Russian Journal of Transplantology and Artificial Organs; Том 27, № 1 (2025); 103-113 ; Вестник трансплантологии и искусственных органов; Том 27, № 1 (2025); 103-113 ; 1995-1191
Subject Terms: тканевая инженерия, decellularization, glycosaminoglycans, tissue engineering, децеллюляризация, гликозаминогликаны
File Description: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1869/1741; https://journal.transpl.ru/vtio/article/downloadSuppFile/1869/1818; https://journal.transpl.ru/vtio/article/downloadSuppFile/1869/1819; https://journal.transpl.ru/vtio/article/downloadSuppFile/1869/1821; https://journal.transpl.ru/vtio/article/downloadSuppFile/1869/1822; https://journal.transpl.ru/vtio/article/downloadSuppFile/1869/1823; https://journal.transpl.ru/vtio/article/downloadSuppFile/1869/1866; Dai Q, Jiang W, Huang F, Song F, Zhang J, Zhao H. Recent advances in liver engineering with decellularized scaffold. Front Bioeng Biotechnol. 2022; 10: 831477. doi:10.3389/fbioe.2022.831477.; Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater. 2021; 10: 15–31. doi:10.1016/j.bioactmat.2021.09.014.; Isaeva EV, Beketov EE, Arguchinskaya NV, Ivanov SА, Shegay PV, Kaprin AD. Decellularized Extracellular Matrix for Tissue Engineering (Review). Sovrem Tekhnologii Med. 2022; 14 (3): 57–68. doi:10.17691/stm2022.14.3.07.; García-Gareta E, Abduldaiem Y, Sawadkar P, Kyriakidis C, Lali F, Greco KV. Decellularised scaffolds: just a framework? Current knowledge and future directions. J Tissue Eng. 2020; 11: 2041731420942903. doi:10.1177/2041731420942903.; Biomimetics of Extracellular Matrices for Cell and Tissue Engineered Medical Products / Ed. V.I. Sevastianov, Yu.B. Basok. Newcastle upon Tyne, UK: Cambridge Scholars Publishing, 2023; 339.; Sodhi H, Panitch A. Glycosaminoglycans in tissue engineering: a review. Biomolecules. 2020; 11 (1): 29. doi:10.3390/biom11010029.; Huang Z, Godkin O, Schulze-Tanzil G. The challenge in using mesenchymal stromal cells for recellularization of decellularized cartilage. Stem Cell Rev Rep. 2017; 13 (1): 50–67. doi:10.1007/s12015-016-9699-8.; Neishabouri A, Soltani Khaboushan A, Daghigh F, Kajbafzadeh AM, Majidi Zolbin M. Decellularization in tissue engineering and regenerative medicine: evaluation, modification, and application methods. Front Bioeng Biotechnol. 2022; 10: 805299. doi:10.3389/fbioe.2022.805299.; Jeong W, Kim MK, Kang HW. Effect of detergent type on the performance of liver decellularized extracellular matrix-based bio-inks. J Tissue Eng. 2021; 12: 2041731421997091. doi:10.1177/2041731421997091.; Willemse J, Verstegen MMA, Vermeulen A, Schurink IJ, Roest HP, van der Laan LJW, de Jonge J. Fast, robust and effective decellularization of whole human livers using mild detergents and pressure controlled perfusion. Mater Sci Eng C Mater Biol Appl. 2020; 108: 110200. doi:10.1016/j.msec.2019.110200.; Немец ЕА, Малкова АП, Духина ГА, Лажко АЭ, Басок ЮБ, Кириллова АД, Севастьянов ВИ. Влияние сверхкритического диоксида углерода на биосовместимые и резорбтивные свойства in vivo тканеспецифических матриксов из децеллюляризованных фрагментов печени свиньи. Перспективные материалы. 2021; 11: 20–31. doi:10.30791/1028-978X-2021-11-20-31.; Gilpin A, Yang Y. Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed Res Int. 2017; 2017: 9831534. doi:10.1155/2017/9831534.; Syed O, Walters NJ, Day RM, Kim HW, Knowles JC. Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomater. 2014; 10 (12): 5043–5054. doi:10.1016/j.actbio.2014.08.024.; Sevastianov VI, Basok YuB, Grigoriev AM, Nemets EA, Kirillova AD, Kirsanova LA et al. Decellularization of cartilage microparticles: Effects of temperature, supercritical carbon dioxide and ultrasound on biochemical, mechanical, and biological properties. J Biomed Mater Res A. 2023; 111 (4): 543–555. doi:10.1002/jbm.a.37474.; Bakhtiar H, Rajabi S, Pezeshki-Modaress M, Ellini MR, Panahinia M, Alijani S et al. Optimizing methods for bovine dental pulp decellularization. J Endod. 2021; 47 (1): 62–68. doi:10.1016/j.joen.2020.08.027.; Kobes JE, Georgiev GI, Louis AV, Calderon IA, Yoshimaru ES, Klemm LM et al. A comparison of iron oxide particles and silica particles for tracking organ recellularization. Mol Imaging. 2018; 17: 1536012118787322. doi:10.1177/1536012118787322.; Kim JK, Koh YD, Kim JO, Seo DH. Development of a decellularization method to produce nerve allografts using less invasive detergents and hyper/hypotonic solutions. J Plast Reconstr Aesthet Surg. 2016; 69 (12): 1690–1696. doi:10.1016/j.bjps.2016.08.016.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32 (12): 3233–3243. doi:10.1016/j.biomaterials.2011.01.057.; Suss PH, Ribeiro VST, Motooka CE, de Melo LC, Tuon FF. Comparative study of decellularization techniques to obtain natural extracellular matrix scaffolds of human peripheral-nerve allografts. Cell Tissue Bank. 2022; 23 (3): 511–520. doi:10.1007/s10561-021-09977-x.; Немец ЕА, Кирсанова ЛА, Басок ЮБ, Шагидулин МЮ, Волкова ЕА, Метельский СТ, Севастьянов ВИ. Особенности технологии децеллюляризации фрагментов печени человека как тканеспецифического мелкодисперсного матрикса для клеточно-инженерной конструкции печени. Вестник трансплантологии и искусственных органов. 2017; 19 (4): 70–77. doi:10.15825/1995-1191-2017-4-70-77.; Кириллова АД, Басок ЮБ, Лажко АЭ, Григорьев АМ, Кирсанова ЛА, Немец ЕА, Севастьянов ВИ. Создание тканеспецифического микродисперсного матрикса из децеллюляризованной печени свиньи. Физика и химия обработки материалов. 2020; 4: 41–50. doi:10.30791/0015-3214-2020-4-41-50.; ГОСТ ISO 10993-5-2011. Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 5. Исследование на цитотоксичность: методы in vitro. М.: Стандартинформ, 2014; 9. doi:10.1242/dev.114215.; Zhou J, Fritze O, Schleicher M, Wendel HP, SchenkeLayland K, Harasztosi C et al. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity andthrombogenicity. Biomaterials. 2010; 31 (9): 2549– 2554. doi:10.1016/j.biomaterials.2009.11.088.; O’Neill JD, Anfang R, Anandappa A, Costa J, Javidfar J, Wobma HM et al. Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann Thorac Surg. 2013; 96 (3): 1046–1056. doi:10.1016/j.athoracsur.2013.04.022.; Sullivan DC, Mirmalek-Sani SH, Deegan DB, Baptista PM, Aboushwareb T, Atala A, Yoo JJ. Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials. 2012; 33 (31): 7756–7764. doi:10.1016/j.biomaterials.2012.07.023.; https://journal.transpl.ru/vtio/article/view/1869
-
4Academic Journal
Authors: N. V. Baranova, A. S. Ponomareva, L. A. Kirsanova, A. O. Nikolskaya, G. N. Bubentsova, Yu. B. Basok, V. I. Sevastianov, Н. В. Баранова, А. С. Пономарева, Л. А. Кирсанова, А. О. Никольская, Г. Н. Бубенцова, Ю. Б. Басок, В. И. Севастьянов
Source: Russian Journal of Transplantology and Artificial Organs; Том 26, № 2 (2024); 94-104 ; Вестник трансплантологии и искусственных органов; Том 26, № 2 (2024); 94-104 ; 1995-1191
Subject Terms: тканеспецифический скаффолд, islets of Langerhans, cell-engineered construct, pancreas, decellularization, tissue-specific scaffold, островки Лангерганса, клеточно-инженерная конструкция, поджелудочная железа, децеллюляризация
File Description: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1772/1615; https://journal.transpl.ru/vtio/article/view/1772/1654; Shapiro AM, Pokrywczynska AM, Ricordi C. Clinical pancreatic islet transplantation. Nat Rev Endocrinol. 2017; 13 (5): 268–277. doi:10.1038/nrendo.2016.178.; Cayabyab F, Nih LR, Yoshihara E. Advances in Pancreatic Islet Transplantation Sites for the Treatment of Diabetes. Front Endocrinol (Lausanne). 2021; 12: 732431. doi:10.3389/fendo.2021.732431.; Reid L, Faye Baxter F, Forbes S. Effects of islet transplantation on microvascular and macrovascular complications in type 1 diabetes. Diabet Med. 2021; 38 (7): e14570. doi:10.1111/dme.14570.; Eguchi N, Damyar K, Alexander M, Dafoe D, Lakey JRT, Ichii H. Anti-Oxidative Therapy in Islet Cell Transplantation. Antioxidants (Basel). 2022; 11 (6): 1038. doi:10.3390/antiox11061038.; Amer LD, Mahoney MJ, Bryant SJ. Tissue engineering approaches to cell-based type 1 diabetes therapy. Tissue Eng Part B Rev. 2014; 20 (5): 455–467. doi:10.1089/ten.TEB.2013.0462.; Mirmalek-Sani S-H, Orlando G, McQuilling JP, Pareta R, Mack DL, Salvatori M et al. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials. 2013; 34 (22): 5488–5495. doi:10.1016/j.biomaterials.2013.03.054.; Abualhassan N, Sapozhnikov L, Pawlick RL, Kahana M, Pepper AR, Bruni A et al. Lung-derived microscaffolds facilitate diabetes reversal after mouse and human intraperitoneal islet transplantation. PLoS One. 2016; 11 (5): e0156053. doi:10.1371/journal.pone.0156053.; Damodaran G, Vermette P. Decellularized pancreas as a native extracellular matrix scaffold for pancreatic islet seeding and culture. J Tissue Eng Regen Med. 2018; 12 (5): 1230–1237; doi:10.1002/term.2655.; Lim LY, Ding SSL, Muthukumaran P, Teoh SH, Koh Y, Teo AKK. Tissue engineering of decellularized pancreas scaffolds for regenerative medicine in diabetes. Acta Biomater. 2023; 157: 49–66. doi:10.1016/j.actbio.2022.11.032.; Wu D, Wan J, Huang Y, Guo Y, Xu T, Zhu M et al. 3d Culture of MIN-6 Cells on Decellularized Pancreatic Scaffold: In Vitro and In Vivo Study. Biomed Res Int. 2015; 2015: 432645. doi:10.1155/2015/432645.; Goh S-K, Bertera S, Olsen P, Candiello JE, Halfter W, Uechi G et al. Perfusion-Decellularized Pancreas As A Natural 3d Scaffold For Pancreatic Tissue And Whole Organ Engineering. Biomaterials. 2013; 34 (28): 6760– 6772. doi:10.1016/J.Biomaterials.2013.05.066.; Sabetkish S, Kajbafzadeh AM. The Most Ideal Pancreas Extracellular Matrix as a Platform for Pancreas Bioengineering: Decellularization/Recellularization Protocols. Adv Exp Med Biol. 2021; 1345: 61–70. doi:10.1007/9783-030-82735-9_6.; Biomimetics of Extracellular Matrices for Cell and Tissue Engineered Medical Products / Eds. Victor I. Sevastianov and Yulia B. Basok. – Newcastle upon Tyne, UK: Cambridge Scholars Publishing, 2023; 339.; Sevastianov VI, Ponomareva AS, Baranova NV, Kirsanova LA, Basok YuB, Nemets EA et al. Decellularization of Human Pancreatic Fragments with Pronounced Signs of Structural Changes. Int J Mol Sci. 2023; 24 (1): 119. doi:10.3390/ijms24010119.28.; Napierala H, Hillebrandt K-H, Haep N, Tang P, Tintemann M, Gassner J et al. Engineering an endocrine neopancreas by repopulation of a decellularized rat pancreas with islets of Langerhans. Sci Rep. 2017 Feb 2; 7: 41777. doi:10.1038/srep41777.; Скалецкая ГН, Скалецкий НН, Кирсанова ЛА, Бубенцова ГН, Волкова ЕА, Севастьянов ВИ. Экспериментальная имплантация тканеинженерной конструкции поджелудочной железы. Вестник трансплантологии и искусственных органов. 2019; 21 (2): 104–111. doi:10.15825/1995-1191-2019-2-104-111.; Пономарева АС, Баранова НВ, Никольская АО, Кирсанова ЛА, Онищенко НА, Гоникова ЗЗ и др. Внутрибрюшинное введение клеточно-инженерной конструкции поджелудочной железы крысам с экспериментальным сахарным диабетом (предварительные результаты). Вестник трансплантологии и искусственных органов. 2023; 25 (2): 107–117.; Smink AM, de Vos P. Therapeutic strategies for modulating the extracellular matrix to improve pancreatic islet function and survival after transplantation. Curr Diab Rep. 2018; 18 (7): 39. doi:10.1007/s11892-018-1014-4.; https://journal.transpl.ru/vtio/article/view/1772
-
5Academic Journal
Authors: Ларионов, П.М., Погорелова, Н.А., Харченко, А.В., Терещенко, В.П., Ступак, Е.В., Ступак, В.В., Самохин, А.Г., Корель, А.В., Кирилова, И.А.
Source: POLYTRAUMA; № 1 (2024): март; 67-74 ; ПОЛИТРАВМА / POLYTRAUMA; № 1 (2024): март; 67-74 ; 2541-867X ; 1819-1495
Subject Terms: bacterial cellulose, decellularization, biocompatibility, бактериальная целлюлоза, децеллюляризация, биосовместимость
File Description: application/pdf
Availability: http://poly-trauma.ru/index.php/pt/article/view/494
-
6Academic Journal
Authors: Anatoliy Sokol, Dmytro Grekov, Glib Yemets, Alexander Galkin, Nataliia Shchotkina, Arkadii Dovghaliuk, Nadiia Rudenko, Iliia Yemets
Contributors: ELAKPI
Source: Innovative Biosystems and Bioengineering. 4:189-198
Subject Terms: 0301 basic medicine, 0303 health sciences, децелюляризація, pericardium, перикард, 3. Good health, додецилсульфат натрію, тканинна інженерія, децеллюляризация, додецилсульфат натрия, 03 medical and health sciences, sodium dodecyl sulfate, tissue engineering, тканевая инженерия, decellularization
File Description: application/pdf
-
7Academic Journal
Source: Сверхкритические Флюиды: Теория и Практика. 15:3-13
Subject Terms: гистологические исследования, supercritical CO, поверхностно-активные вещества, сверхкритические флюиды, DNA, surfactants, децеллюляризация, porcine cartilage, мезенхимальные стромальные клетки, decellularization, histological studies, ethanol, ДНК, хрящ свиньи, mesenchymal stromal cells, этанол
-
8Academic Journal
Source: Сверхкритические Флюиды: Теория и Практика. 13:20-32
Subject Terms: biomaterial processing, биоматериалы, cвepxкpитичecкий диоксид углерода, sterilization, 12. Responsible consumption, децеллюляризация, стерилизация, supercritical carbon dioxide, 13. Climate action, tissue engineering, тканевая инженерия, импрегнация, decellularization, impregnation
-
9Academic Journal
Authors: Yu. B. Basok, A. A. Kondratenko, L. I. Kalyuzhnaya, E. A. Volkova, K. A. Vorobyov, V. I. Sevastianov, Ю. Б. Басок, А. А. Кондратенко, Л. И. Калюжная, Е. А. Волкова, К. А. Воробьев, В. И. Севастьянов
Source: Russian Journal of Transplantology and Artificial Organs; Том 25, № 2 (2023); 82-98 ; Вестник трансплантологии и искусственных органов; Том 25, № 2 (2023); 82-98 ; 1995-1191
Subject Terms: тканевая инженерия, decellularization, extracellular matrix, regenerative medicine, tissue engineering, децеллюляризация, внеклеточный матрикс, регенеративная медицина
File Description: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1626/1473; https://journal.transpl.ru/vtio/article/view/1626/1492; https://journal.transpl.ru/vtio/article/downloadSuppFile/1626/1307; https://journal.transpl.ru/vtio/article/downloadSuppFile/1626/1308; Севастьянов ВИ. Технологии тканевой инженерии и регенеративной медицины. Вестник трансплантологии и искусственных органов. 2014; 16 (3): 93–108. doi:10.15825/1995-1191-2014-3-93-108.; Мелешина АВ, Быстрова АС, Роговая ОС, Воротеляк ЕА, Васильев АВ, Загайнова ЕВ. Тканеинженерные конструкты кожи и использование стволовых клеток для создания кожных эквивалентов. Современные технологии в медицине. 2017; 9 (1): 198–220. doi:10.17691/stm2017.9.1.24.; Фоминых ЕМ, Митрофанов НВ, Живцов ОП, Стручков АА, Зубрицкий ВФ, Лебедева ЮН и др. Трансплантация тканевых эквивалентов в лечении некоторых повреждений кожи. Вестник трансплантологии и искусственных органов. 2020; 22 (1): 165–173. doi:10.15825/19952020-1-165-173.; Севастьянов ВИ, Григорьев АМ, Басок ЮБ, Кирсанова ЛА, Василец НВ, Малкова АП и др. Биосовместимые и матриксные свойства полилактидных губок. Вестник трансплантологии и искусственных органов. 2018; 20 (2): 82–90. doi:10.15825/1995-1191-2018-2-82-90.; Liu H, Gong Y, Zhang K, Ke S, Wang Y, Wang J, Wang H. Recent Advances in Decellularized Matrix-Derived Materials for Bioink and 3D Bioprinting. Gels. 2023; 9 (3): 195. doi:10.3390/gels9030195.; Басок ЮБ, Севастьянов ВИ. Технологии тканевой инженерии и регенеративной медицины в лечении дефектов хрящевой ткани суставов. Вестник трансплантологии и искусственных органов. 2016; 18 (4): 102–122. doi:10.15825/1995-1191-2016-4-102-122.; Sevastianov VI, Basok YB, Grigor’ev AM, Kirsanova LA, Vasilets VN. Formation of tissue-engineered construct of human cartilage tissue in a flow-through bioreactor. Bulletin of Experimental Biology and Medicine. 2017; 164: 269–273. doi:10.1007/s10517-017-3971-z.; Севастьянов ВИ, Басок ЮБ, Григорьев АМ, Кирсанова ЛА, Василец НВ. Перфузионный биореактор для создания тканеинженерных конструкций. Медицинская техника. 2017; 303 (3): 9–11.; Badylak SF. Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Annals of Biomedical Engineering. 2014; 42 (7): 1517–1527. doi:10.1007/s10439-013-0963-7. PMID: 24402648.; Bakhtyar N, Jeschke MG, Mainville L, Herer E, AminiNik S. Acellular gelatinous material of human umbilical cord enhances wound healing: a candidate remedy for deficient wound healing. Frontiers in Physiology. 2017; 8: 200. doi:10.3389/fphys.2017.00200. PMID: 28421003.; Gupta P, Chaudhuri GR, Janani G, Agarwala M, Ghosh D, Nandi SK, Mandal BB. Functionalized silk vascular grafts with decellularized human Wharton’s jelly improves remodeling via immunomodulation in rabbit jugular vein. Advanced Healthcare Materials. 2021; 10 (19): e2100750. doi:10.1002/adhm.202100750. PMID: 34378360.; Калюжная ЛИ, Чернов ВЕ, Фрумкина АС, Чеботарев СВ, Земляной ДА, Товпеко ДВ, Косулин АВ. Изготовление тканеинженерного бесклеточного матрикса пуповины человека. Вестник Российской военномедицинской академии. 2020; 69 (1): 124–130. doi:10.17816/brmma25980.; Sobolewski K, Małkowski A, Bańkowski E, Jaworski S. Wharton’s jelly as a reservoir of peptide growth factors. Placenta. 2005; 26 (10): 747–752. doi:10.1016/j.placenta.2004.10.008. PMID: 16226124.; Gupta A, ElAmin SF, Levy HJ, SzeTu R, Ibim SE, Maffulli N. Umbilical cord-derived Wharton’s jelly for regenerative medicine applications. Journal of Orthopaedic Surgery. 2020; 15. doi:10.1186/s13018-020-15537. PMID: 32054483.; Fayon A, Helle D, Francius G. Characterization of an innovative biomaterial derived from human Wharton’s jelly as a new promising coating for tissue engineering applications. Frontiers in Bioengineering and Biotechnology. 2022; 10: 884069. doi:10.3389/fbioe.2022.884069. PMID: 35769101.; Dubus M, Scomazzon L, Chevrier J, Ledouble C, Baldit A, Braux J et al. Antibacterial and immunomodulatory properties of acellular Wharton’s jelly matrix. Biomedicines. 2022; 10 (2): 227. doi:10.3390/biomedicines10020227. PMID: 35203437.; Dubus M, Scomazzon L, Chevrier J, Montanede A, Baldit A, Terryn C et al. Decellularization of Wharton’s jelly increases its bioactivity and antibacterial properties. Frontiers in Bioengineering and Biotechnology. 2022; 10: 828424. doi:10.3389/fbioe.2022.828424. PMID: 35360386.; Ramzan F, Ekram S, Frazier T, Salim A, Mohiuddin OA, Khan I. Decellularized human umbilical tissue derived hydrogels promote proliferation and chondrogenic differentiation of mesenchymal stem cells. Bioengineering. 2022; 9: 239. doi:10.3390/bioengineering9060239.; Kehtari M, Beiki B, Zeynali B. Decellularized Wharton’s jelly extracellular matrix as a promising scaffold for promoting hepatic differentiation of human induced pluripotent stem cells. Journal of Cellular Biochemistry. 2019; 120 (4): 6683–6697. doi:10.1002/jcb.27965. PMID: 30417406.; Kočí Z, Výborný K, Dubišová J. Extracellular matrix hydrogel derived from human umbilical cord as a scaffold for neural tissue repair and its comparison with extracellular matrix from porcine tissues. Tissue Engineering Part C Methods. 2017; 23 (6): 333–345. doi:10.1089/ten.TEC.2017.0089. PMID: 28471271.; Lu JH, Hsia K, Su CK, Pan YH, Ma H, Chiou SH, Lin CH. A novel dressingcomposed of adipose stem cells and decellularized Wharton’s jelly facilitatedwound healing and relieved lymphedema by enhancing angiogenesis and lymphangiogenesis in a rat model. Journal of functional biomaterials. 2023; 14 (2): 104. doi:10.3390/jfb14020104. PMID: 36826903.; Beiki B, Zeynali B, Seyedjafari E. Fabrication of a three dimensional spongy scaffold using human Wharton’s jelly derived extra cellular matrix for wound healing. Materials Science and Engineering CMaterials for Biological Applications. 2017; 78: 627–638. doi:10.1016/j.msec.2017.04.074. PMID: 28576031.; Bullard JD, Lei J, Lim JJ, Massee M, Fallon AM, Koob TJ. Evaluation of dehydrated human umbilical cord biological properties for wound care and soft tissue healing. Journal of Biomedical Materials Research Part B Applied Biomaterials. 2019; 107 (4): 1035–1046. doi:10.1002/jbm.b.34196. PMID: 30199609.; Li D, Chiu G, Lipe B, Hopkins RA, Lillis J, Ashton JM et al. Decellularized Wharton jelly matrix: a biomimetic scaffold for ex vivo hematopoietic stem cell culture. Blood Advances. 2019; 3 (7): 1011–1026. doi:10.1182/ bloodadvances.2018019315. PMID: 30940636.; Penolazzi L, Pozzobon M, Bergamin LS, D’Agostino S, Francescato R, Bonaccorsi G et al. Extracellular matrix from decellularized Wharton’s jelly improves the behavior of cells from degenerated intervertebral disc. Frontiers in Bioengineering and Biotechnology. 2020; 8: 262. doi:10.3389/fbioe.2020.00262. PMID: 32292779.; Jadalannagari S, Converse G, McFall C, Buse E, Filla M, Villar MT et al. Decellularized Wharton’s jelly from human umbilical cord as a novel 3d scaffolding material for tissue engineering applications. PLoS One. 2017; 12 (2): e0172098. doi:10.1371/journal.pone.0172098. PMID: 28222169.; PLOS ONE Staff. Correction: Decellularized Wharton’s Jelly from human umbilical cord as a novel 3D scaffolding material for tissue engineering applications. PLoS One. 2017 Mar 7; 12 (3): e0173827. doi:10.1371/journal.pone.0173827. Erratum for: PLoS One. 2017 Feb 21; 12 (2): e0172098. PMID: 28267774.; Jalili Z, Emamgolizadeh B, Abbaszadeh H, Jalili S, Derakhshani M, Yousefi M et al. Effect of replacement of Wharton acellular jelly with fbs on the expression of megakaryocyte linear markers in hematopoietic stem cells CD34. Asian Pacific Journal of Cancer Prevention. 2022; 23 (10): 3281–3286. doi:10.31557/APJCP.2022.23.10.3281. PMID: 36308350.; Talebi M, Nozad Charoudeh H, Movassaghpour Akbari AA, Baradaran B, Kazemi T. Acellular Wharton’s jelly, potentials in t-cell subtypes differentiation, activation and proliferation. Advanced Pharmaceutical Bulletin. 2020; 10 (4): 617–622. doi:10.34172/apb.2020.074. PMID: 33072540.; Dan P, Velot É, Francius G, Menu P, Decot V. Humanderived extracellular matrix from Wharton’s jelly: An untapped substrate to build up a standardized and homogeneous coating for vascular engineering. Acta Biomaterialia. 2017; 48: 227–237. doi:10.1016/j.actbio.2016.10.018. PMID: 27769940.; Basiri A, Farokhi M, Azami M, EbrahimiBarough S, Mohamadnia A, Rashtbar M et al. A silk fibroin/decellularized extract of Wharton’s jelly hydrogel intended for cartilage tissue engineering. Progress in Biomaterials. 2019; 8 (1): 31–42. doi:10.1007/s40204-019-0108-7. PMID: 30706299.; Azarbarz N, Khorsandi L, Nejaddehbashi F, Neisi N, Nejad DB. Decellularized Wharton’s jelly scaffold enhances differentiation of mesenchymal stem cells to insulin-secreting cells. Tissue Cell. 2022; 79: 101938. doi:10.1016/j.tice.2022.101938. PMID: 36152380.; Xiao T, Guo W, Chen M, Hao C, Gao S, Huang J et al. Fabrication and In Vitro study of tissue-engineered cartilage scaffold derived from Wharton’s jelly extracellular matrix. BioMed Research International. 2017; 2017: 5839071. doi:10.1155/2017/5839071. PMID: 29214173.; Foltz KM, Neto AE, Francisco JC, Simeoni RB, Miggiolaro AFRDS, do Nascimento TG et al. Decellularized Wharton jelly implants do not trigger collagen and cartilaginous tissue production in tracheal injury in rabbits. Life (Basel). 2022; 12 (7): 942. doi:10.3390/ life12070942. PMID: 35888031.; Yuan Z, Cao F, Gao C, Yang Z, Guo Q, Wang Y. Decellularized human umbilical cord Wharton jelly scaffold improves tendon regeneration in a rabbit rotator cuff tendon defect model. The American Journal of Sports Medicine. 2022; 50 (2): 371–383. doi:10.1177/03635465211055722. PMID: 34739346.; Mann LK, Won JH, Trenton NJ, Garnett J, Snowise S, Fletcher SA et al. Cryopreserved human umbilical cord versus acellular dermal matrix patches for in utero fetal spina bifida repair in a pregnant rat model. Journal of neurosurgery. Spine. 2019; 32 (2): 321–331. doi:10.3171/2019.7.SPINE19468. PMID: 31675701.; Converse GL, Li D, Buse EE, Hopkins RA, Aljitawi OS. Wharton’s jelly matrix decellularization for tissue engineering applications. Methods in Molecular Biology. 2018; 1577: 25–33. doi:10.1007/7651_2017_61. PMID: 28786033.; Výborný K, Vallová J, Kočí Z, Kekulová K, Jiráková K, Jendelová P et al. Genipin and EDC crosslinking of extracellular matrix hydrogel derived from human umbilical cord for neural tissue repair. Scientific Reports. 2019; 9 (1): 10674. doi:10.1038/s41598-019-47059-x. PMID: 31337821.; Болгарчук ОО, Калюжная ЛИ, Чернов ВЕ, Чеботарев СВ, Симанов АГ, Чернуцкий АМ. Оптимизация процедуры децеллюляризации соединительной ткани пуповины человека для создания тканеинженерного раневого покрытия. Известия Российской военномедицинской академии. 2020; 39 (S3-1): 13–18.; Кондратенко АА, Калюжная ЛИ, Соколова МО, Чернов ВЕ. Сохранность важнейших структурных компонентов пуповины человека после децеллюляризации как этапа изготовления высокорегенеративного раневого покрытия. Биотехнология. 2021; 37 (5): 61–65. doi:10.21519/0234-2758-2021-37-5-61-65.; Чеботарев СВ, Калюжная ЛИ, Хоминец ВВ, Чернов ВЕ, Фрумкина АС, Земляной ДА и др. Регенеративные эффекты гидрогеля из биоматериала пуповины человека в восстановлении повреждений суставного хряща. Клиническая и экспериментальная хирургия. Журнал имени академика Б.В. Петровского. 2020; 8 (4): 119–125. doi:10.33029/2308-1198-2020-84-119-125.; Кондратенко АА, Товпеко ДВ, Калюжная ЛИ. Биологические эффекты бесклеточного тканеинженерного продукта из пуповины человека. Патогенез. 2022; 20 (4): 53–62. doi:10.25557/23100435.2022.04.53-62.; Калюжная ЛИ, Чеботарев СВ. Гидрогель из пуповины человека в лечении дефектов суставногохряща в эксперименте. Известия Российской военномедицинской академии. 2020; 39 (S3-1): 37–40.; Калюжная ЛИ, Хоминец ВВ, Чеботарев СВ, Харкевич ОН, Кудяшев АЛ, Чернов ВЕ и др. Применение биоматериала из пуповины человека для восстановления повреждений суставного хряща. Профилактическая и клиническая медицина. 2019; 4 (73): 45–52.; Кондратенко АА, КалюжнаяЗемляная ЛИ, Товпеко ДВ, Шевелева ВС, Глушаков РИ. Биологические и функциональные свойства лиофилизированных форм тканеинженерных матриксов из пуповины человека. Вестник трансплантологии и искусственных органов. 2023; 25 (1): 113–122. doi:10.15825/1995-1191-2023-1-113-122.; Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003; 24 (24): 4353– 4364. doi:10.1016/s0142-9612(03)00339-9. PMID: 12922148.; Немец ЕА, Лажко АЭ, Григорьев АМ, Басок ЮБ, Кириллова АД, Севастьянов ВИ. Биосовместимые и функциональные свойства тканеспецифической мелкодисперсной 3D-матрицы из децеллюляризованного хряща свиньи. Вестник трансплантологии и искусственных органов. 2022; 24 (4): 73–84. doi:10.15825/1995-1191-2022-4-73-84.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32 (12): 3233–3243. doi:10.1016/j.biomaterials.2011.01.057. PMID: 21296410.; Simsa R, Padma AM, Heher P, Hellström M, Teuschl A, Jenndahl L et al. Systematic in vitro comparison of decellularization protocols for blood vessels. PLoS One. 2018; 13 (12): e0209269. doi:10.1371/journal.pone.0209269. PMID: 30557395.; Sevastianov VI, Basok YuB, Grigoriev AM, Nemets EA, Kirillova AD, Kirsanova LA et al. Decellularization of cartilage microparticles: Effects of temperature, supercritical carbon dioxide and ultrasound on biochemical, mechanical, and biological properties. Journal of Biomedical Materials Research A. 2023; 111 (4): 543–555. doi:10.1002/jbm.a.37474. PMID: 36478378.; Kirillova AD, Basok YuB, Lazhko AE, Grigoryev AM, Kirsanova LA, Nemets EA, Sevastianov VI. Creating a tissue-specific microdispersed matrix from a decellularized porcine liver. Inorganic Materials: Applied Research. 2021; 12 (3): 812–819. doi:10.1134/S2075113321030199.; Целуйко СС, Малюк ЕА, Корнеева ЛС, Красавина НП. Морфофункциональная характеристика дермы кожи и ее изменения при старении (обзор литературы). Бюллетень физиологии и патологии дыхания. 2016; 60. doi:10.12737/20130.; Басок ЮБ, Кириллова АД, Григорьев АМ, Кирсанова ЛА, Немец ЕА, Севастьянов ВИ. Получение микродисперсного тканеспецифического децеллюляризованного матрикса из суставного хряща свиньи. Перспективные материалы. 2020; 5: 51–60. doi:10.30791/1028-978x-2020-5-51-60.; Потекаев НН, Фриго НВ, Петерсен ЕВ. Искусственная кожа: виды, области применения. Клиническая дерматология и венерология. 2017; 6: 7–15. doi:10.17116/klinderma20171667-15.; Cramer MC, Badylak SF. Extracellular Matrix-Based Biomaterials and Their Influence Upon Cell Behavior. Annals of Biomedical Engineering. 2020; 48 (7): 2132–2153. doi:10.1007/s10439-019-02408-9. PMID: 31741227.; Galili U. Acceleration of wound healing by α-gal nanoparticles interacting with the natural anti-Gal antibody. Journal of Immunology Research. 2015; 2015: 589648. doi:10.1155/2015/589648. PMID: 25922849.; Dziki JL, Huleihel L, Scarritt ME, Badylak SF. Extracellular matrix bioscaffolds as immunomodulatory biomaterials. Tissue Engineering Part A. 2017; 23 (19–20): 1152–1159. doi:10.1089/ten.TEA.2016.0538. PMID: 28457179.; Sicari BM, Johnson SA, Siu BF, Crapo PM, Daly KA, Jiang H et al. The effect of source animal age upon the in vivo remodeling characteristics of an extracellular matrix scaffold. Biomaterials. 2012; 33 (22): 5524–5533. doi:10.1016/j.biomaterials.2012.04.017. PMID: 22575834.; Huleihel L, Hussey GS, Naranjo JD, Zhang L, Dziki JL, Turner NJ et al. Matrix-bound nanovesicles within ECM bioscaffolds. Science Advances. 2016; 2 (6): e1600502. doi:10.1126/sciadv.1600502. PMID: 27386584.; Delgado LM, Bayon Y, Pandit A, Zeugolis DI. To crosslink or not to cross-link? Cross-linking associated foreign body response of collagen-based devices. Tissue Engineering Part B Reviews. 2015; 21 (3): 298–313. doi:10.1089/ten.TEB.2014.0290. PMID: 25517923.; Roy A, Mantay M, Brannan C, Griffiths S. Placental Tissues as Biomaterials in Regenerative Medicine. BioMed Research International. 2022; 2022: 6751456. doi:10.1155/2022/6751456. PMID: 35496035.; Lo DD, Zimmermann AS, Nauta A, Longaker MT, Lorenz HP. Scarless fetal skin wound healing update. Birth Defects Research Part C Embryo Today Reviews. 2012; 96 (3): 237–247. doi:10.1002/bdrc.21018. PMID: 23109319.; Yannas IV. Similarities and differences between induced organ regeneration in adults and early foetal regeneration. Journal of the Royal Society Interface. 2005; 2 (5): 403–417. doi:10.1098/rsif.2005.0062. PMID: 16849201.; Nanaev AK, Kohnen G, Milovanov AP, Domogatsky SP, Kaufmann P. Stromal differentiation and architecture of the human umbilical cord. Placenta. 1997; 18 (1): 53–64. doi:10.1016/s0143-4004(97)90071-0. PMID: 9032810.; Franc S, Rousseau JC, Garrone R, van der Rest M, MoradiAméli M. Microfibrillar composition of umbilical cord matrix: characterization of fibrillin, collagen VI and intact collagen V. Placenta. 1998; 19 (1): 95–104. doi:10.1016/s0143-4004(98)90104-7. PMID: 9481791.; Калюжная ЛИ, Соколова МО, Чернов ВЕ, Земляной ДА, Чеботарев СВ, Чалисова НИ и др. Влияние бесклеточного матрикса пуповины человека на динамику роста и жизнеспособность культивируемых клеток человека и животных ex vivo. Гены и клетки. 2021; 3: 72–79. doi:10.23868/202110010.; https://trialsearch.who.int/Trial2.aspx?TrialID=IRCT 20210612051545N3 [Internet]. World Health Organization: International Clinical Trials Registry Platform (ICTRP). [updated 2022 November 21; cited 2023 April 03]. Available from: https://trialsearch.who.int/Trial2.as px?TrialID=IRCT20210612051545N3.; https://trialsearch.who.int/Trial2.aspx?TrialID=IRCT 20210612051545N2 [Internet]. World Health Organization: International Clinical Trials Registry Platform (ICTRP). [updated 2022 November 21; cited 2023 April 03]. Available from: https://trialsearch.who.int/Trial2.as px?TrialID=IRCT20210612051545N2.; https://journal.transpl.ru/vtio/article/view/1626
-
10Academic Journal
Authors: A. D. Kirillova, E. A. Nemets, A. M. Grigoriev, L. A. Kirsanova, V. A. Ryzhikova, E. A. Volkova, Yu. B. Basok, V. I. Sevastianov, А. Д. Кириллова, Е. А. Немец, А. М. Григорьев, Л. А. Кирсанова, В. А. Рыжикова, Е. А. Волкова, Ю. Б. Басок, В. И. Севастьянов
Contributors: Исследование выполнено за счет гранта Российского научного фонда № 21-15-00251, https://rscf.ru/ project/21-15-00251/.
Source: Russian Journal of Transplantology and Artificial Organs; Том 25, № 3 (2023); 76-86 ; Вестник трансплантологии и искусственных органов; Том 25, № 3 (2023); 76-86 ; 1995-1191
Subject Terms: тканевая инженерия, decellularization, trypsin, mesenchymal stromal cells, tissue engineering, децеллюляризация, трипсин, мезенхимные стромальные клетки
File Description: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1616/1511; https://journal.transpl.ru/vtio/article/view/1616/1527; https://journal.transpl.ru/vtio/article/downloadSuppFile/1616/1295; https://journal.transpl.ru/vtio/article/downloadSuppFile/1616/1296; https://journal.transpl.ru/vtio/article/downloadSuppFile/1616/1297; https://journal.transpl.ru/vtio/article/downloadSuppFile/1616/1298; https://journal.transpl.ru/vtio/article/downloadSuppFile/1616/1299; https://journal.transpl.ru/vtio/article/downloadSuppFile/1616/1326; https://journal.transpl.ru/vtio/article/downloadSuppFile/1616/1327; Cramer MC, Badylak SF. Extracellular matrix-based biomaterials and their influence upon cell behavior. Annals of Biomedical Engineering. 2020; 48 (7): 2132–2153. doi:10.1007/s10439-019-02408-9. PMID: 31741227.; Jambar Nooshin B, Tayebi T, Babajani A, Khani MM, Niknejad H. Effects of different perfusing routes through the portal vein, hepatic vein, and biliary duct on whole rat liver decellularization. Cell journal. 2023; 25 (1): 35–44. doi:10.22074/cellj.2022.557600.1081. PMID: 36680482.; Hsu CY, Chi PL, Chen HY, Ou SH, Chou KJ, Fang HC et al. Kidney bioengineering by using decellularized kidney scaffold and renal progenitor cells. Tissue and Cell. 2022; 74: 101699. doi:10.1016/j.tice.2021.101699. PMID: 34891081.; Tang-Quan KR, Mehta NA, Sampaio LC, Taylor DA. Whole cardiac tissue bioscaffolds. Advances in Experimental Medicine and Biology. 2018; 1098: 85–114. doi:10.1007/978-3-319-97421-7_5. PMID: 30238367.; Bölükbas DA, De Santis MM, Alsafadi HN, Doryab A, Wagner DE. The preparation of decellularized mouse lung matrix scaffolds for analysis of lung regenerative cell potential. Methods in Molecular Biology. 2019; 1940: 275–295. doi:10.1007/978-1-4939-9086-3_20. PMID: 30788833.; Berger C, Bjørlykke Y, Hahn L, Mühlemann M, Kress S, Walles H et al. Matrix decoded – a pancreatic extracellular matrix with organ specific cues guiding human ipsc differentiation. Biomaterials. 2020; 244: 119766. doi:10.1016/j.biomaterials.2020.119766. PMID: 32199284.; Khajavi M, Hashemi M, Kalalinia F. Recent advances in optimization of liver decellularization procedures used for liver regeneration. Life Sciences. 2021; 281: 119801. doi:10.1016/j.lfs.2021.119801. PMID: 34229008.; Sevastianov VI, Ponomareva AS, Baranova NV, Kirsanova LA, Basok YB, Nemets EA et al. Decellularization of human pancreatic fragments with pronounced signs of structural changes. International Journal of Molecular Sciences. 2023; 24 (1): 119. doi:10.3390/ijms24010119. PMID: 36613557.; Qian H, He L, Ye Z, Wei Z, Ao J. Decellularized matrix for repairing intervertebral disc degeneration: fabrication methods, applications and animal models. Materials Today Bio. 2022; 18: 100523. doi:10.1016/j.mtbio.2022.100523. PMID: 36590980.; Басок ЮБ, Кириллова АД, Григорьев АМ, Кирсанова ЛА, Немец ЕА, Севастьянов ВИ. Получение микродисперсного тканеспецифического децеллюляризованного матрикса из суставного хряща свиньи. Перспективные материалы. 2020; 5: 51–60. doi:10.30791/1028-978x-2020-5-51-60.; Немец ЕА, Лажко АЭ, Басок ЮБ, Кирсанова ЛА, Кириллова АД, Севастьянов ВИ. Особенности получения тканеспецифического матрикса из децеллюляризованного хряща свиньи. Сверхкритические флюиды: теория и практика. 2020; 15 (2): 3–13. doi:10.34984/SCFTP.2020.15.2.001.; Keane TJ, Swinehart IT, Badylak SF. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods. 2015; 84: 25–34. doi:10.1016/j.ymeth.2015.03.005. PMID: 25791470.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32 (12): 3233–3243. doi:10.1016/j.biomaterials.2011.01.057. PMID: 21296410.; Gilpin A, Yang Y. Decellularization strategies for regenerative medicine: from processing techniques to applications. BioMed Research International. 2017; 2017: 9831534. doi:10.1155/2017/9831534. PMID: 28540307.; Gailit J, Ruoslahti E. Regulation of the fibronectin receptor affinity by divalent cations. Journal of Biological Chemistry. 1988; 263 (26): 12927–12932. doi:10.1016/s0021-9258(18)37650-6. PMID: 2458338.; Maurer P, Hohenester E. Structural and functional aspects of calcium binding in extracellular matrix proteins. Matrix Biology. 1997; 15 (8–9): 569–580. doi:10.1016/S0945-053X(97)90033-0. PMID: 9138289.; Hopkinson A, Shanmuganathan VA, Gray T, Yeung AM, Lowe J, James DK et al. Optimization of amniotic membrane (am) denuding for tissue engineering. Tissue Engineering – Part C: Methods. 2008; 14 (4): 371–381. doi:10.1089/ten.tec.2008.0315. PMID: 18821842.; Schenke-Layland K, Vasilevski O, Opitz F, König K, Riemann I, Halbhuber KJ et al. Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. Journal of Structural Biology. 2003; 143 (3): 201–208. doi:10.1016/j.jsb.2003.08.002. PMID: 14572475.; Waldrop FS, Puchtler H, Meloan SN, Younker TD. Histochemical investigations of different types of collagen. Acta histochemica Supplementband. 1980; 21: 21–31. PMID: 6808564.; Lin CH, Kao YC, Ma H, Tsay RY. An investigation on the correlation between the mechanical property change and the alterations in composition and microstructure of a porcine vascular tissue underwent trypsin-based decellularization treatment. Journal of the Mechanical Behavior of Biomedical Materials. 2018; 86: 199–207. doi:10.1016/j.jmbbm.2018.06.029. PMID: 29986294.; Grauss RW, Hazekamp MG, Oppenhuizen F, Van Munsteren CJ, Gittenberger-De Groot AC, DeRuiter MC. Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. European Journal of Cardio-thoracic Surgery. 2005; 27 (4): 566–571. doi:10.1016/j.ejcts.2004.12.052. PMID: 15784352.; Merna N, Robertson C, La A, George SC. Optical imaging predicts mechanical properties during decellularization of cardiac tissue. Tissue Engineering – Part C: Methods. 2013; 19 (10): 802–809. doi:10.1089/ten.tec.2012.0720. PMID: 23469868.; Giraldo-Gomez DM, García-López SJ, Tamay-de-Dios L, Sánchez-Sánchez R, Villalba-Caloca J, Sotres-Vega A et al. Fast cyclical-decellularized trachea as a natural 3d scaffold for organ engineering. Materials Science and Engineering C. 2019; 105: 110142. doi:10.1016/j.msec.2019.110142. PMID: 31546345.; Rahman S, Griffin M, Naik A, Szarko M, Butler PEM. Optimising the decellularization of human elastic cartilage with trypsin for future use in ear reconstruction. Scientific Reports. 2018; 8 (1): 3097. doi:10.1038/s41598-018-20592-x. PMID: 29449572.; Vernice NA, Berri N, Bender RJ, Dong X, Spector JA. Production of a low-cost, off-the-shelf, decellularized cartilage xenograft for tissue regeneration. Annals of Plastic Surgery. 2022; 88 (3): S296–S301. doi:10.1097/SAP.0000000000003185. PMID: 35513335.; Дмитриева ЕГ, Хацко СЛ, Якимов АА. Способ гистологической окраски артерий сердца. Сибирский научный медицинский журнал. 2022; 42 (3): 47–51. doi:10.18699/SSMJ20220305.; Gilbert T, Sellaro T, Badylak S. Decellularization of tissues and organs. Biomaterials. 2006; 27 (19): 3675– 3683. doi:10.1016/j.biomaterials.2006.02.014. PMID: 16519932.; Sevastianov VI, Basok YB, Grigoriev AM, Nemets EA, Kirillova AD, Kirsanova LA et al. Decellularization of cartilage microparticles: effects of temperature, supercritical carbon dioxide and ultrasound on biochemical, mechanical, and biological properties. Journal of Biomedical Materials Research – Part A. 2023; 111 (4): 543–555. doi:10.1002/jbm.a.37474. PMID: 36478378.; Семенычева ЛЛ, Егорихина МН, Часова ВО, Валетова НБ, Митин АВ, Кузнецова ЮЛ. Эффективность протеаз панкреатина и трипсина при ферментативном гидролизе коллагена. Вестник ЮУрГУ. Серия «Химия». 2020; 12 (1): 66–75. doi:10.14529/chem200108.; Tsvetkova AV, Vakhrushev IV, Basok YB, Grigor’ev AM, Kirsanova LA, Lupatov AY et al. Chondrogeneic potential of msc from different sources in spheroid culture. Bulletin of Experimental Biology and Medicine. 2021; 170 (4): 528–536. doi:10.1007/s10517-021-05101-x. PMID: 33725253.; Ghassemi T, Saghatoleslami N, Mahdavi-Shahri N, Matin MM, Gheshlaghi R, Moradi A. A comparison study of different decellularization treatments on bovine articular cartilage. Journal of Tissue Engineering and Regenerative Medicine. 2019; 13 (10): 1861–1871. doi:10.1002/term.2936. PMID: 31314950.; Lin S, He Y, Tao M, Wang A, Ao Q. Fabrication and evaluation of an optimized xenogenic decellularized costal cartilage graft: preclinical studies of a novel biocompatible prosthesis for rhinoplasty. Regenerative Biomaterials. 2021; 8 (6): rbab052. doi:10.1093/rb/rbab052.; Giraldo-Gomez DM, Leon-Mancilla B, Del Prado-Audelo ML, Sotres-Vega A, Villalba-Caloca J, Garciadiego-Cazares D et al. Trypsin as enhancement in cyclical tracheal decellularization: morphological and biophysical characterization. Materials Science and Engineering C. 2016. doi:10.1016/j.msec.2015.10.094. PMID: 26652450.; Perea-Gil I, Uriarte JJ, Prat-Vidal C, Gálvez-Montón C, Roura S, Llucià-Valldeperas A et al. In vitro comparative study of two decellularization protocols in search of an optimal myocardial scaffold for recellularization. American Journal of Translational Research. 2015; 7 (3): 558–573. PMID: 26045895.; Басок ЮБ, Севастьянов ВИ. Технологии тканевой инженерии и регенеративной медицины в лечении дефектов хрящевой ткани суставов. Вестник трансплантологии и искусственных органов. 2016; 18 (4): 102–122. doi:10.15825/1995-1191- 2016-4-102-122.; Sevastianov VI, Basok YuB, Kirsanova LA, Grigoriev AM, Kirillova AD, Nemets EA et al. A comparison of the capacity of mesenchymal stromal cells for cartilage regeneration depending on collagen-based injectable biomimetic scaffold type. Life. 2021; 11 (8): 756. doi:10.3390/life11080756.; https://journal.transpl.ru/vtio/article/view/1616
-
11Academic Journal
Authors: Ларионов, П.М., Погорелова, Н.А., Харченко, А.В., Терещенко, В.П., Ступак, Е.В., Ступак, В.В., Самохин, А.Г., Корель, А.В., Кирилова, И.А.
Source: POLYTRAUMA; № 3 (2023): сентябрь; 14-23 ; ПОЛИТРАВМА / POLYTRAUMA; № 3 (2023): сентябрь; 14-23 ; 2541-867X ; 1819-1495
Subject Terms: bacterial cellulose, decellularization, biocompatibility, бактериальная целлюлоза, децеллюляризация, биосовместимость
File Description: application/pdf
Availability: http://poly-trauma.ru/index.php/pt/article/view/478
-
12Academic Journal
Authors: E. A. Nemets, A. E. Lazhko, A. M. Grigoriev, Yu. B. Basok, A. D. Kirillova, V. I. Sevastianov, Е. А. Немец, А. Э. Лажко, А. М. Григорьев, Ю. Б. Басок, А. Д. Кириллова, В. И. Севастьянов
Contributors: Исследование выполнено за счет гранта Российского научного фонда (проект № 21-15-00251)
Source: Russian Journal of Transplantology and Artificial Organs; Том 24, № 4 (2022); 73-84 ; Вестник трансплантологии и искусственных органов; Том 24, № 4 (2022); 73-84 ; 1995-1191
Subject Terms: тканеинженерная конструкциия, decellularization, 3D matrix, resorption, biocompatibility, adipose-derived MSCs, adhesion, proliferation, tissue-engineered construct, децеллюляризация, 3D-матрица, резорбция, биосовместимость, МСК жировой ткани, адгезия, пролиферация
File Description: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1553/1390; https://journal.transpl.ru/vtio/article/view/1553/1425; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1192; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1193; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1194; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1195; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1196; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1197; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1199; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1200; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1201; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1202; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1203; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1204; https://journal.transpl.ru/vtio/article/downloadSuppFile/1553/1205; Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers (Basel). 2021; 13 (7): 1105. doi:10.3390/polym13071105.; Jafari M, Paknejad Z, Rad MR, Motamedian SR, Eghbal MJ, Nadjmi N et al. Polymeric scaffolds in tissue engineering: a literature review. J Biomed Mater Res B Appl Biomater. 2017; 105 (2): 431–459. doi:10.1002/jbm.b.33547.; Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther. 2018; 12: 3117–3145. doi:10.2147/DDDT.S165440.; Vasilets VN, Surguchenko VA, Ponomareva AS, Nemetz EA, Sevastianov VI, Bae JW et al. Effects of surface properties of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) on adhesion and proliferation of mouse fibroblasts. Macromolecular Research. 2015; 23: 205–213. doi 10.1007/s13233-015-3025-1.; Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014; 1840 (8): 2506–2519. doi:10.1016/j.bbagen.2014.01.010.; Paulo Zambon J, Atala A, Yoo JJ. Methods to generate tissue-derived constructs for regenerative medicine applications. Methods. 2020; 171: 3–10. doi:10.1016/j.ymeth.2019.09.016.; Gupta SK, Mishra NC, Dhasmana A. Decellularization methods for scaffold fabrication. Methods Mol Biol. 2018; 1577: 1–10. doi:10.1007/7651_2017_34.; Cramer MC, Badylak SF. Extracellular matrix-based biomaterials and their influence upon cell behavior. Ann Biomed Eng. 2020; 48 (7): 2132–2153. doi:10.1007/s10439-019-02408-9.; Philips C, Campos F, Roosens A, Sánchez-Quevedo MDC, Declercq H, Carriel V. Qualitative and quantitative evaluation of a novel detergent-based method for decellularization of peripheral nerves. Ann Biomed Eng. 2018; 46 (11): 1921–1937. doi:10.1007/s10439-018-2082-y.; Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. Tissuespecific decellularization methods: rationale and strategies to achieve regenerative compounds. Int J Mol Sci. 2020; 21 (15): 5447. doi:10.3390/ijms21155447.; Gilpin A, Yang Y. Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed Res Int. 2017; 2017: 9831534. doi:10.1155/2017/9831534.; Porzionato A, Stocco E, Barbon S, Grandi F, Macchi V, De Caro R. Tissue-engineered grafts from human decellularized extracellular matrices: a systematic review and future perspectives. Int J Mol Sci. 2018; 19 (12): 4117. doi:10.3390/ijms19124117.; Sevastianov VI, Basok YB, Kirsanova LA, Grigoriev AM, Kirillova AD, Nemets EA et al. A comparison of the capacity of mesenchymal stromal cells for cartilage regeneration depending on collagen-based injectable biomimetic scaffold type. Life. 2021; 11 (8): 756. doi:10.3390/life11080756.; Song C, Luo Y, Liu Y, Li S, Xi Z, Zhao L et al. Fabrication of PCL scaffolds by supercritical CO2 foaming based on the combined effects of rheological and crystallization properties. Polymers (Basel). 2020; 12 (4): 780. doi:10.3390/polym12040780.; Gil-Ramírez A, Rosmark O, Spégel P, Swärd K, Westergren-Thorsson G, Larsson-Callerfelt A.K et al. Pressurized carbon dioxide as a potential tool for decellularization of pulmonary arteries for transplant purposes. Sci Reports. 2020; 10 (1): 4031. doi:10.1038/s41598-020-60827-4.; Алексеев ЕС, Алентьев АЮ, Белова АС, Богдан ВИ, Богдан ТВ, Быстрова АВ и др. Сверхкритические флюиды в химии. Успехи химии. 2020; 89 (12): 1337–1427.; Разгонова МП, Захаренко АМ, Сергиевич АА, Каленик ТК, Голохваст КС. Сверхкритические флюиды: теория, этапы становления, современное применение: учебное пособие. СПб.: Лань, 2019; 192.; Nemets EA, Malkova AP, Dukhina GA, Lazhko AE, Basok YB, Kirillova AD et al. Effect of supercritical carbon dioxide on the in vivo biocompatible and resorptive properties of tissue-specific scaffolds from decellularized pig liver fragments. Inorganic Materials: Applied Research. 2022; 13: 413–420. doi:10.1134/S2075113322020319.; Ingrosso F, Ruiz-López MF. Modeling solvation in supercritical CO2. Chemphyschem. 2017; 18: 2560–2572. doi:10.1002/cphc.201700434.; Sevastianov VI, Nemets EA, Lazhko AE, Basok YuB, Kirsanova LA, Kirillova AD. Application of supercritical fluids for complete decellularization of porcine cartilage. Journal of Physics: Conference Series. XV International Russian Chinese Symposium «New Materials and Technologies». 2019; 1347 (1): 012081. doi:10.1088/1742-6596/1347/1/012081.; Seo Y, Jung Y, Kim SH. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater. 2018; 67: 270–281. doi:10.1016/j.actbio.2017.11.046.; Nemets EA, Lazhko AE, Basok YuB, Kirsanova LA, Kirillova AD, Sevastianov VI. Preparation of tissue-specific matrix from decellularized porcine cartilage. Russian Journal of Physical Chemistry B. 2020; 14: 1245–1251. doi:10.1134/S1990793120080059.; Huang Z, Godkin O, Schulze-Tanzil G. The challenge in using mesenchymal stromal cells for recellularization of decellularized cartilage. Stem Cell Rev Rep. 2017 Feb; 13 (1): 50–67. doi:10.1007/s12015-016-9699-8.; ГОСТ ISO 10993-6. Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 6. Исследование местного действия после имплантации.; Basok YB, Kirillova AD, Grigoryev AM, Kirsanova LA, Nemets EA, Sevastianov VI. Fabrication of microdispersed tissue-specific decellularized matrix from porcine articular cartilage. Inorganic Materials: Applied Research. 2020; 11 (5): 1153–1159. doi:10.1134/S2075113320050044.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32: 3233–3243. doi:10.1016/j.biomaterials.2011.01.057.; https://journal.transpl.ru/vtio/article/view/1553
-
13Academic Journal
Authors: A. S. Ponomareva, N. V. Baranova, L. A. Kirsanova, G. N. Bubentsova, E. A. Nemets, I. A. Miloserdov, V. I. Sevastianov, А. С. Пономарева, Н. В. Баранова, Л. А. Кирсанова, Г. Н. Бубенцова, Е. А. Немец, И. А. Милосердов, В. И. Севастьянов
Source: Russian Journal of Transplantology and Artificial Organs; Том 24, № 1 (2022); 64-71 ; Вестник трансплантологии и искусственных органов; Том 24, № 1 (2022); 64-71 ; 1995-1191
Subject Terms: тканеспецифический матрикс, lipomatosis, fibrosis, decellularization, tissue-specific scaffold, липоматоз, фиброз, децеллюляризация
File Description: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1443/1272; https://journal.transpl.ru/vtio/article/view/1443/1354; https://journal.transpl.ru/vtio/article/downloadSuppFile/1443/981; https://journal.transpl.ru/vtio/article/downloadSuppFile/1443/982; https://journal.transpl.ru/vtio/article/downloadSuppFile/1443/983; https://journal.transpl.ru/vtio/article/downloadSuppFile/1443/998; Mendibil U, Ruiz-Hernandez R, Retegi-Carrion S, Garcia-Urquia N, Olalde-Graells B, Abarrategi A. TissueSpecific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds. Int J Mol Sci. 2020; 21, 5447. doi:10.3390/ijms21155447.; Stendahl JC, Kaufman DB, Stupp SI. Extracellular Matrix in Pancreatic Islets: Relevance to Scaffold Design and Transplantation. Cell Transplant. 2009; 18 (1): 1–12. doi:10.3727/096368909788237195.; Damodaran G, Vermette P. Decellularized pancreas as a native extracellular matrix scaffold for pancreatic islet seeding and culture. J Tissue Eng Regen Med. 2018; 12 (5): 1230–1237. doi:10.1002/term.2655.; Goh SK, Bertera S, Olsen P., Olsen P, Candiello JE, Halfter W et al. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials. 2013; 34 (28): 6760–6772. doi:10.1016/j.biomaterials.2013.05.066.; Sackett SD, Tremmel DM, Ma F, Feeney AK, Maguire RM, Brown ME et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Scientific Reports. 2018; 8: 10452. doi:10.1038/s41598-018-28857-1.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2012; 32: 3233–3243. doi:10.1016/j.biomaterials.2011.01.057.; Rabbani M, Zakian N, Alimoradi N. Contribution of Physical Methods in Decellularization of Animal Tissues. Journal of Medical Signals & Sensors. 2021; 11 (1): 1. doi:10.4103/jmss.JMSS_2_20.; Starnecker F, König F, Hagl C, Thierfelder N. Tissueengineering acellular scaffolds-The significant influence of physical and procedural decellularization factors. J Biomed Mater Res B Appl Biomater. 2018; 106 (1): 153–162. doi:10.1002/jbm.b.33816.; Klak M, Łojszczyk I, Berman A, Tymicki G, AdamiokOstrowska A, Sierakowski M et al. Impact of Porcine Pancreas Decellularization Conditions on the Quality of Obtained dECM. Int J Mol Sci. 2021; 22, 7005. doi:10.3390/ijms22137005.; Salg GA, Giese NA, Schenk M, Hüttner FJ, Felix K, Probst P et al. The emerging field of pancreatic tissue engineering: A systematic review and evidence map of scaffold materials and scaffolding techniques for insulinsecreting cells. Journal of Tissue Engineering. 2019; 10: 1–25. doi:10.1177/2041731419884708.; Баранова НВ, Кирсанова ЛА, Пономарева АС, Немец ЕА, Басок ЮБ, Бубенцова ГН и др. Сравнительный анализ секреторной способности островков Лангерганса, культивированных с биополимерным микрогетерогенным коллагенсодержащим гидрогелем и тканеспецифическим матриксом. Вестник трансплантологии и искусственных органов. 2019; 4: 45–53.; Venturini M, Angeli E, Maffi P, Fiorina P, Bertuzzi F, Salvioni M et al. Technique, complications, and therapeutic efficacy of percutaneous transplantation of human pancreatic islet cells in type 1 diabetes: the role of US. Radiology. 2005; 234: 617–624. doi:10.1148/radiol.2342031356.; Matsumoto S, Gala-Lopez B, Pepper AR. Islet cell transplantation for type 1 diabetes. J Diabetes. 2010; 2 (1): 16–22. doi:10.2147/DMSO.S50789.; Ponomareva AS, Kirsanova LA, Baranova NV, Surguchenko VA, Bubentsova GN, Basok YB et al. Decellularization of donor pancreatic fragment to obtain a tissue-specific matrix scaffold. Russian Journal of Transplantology and Artificial Organs. 2020; 22 (1): 123–133. doi:10.15825/1995-1191-2020-1-123-133.; Porzionato A, Stocco E, Barbon S, Grandi F, Macchi V, De Caro R. Tissue-Engineered Grafts from Human Decellularized Extracellular Matrices: A Systematic Review and Future Perspectives. Int J Mol Sci. 2018; 19, 4117. doi:10.3390/ijms19124117.; https://journal.transpl.ru/vtio/article/view/1443
-
14Academic Journal
Authors: K. I. Melkonyan, A. A. Verevkin, A. S. Sotnichenko, T. V. Rusinova, Ya. A. Kozmai, A. S. Asyakina, M. I. Kartashevskaya, K. G. Gurevich, I. M. Bykov
Source: Бюллетень сибирской медицины, Vol 21, Iss 2, Pp 97-104 (2022)
Subject Terms: регенеративная медицина, дерма, децеллюляризация, морфологический анализ, подкожная имплантация, ацеллюлярный дермальный матрикс, Medicine
Relation: https://bulletin.ssmu.ru/jour/article/view/4819; https://doaj.org/toc/1682-0363; https://doaj.org/toc/1819-3684; https://doaj.org/article/b4375a517e8146f4943dfcfef6cbccba
-
15Academic Journal
Authors: E. A. Nemets, A. E. Lazhko, A. M. Grigoryev, V. Yu. Belov, V. A. Surguchenko, Yu. B. Basok, A. D. Kirillova, V. I. Sevastianov, Е. А. Немец, А. Э. Лажко, А. М. Григорьев, В. Ю. Белов, В. А. Сургученко, Ю. Б. Басок, А. Д. Кириллова, В. И. Севастьянов
Source: Russian Journal of Transplantology and Artificial Organs; Том 23, № 2 (2021); 104-113 ; Вестник трансплантологии и искусственных органов; Том 23, № 2 (2021); 104-113 ; 1995-1191
Subject Terms: цитотоксичност, pig cartilage, decellularization, biopolymer scaffolds, supercritical CO2, polarity modifier, cytotoxicity, biocompatibility, хрящ свиньи, децеллюляризация, биополимерные скаффолды, сверхкритический СО2, модификатор полярности
File Description: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1301/1112; https://journal.transpl.ru/vtio/article/view/1301/1213; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/755; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/756; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/757; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/758; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/759; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/760; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/761; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/762; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/763; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/764; https://journal.transpl.ru/vtio/article/downloadSuppFile/1301/765; Сургученко ВА. Матриксы для тканевой инженерии и гибридных органов. Биосовместимые материалы: учебное пособие / Под ред. В.И. Севастьянова, М.П. Кирпичникова. М.: МИА, 2011. Часть II: 199– 228.; Sevastianov VI, Basok YB, Grigor’ev AM, Kirsanova LA, Vasilets VN. Formation of tissue-engineered construct of human cartilage tissue in a flow-through bioreactor. Bull Exp Biol Med. 2017; 164 (2): 269–273. doi:10.1007/s10517-017-3971-z.; Goissis G, Suzigan S, Parreira DR, Maniglia JV, Braile DM, Raymundo S. Preparation and characterization of collagen-elastin matrices from blood vessels intended as small diameter vascular grafts. Artif Organs. 2000; 24: 217–223. doi:10.1046/j.1525-1594.2000.06537.x. PMID: 10759645.; Busra MFM, Lokanathan Y. Recent development in the fabrication of collagen scaffolds for tissue engineering applications: A review. Curr Pharm Biotechnol. 2019; 20 (12): 992–1003. doi:10.2174/1389201020666190731121016. PMID: 31364511.; Oryan A, Kamali A, Moshiri A, Baharvand H, Daemi H. Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. Int J Biol Macromol. 2018; 107 (Pt A): 678–688. doi:10.1016/j.ijbiomac.2017.08.184.; Kawecki M, Łabuś W, Klama-Baryla A, Kitala D, Kraut M, Glik J et al. A review of decellurization methods caused by an urgent need for quality control of cell-free extracellular matrix’ scaffolds and their role in regenerative medicine. J Biomed Mater Res B Appl Biomater. 2018; 106 (2): 909–923. doi:10.1002/jbm.b.33865. PMID: 28194860.; Rose JB, Pacelli S, Haj AJE, Dua HS, Hopkinson A, White LJ et al. Gelatin-based materials in ocular tissue engineering. Materials (Basel). 2014; 7 (4): 3106–3135. doi:10.3390/ma7043106. PMID: 28788609.; Nemets EA, Pankina AP, Sevastianov VI. Comparative analysis of methods for increasing of biostability of collagen films. Inorganic Materials: Applied Research. 2017; 5: 718–722.; Umashankar PR, Arun T, Kumari TV. Short duration gluteraldehyde cross linking of decellularized bovine pericardium improves biological response. J Biomed Mater Res. 2011; 97 (3): 311–320. doi:10.1002/jbm.a.33061. PMID: 21448995.; Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014; 1840 (8): 2506–2519. doi:10.1016/j.bbagen.2014.01.010. PMID: 24418517.; Sun Y, Wang TL, Toh WS, Pei M. The role of laminins in cartilaginous tissues: from development to regeneration. Eur Cell Mater. 2017; 34: 40–54. doi:10.22203/eCM.v034a0.; Shirakigawa N, Ijima H. Decellularized tissue engineering. Advanced Structured Materials. 2017; 66: 185– 226. doi:10.1007/978-981-10-3328-5_5.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32 (12): 3233–3243. doi:10.1016/j.biomaterials.2011.01.057. PMID: 21296410.; Gilpin A, Yang Y. Decellularization strategies for regenerative medicine: From processing techniques to applications. Biomed Res Int. 2017; 2017: 9831534. doi:10.1155/2017/9831534. PMID: 28540307.; Готье СВ, Севастьянов ВИ, Шагидулин МЮ, Немец ЕА, Басок ЮБ. Тканеспецифический матрикс для тканевой инженерии паренхиматозного органа и способ его получения. Патент на изобретение RU 2693432 C2, 02.07.2019.; Kawasaki T, Kirita Y, Kami D, Kitani T, Ozaki C, Itakura Y et al. Novel detergent for whole organ tissue engineering. J Biomed Mater Res A. 2015; 103 (10): 3364– 3373. doi:10.1002/jbm.a.35474. PMID: 25850947.; Song C, Luo Y, Liu Y, Li S, Xi Z, Zhao L et al. Fabrication of PCL scaffolds by supercritical CO2 foaming based on the combined effects of rheological and crystallization properties. Polymers (Basel). 2020; 12 (4): 780. doi:10.3390/polym12040780. PMID: 32252222.; Немец ЕА, Белов ВЮ, Ильина ТС, Сургученко ВА, Панкина АП, Севастьянов ВИ. Композитный пористый трубчатый биополимерный матрикс малого диаметра. Перспективные материалы. 2018; 9: 49– 59. doi:10.30791/1028-978X-2018-9-49-59.; White LJ, Hutter V, Tai H, Howdle SM, Shakesheff KM. The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. Acta Biomater. 2012; 8 (1): 61–71. doi:10.1016/j.actbio.2011.07.032. PMID: 21855663.; Antons J, Marascio MG, Aeberhard P, Weissenberger G, Hirt-Burri N, Applegate LA et al. Decellularised tissues obtained by a CO2-philic detergent and supercritical CO2. Eur Cell Mater. 2018, 36: 81–95. doi:10.22203/eCM.v036a07. PMID: 30178445.; Casali DM, Handleton RM, Shazly T, Matthews MA. A novel supercritical CO2-based decellularization method for maintaining scaffold hydration and mechanical properties. J Supercrit Fluids. 2018; 131: 72–81. doi:10.1016/j.supflu.2017.07.021.; Huang YH, Tseng FW, Chang WH, Peng IC, Hsieh DJ, Wu SW et al. Preparation of acellular scaffold for corneal tissue engineering by supercritical carbon dioxide extraction technology. Acta Biomater. 2017; 58: 238–243. doi:10.1016/j.actbio.2017.05.060. PMID: 28579539.; Gil-Ramírez A, Rosmark O, Spégel P, Swärd K, Westergren-Thorsson G, Larsson-Callerfelt AK et al. Pressurized carbon dioxide as a potential tool for decellularization of pulmonary arteries for transplant purposes. Sci Rep. 2020; 10 (1): 4031. doi:10.1038/s41598-020-60827-4. PMID: 32132596.; Разгонова МП, Захаренко АМ, Сергиевич АА, Каленик ТК, Голохваст КС. Сверхкритические флюиды: теория, этапы становления, современное применение: учебное пособие. СПб.: Лань, 2019. 192 с.; Алексеев ЕС, Алентьев АЮ, Белова АС, Богдан ВИ и др. Сверхкритические флюиды в химии. Успехи химии. 2020; 89: 1337–1427. doi:10.1070/RCR4932.; Попов ВК. Имплантаты в заместительной и регенеративной медицине костных тканей. Биосовместимые материалы (учебное пособие). Под ред. В.И. Севастьянова, М.П. Кирпичникова. М.: МИА, 2011. Часть II: 271–294.; Ingrosso F, Ruiz-López MF. Modeling Solvation in Supercritical CO2. Chemphyschem. 2017; 18: 2560–2572. doi:10.1002/cphc.201700434.; Seo Y, Jung Y, Kim SH. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater. 2018; 67: 270–281. doi:10.1016/j.actbio.2017.11.046. PMID: 29223704.; ГОСТ ISO 10993-5-2011 «Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 5. Исследования на цитотоксичность: методы in vitro».; Sun Y, Yan L, Chen S, Pei M. Functionality of decellularized matrix in cartilage regeneration: A comparison of tissue versus cell sources. Acta Biomater. 2018; 74: 56–73. doi:10.1016/j.actbio.2018.04.048. PMID: 29702288.; https://journal.transpl.ru/vtio/article/view/1301
-
16Academic Journal
Authors: S. A. Borzenok, S. V. Kostenev, A. V. Doga, A. V. Shatskikh, V. G. Li, D. S. Ostrovskiy, M. K. Khubetsova, С. А. Борзенок, С. В. Костенев, А. В. Дога, А. В. Шацких, В. Г. Ли, Д. С. Островский, М. Х. Хубецова
Source: Russian Journal of Transplantology and Artificial Organs; Том 23, № 2 (2021); 137-146 ; Вестник трансплантологии и искусственных органов; Том 23, № 2 (2021); 137-146 ; 1995-1191
Subject Terms: лентикула, tissue engineering, decellularization, lenticula, тканевая инженерия, децеллюляризация
File Description: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1374/1115; https://journal.transpl.ru/vtio/article/view/1374/1212; Ganesh S, Brar S, Arra RR. Refractive lenticule extraction small incision lenticule extraction: A new refractive surgery paradigm. Indian J Ophthalmol. 2018; 66 (1): 10–19. doi:10.4103/ijo.IJO_761_17. PMID: 29283117.; Angunawela RI, Riau AK, Chaurasia SS, Tan DT, Mehta JS. Refractive lenticule re-implantation after myopic ReLEx: a feasibility study of stromal restoration after refractive surgery in a rabbit model. Invest Ophthalmol Vis Sci. 2012; 53 (8): 4975–4985. doi:10.1167/iovs.12-10170. PMID: 22743323.; Riau AK, Angunawela RI, Chaurasia SS, Lee WS, Tan DT, Mehta JS. Reversible femtosecond laser-assisted myopia correction: a non-human primate study of lenticule re-implantation after refractive lenticule extraction. PLoS One. 2013; 8 (6): e67058. doi:10.1371/journal.pone.0067058. PMID: 23826194.; Pradhan KR, Reinstein DZ, Carp GI, Archer TJ, Gobbe M, Gurung R. Femtosecond laser-assisted keyhole endokeratophakia: correction of hyperopia by implantation of an allogeneic lenticule obtained by SMILE from a myopic donor. J Refract Surg. 2013; 29 (11): 777–782. doi:10.3928/1081597X-20131021-07. PMID: 24203809.; Sun L, Yao P, Li M, Shen Y, Zhao J, Zhou X. The Safety and Predictability of Implanting Autologous Lenticule Obtained by SMILE for Hyperopia. J Refract Surg. 2015; 31 (6): 374–379. doi:10.3928/1081597X-20150521-03. PMID: 26046703.; Ganesh S, Brar S, Rao PA. Cryopreservation of extracted corneal lenticules after small incision lenticule extraction for potential use in human subjects. Cornea. 2014; 33 (12): 1355–1362. doi:10.1097/ICO.0000000000000276. PMID: 25343698.; Bonvillain RW, Danchuk S, Sullivan DE, Betancourt AM, Semon JA, Eagle ME et al. A nonhuman primate model of lung regeneration: detergent-mediated decellularization and initial in vitro recellularization with mesenchymal stem cells. Tissue Eng Part A. 2012; 18 (23–24): 2437–2452. doi:10.1089/ten.TEA.2011.0594. PMID: 22764775.; Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008; 14 (2): 213–221. doi:10.1038/nm1684. PMID: 18193059.; Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006; 27 (19): 3675– 3683. doi:10.1016/j.biomaterials.2006.02.014. PMID: 16519932.; Yam GH, Yusoff NZ, Goh TW, Setiawan M, Lee XW, Liu YC et al. Decellularization of human stromal refractive lenticules for corneal tissue engineering. Sci Rep. 2016; 6: 26339. doi:10.1038/srep26339. PMID: 27210519.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Bioma terials. 2011; 32 (12): 3233–3243. doi:10.1016/j.biomaterials.2011.01.057. PMID: 21296410.; Yin H, Qiu P, Wu F, Zhang W, Teng W, Qin Z et al. Construction of a Corneal Stromal Equivalent with SMILEDerived Lenticules and Fibrin Glue. Sci Rep. 2016; 6: 33848. doi:10.1038/srep33848. PMID: 27651001.; Shafiq MA, Gemeinhart RA, Yue BY, Djalilian AR. Decellularized human cornea for reconstructing the corneal epithelium and anterior stroma. Tissue Eng Part C Methods. 2012; 18 (5): 340–348. doi:10.1089/ten. TEC.2011.0072. PMID: 22082039.; Huh MI, Lee KP, Kim J, Yi S, Park BU, Kim HK. Generation of Femtosecond Laser-Cut Decellularized Corneal Lenticule Using Hypotonic Trypsin-EDTA Solution for Corneal Tissue Engineering. J Ophthalmol. 2018; 2018: 2590536. doi:10.1155/2018/2590536. PMID: 29805794.; Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 2009; 5 (1): 1–13. doi:10.1016/j.actbio.2008.09.013. PMID: 18938117.; Porzionato A, Stocco E, Barbon S, Grandi F, Macchi V, De Caro R. Tissue-Engineered Grafts from Human Decellularized Extracellular Matrices: A Systematic Review and Future Perspectives. Int J Mol Sci. 2018; 19 (12): 4117. doi:10.3390/ijms19124117. PMID: 30567407.; DelMonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg. 2011; 37 (3): 588–598. doi:10.1016/j.jcrs.2010.12.037. PMID: 21333881.; Oh JY, Kim MK, Lee HJ, Ko JH, Wee WR, Lee JH. Processing porcine cornea for biomedical applications. Tissue Eng Part C Methods. 2009; 15 (4): 635–645. doi:10.1089/ten.TEC.2009.0022. PMID: 19249963.; https://journal.transpl.ru/vtio/article/view/1374
-
17Academic Journal
Source: Russian Journal of Transplantology and Artificial Organs; Том 23, № 1 (2021); 150-156 ; Вестник трансплантологии и искусственных органов; Том 23, № 1 (2021); 150-156 ; 1995-1191
Subject Terms: сверхкритический диоксид углерода, tissue engineering, decellularization, supercritical carbon dioxide, тканевая инженерия, децеллюляризация
File Description: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1326/1095; https://journal.transpl.ru/vtio/article/view/1326/1193; Акатов ВС, Муратов РМ, Фадеева ИС, Сачков АС, Бритиков ДВ, Фесенко НИ и др. Изучение биосовместимости трансплантантов клапанов сердца, девитализированных антикальцинозным способом. Гены & Клетки. 2010; V (2): 36-41.; Курапеев ДИ, Лаврешин АВ, Анисимов СВ. Тканевая инженерия клапанов сердца: децеллюризация алло-и ксенографтов. Гены & Клетки. 2012; VII (1): 34-39.; Sawada K, Terada D, Yamaoka T, Kitamura S, Fujisa-to T. Cell removal with supercritical carbon dioxide for acellular artificial tissue. J Chem Technol Biotechnol. 2008; 83: 943-949.; Courtman DW, Pereira CA, Kashef V, McComb D, Lee JM, Wilson GJ. Development of a pericardial acellular matrix biomaterial: Biochemical and mechanical effects of cell extraction. Journal of Biomedical Materials Research. 1994 Jun; 28 (Issue 6): 655-666. https://doi.org/10.1002/jbm.820280602.; Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006; 27: 3675-3683. doi:10.1016/j.biomaterials.2006.02.014.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. Volume 32, Issue 12, April 2011, Pages 32333243. doi:10.1016/j.biomaterials.2011.01.057.; (Gil-Ramirez A, Rosmark O, Spegel P, Sward K, Westergren-Thorsson G, Larsson-Callerfelt A-K, Rodriguez-Meizosocorresponding I. Pressurized carbon dioxide as a potential tool for decellularization of pulmonary arteries for transplant purposes. Sci Rep. 2020; 10: 4031. Published online 2020 Mar 4. https://doi.org/10.1038/s41598-020-60827-4.; Bechtel JF, Muller-Steinhardt M, Schmidtke C, Bruswik A, Stierle U, Sievers HH. Evaluation of the decellularized pulmonary valve homograft (SynerGraft). J Heart Valve Dis. 2003; 12: 734-739.; Cebotari S, Mertsching H, Kallenbach K, Kostin S, Repin O, Batrinac A et al. Construction of Autologous Human Heart Valves Based on an Acellular Allograft Matrix. Circulation. 2002; 106: I-63-I-68.; Tudorache I, Cebotari S, Sturz G, Kirsch L, Hurschler C, Hilfiker A et al. Tissue Engineering of Heart Valves: Biomechanical and Morphological Properties of Decellularized Heart Valves. J Heart Valve Dis. 2007 Sep; 16 (5): 567-573; discussion 574.; Gilpin A, Yang Y. Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. Biomed Res Int. 2017 Apr; 2017: 9831534. https://doi.org/10.1155/2017/9831534.; Steinhoff G, Stock U, Karim N, Mertsching H, Timke A, Meliss RR. Tissue Engineering of Pulmonary Heart Valves on Allogenic Acellular Matrix Conduits: In Vivo Restoration of Valve Tissue. Circulation. 2000 Nov 7; 102 (19 Suppl 3): III50-5. doi:10.1161/01.cir.102.suppl_3.iii-50.; Xing Q, Yates K, Tahtinen M, Shearier E, Qian Z, Zhao F. Decellularization of Fibroblast Cell Sheets for Natural Extracellular Matrix Scaffold Preparation. Tissue Engineering Part C: Methods. 2014; 21 (1). doi:10.1089/ten.tec.2013.0666.; Wilson GJ, Courtman DW, Klement P, Lee JM, Yeger H. Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement. Ann Thorac Surg. 1995; 60 (2 Suppl): S353-S358. doi:10.1016/0003-4975(95)98967-y.; Wong ML, Griffiths LG. Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization. Acta Biomaterialia. 31 Jan 2014; 10 (5): 1806-1816. doi:10.1016/j.actbio.2014.01.028.; Sayk F, Bos I, Schubert U, Wedel T, Sievers H-H. Histopathologic findings in a novel decellularized pulmonary homograft: An autopsy study. Ann Thorac Surg. 2005; 79: 1755-1758. doi:10.1016/j.athoracsur.2003.11.049.; Kneib C, von Glehn C, Costa F, Costa M, Susin M. Evaluation of humoral immune response to donor HLA after implantation of cellularized versus decellularized human heart valve allografts. Tissue Antigens. 2012; 80: 165174. doi:10.1111/j.1399-0039.2012.01885.x. Epub 2012 May 25.; Goncalves AC, Griffiths LG, Anthony RV, Orton EC. De-cellularization of bovine pericardium for tissue-engineering by targeted removal of xenoantigens. The Journal of Heart Valve Disease. 01 Mar 2005; 14 (2): 212-217.; Griffiths LG, Choe LH, Reardon KF, Dow SW, Christopher Orton E. Immunoproteomic identification of bovine pericardium xenoantigens. Biomaterials. 2008; 29: 3514-3520. doi:10.1016/j.biomaterials.2008.05.006.; Syedain ZH, Bradee AR, Kren S, Taylor DA, Tranquillo RT. Decellularized tissue-engineered heart valve leaflets with recellularization potential. Tissue Engineering Part A. 2012; 19: 759-769. doi:10.1089/ten.TEA.2012.0365.; Keane TJ, Londono R, Turner NJ, Badylak SF. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 2012; 33: 1771-1781. doi:10.1016/j.biomaterials.2011.10.054.; Gilbert TW, Freund JM, Badylak SF. Quantification of DNA in biologic scaffold materials. The Journal of Surgical Research. 2009; 152: 135-139. doi:10.1016/j.jss.2008.02.013.; Boer U, Lohrenz A, Klingenberg M, Pich A, Haverich A, Wilhelmi M. The effect of detergent-based decellularization procedures on cellular proteins and immunogenicity in equine carotid artery grafts. Biomaterials. 2011; 32: 9730-9737. doi:10.1016/j.biomaterials.2011.09.015.; Kasimir MT, Rieder E, Seebacher G, Nigisch A, Dekan B, Wolner E et al. Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. J Heart Valve Dis. 2006; 15 (2): 278-286.; VeDepo MC, Detamore MS, Hopkins RA, Converse GL. Recellularization of decellularized heart valves: Progress toward the tissue-engineered heart valve. J Tissue Eng. 2017 Jan-Dec; 8: 2041731417726327. doi:10.1177/2041731417726327.; Casali DM, Handleton RM, Shazly T, Matthews MA. A novel supercritical CO2-based decellularization method for maintaining scaffold hydration and mechanical properties. The Journal of Supercritical Fluids. 2018 Jan; 131: 72-81. https://doi.org/10.1016/j.supflu.2017.07.021.; Lee JW, Fukusaki E, Bamba T. Application of supercritical fluid carbon dioxide to the extraction and analysis of lipids. Bioanalysis. 2012; 4: 2413-2422. https://doi.org/10.4155/bio.12.198.; Hennessy RS, Jana S, Tefft BJ, Helder MR, Young MD, Hennessy RR et al. Supercritical Carbon Dioxide-Based Sterilization of Decellularized Heart Valves. JACC Basic Transl Sci. 2017 Feb; 2 (1): 71-84. doi:10.1016/j.jacbts.2016.08.009.; https://journal.transpl.ru/vtio/article/view/1326
-
18Academic Journal
Authors: Костенев, С.В., Борзенок, С.А., Ли, В.Г., Носиров, П.О.
Source: FYODOROV JOURNAL OF OPHTHALMIC SURGERY ; No. 1 (2021): FYODOROV JOURNAL OF OPHTHALMIC SURGERY; 68-72 ; ОФТАЛЬМОХИРУРГИЯ; № 1 (2021): Офтальмохирургия; 68-72 ; 2312-4970 ; 0235-4160
Subject Terms: Relex Smile, лентикула, имплантация, криоконсервация, децеллюляризация, тканевая инженерия, lenticule, implantation, cryopreservation, decellularization, tissue engineering
File Description: application/pdf
-
19Academic Journal
Authors: M. B. Vasileva, D. S. Sergeevichev, A. S. Yunoshev, P. M. Larionov, R. B. Novruzov, A. M. Karaskov
Source: Патология кровообращения и кардиохирургия, Vol 16, Iss 2, Pp 77-80 (2018)
Subject Terms: БИОЛОГИЧЕСКИЙ КЛАПАН СЕРДЦА, АЛЛОГРАФТ, ДЕЦЕЛЛЮЛЯРИЗАЦИЯ, ТЕНЗОМЕТРИЯ, Surgery, RD1-811
File Description: electronic resource
-
20Academic Journal
Authors: A. S. Ponomareva, L. A. Kirsanova, N. V. Baranova, V. A. Surguchenko, G. N. Bubentsova, Yu. B. Basok, I. A. Miloserdov, V. I. Sevastianov, А. С. Пономарева, Л. А. Кирсанова, Н. В. Баранова, В. А. Сургученко, Г. Н. Бубенцова, Ю. Б. Басок, И. А. Милосердов, В. И. Севастьянов
Source: Russian Journal of Transplantology and Artificial Organs; Том 22, № 1 (2020); 123-133 ; Вестник трансплантологии и искусственных органов; Том 22, № 1 (2020); 123-133 ; 1995-1191 ; 10.15825/1995-1191-2020-1
Subject Terms: тканевая инженерия, decellularization, tissue-specific scaffold, tissue engineering, децеллюляризация, тканеспецифический каркас
File Description: application/pdf
Relation: https://journal.transpl.ru/vtio/article/view/1153/915; https://journal.transpl.ru/vtio/article/view/1153/962; Сургученко ВА. Матриксы для тканевой инженерии и гибридных органов. Биосовместимые материалы (учебное пособие). Под ред. В.И. Севастьянова и М.П. Кирпичникова. М.: МИА, 2011. Часть II, глава 1: 199–226.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011 April; 32 (12): 3233–3243. doi:10.1016/j.biomaterials.2011.01.057.; Sackett SD, Tremmel DM, Ma F, Feeney AK, Maguire RM, Brown ME et al. Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Scientific Reports. 2018; 8: 10452. doi:10.1038/s41598-018-28857-1.; Stendahl JC, Kaufman DB, Stupp SI. Extracellular Matrix in Pancreatic Islets: Relevance to Scaffold Design and Transplantation. Cell Transplant. 2009; 18 (1): 1–12. doi:10.3727/096368909788237195.; Riopel M, Wang К. Collagen matrix support of pancreatic islet survival and function. Frontiers in Bioscience. 2014 Jan; 19: 77–90. doi:10.2741/4196.; Salvatori M, Katari R, Patel T, Peloso A, Mugweru J, Owusu K, Orlando G. Extracellular Matrix Scaffold Technology for Bioartificial Pancreas Engineering: State of the Art and Future Challenges. Journal of Diabetes Science and Technology. 2014; 8 (1): 159–169. doi:10.1177/1932296813519558.; Wu D, Wan J, Huang Y, Guo Y, Xu T, Zhu M et al. 3D Culture of MIN-6 Cells on Decellularized Pancreatic Scaffold: in vitro and in vivo Study. BioMed Research International. 2015 Nov: 1–8. http://dx.doi.org/10.1155/2015/432645.; Goh SK, Bertera S, Olsen P, Candiello J, Halfter W, Uechi G et al. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials. 2013; 34 (28): 6760–6772. doi:10.1016/j.biomaterials.2013.05.066.; Napierala H, Hillebrandt K-H, Haep N, Tang P, Tintemann M, Gassner J et al. Engineering an endocrine Neo-Pancreas by repopulation of a decellularized rat pancreas with islets of Langerhans. Scientific Reports. 2017; 7: 41777. doi:10.1038/srep41777.; Mirmalek-Sani S-H, Orlando G, McQuilling J, Pareta R, Mack D, Salvatori M et al. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials. 2013; 34 (22): 5488–5495. doi:10.1016/j.biomaterials.2013.03.054.; Peloso A, Urbani L, Cravedi P, Katari R, Maghsoudlou P, Fallas MEA et al. The human pancreas as a source of pro-tolerogenic extracellular matrix scaffold for a new generation bio-artificial endocrine pancreas. Ann Surg. 2016; 264 (1): 169–179. doi:10.1097/SLA.0000000000001364.; Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011. 32 (12): 3233–3243. doi:10.1016/j.biomaterials.2011.01.057.; Межгосударственный стандарт ГОСТ ISO 10993-5-2011 «Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 5. Исследование на цитотоксичность: методы in vitro».; https://journal.transpl.ru/vtio/article/view/1153