-
1Academic Journal
Συγγραφείς: E. V. Markova, M. A. Knyazheva, Е. В. Маркова, М. А. Княжева
Πηγή: Medical Immunology (Russia); Том 23, № 4 (2021); 699-704 ; Медицинская иммунология; Том 23, № 4 (2021); 699-704 ; 2313-741X ; 1563-0625
Θεματικοί όροι: цитокины, depressive-like behavior, immune cells, caffeine, brain, cytokines, депрессивно-подобное поведение, иммунокомпетентные клетки, кофеин, мозг
Περιγραφή αρχείου: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2418/1435; Ambrée O., Ruland C., Scheu S., Arolt V., Alferink J. Alterations of the innate immune system in susceptibility and resilience after social defeat stress. Front. Behav. Neurosci., 2018, Vol. 12, 141. doi:10.3389/fnbeh.2018.00141.; Clark S.M., Vaughn C.N., Soroka J.A., Li X., Tonelli L.H. Neonatal adoptive transfer of lymphocytes rescues social behavior during adolescence in immune-deficient mice. Eur. J. Neurosci., 2018, Vol. 47, pp. 968-978.; Dantzer R. Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol. Rev., 2018, Vol. 98, no. 1, pp. 477-504.; Himmerich H., Patsalos O., Lichtblau N., Ibrahim M.A.A., Dalton. B. Cytokine Research in depression: principles, challenges, and open questions. Front. Psychiatry, 2019, Vol. 10, 30. doi:10.3389/fpsyt.2019.00030.; Hoseinzadeh F., Abadi P.H., Agheltar M., Aghayinejad A., Torabian F., Rezayat A.A., Akbarzadeh F., Rahimi H.R. The role of immune system in depression disorder. Health, 2016, Vol. 8, no. 15, pp. 1726-1743.; Idova G.V., Markova E.V., Gevorgyan M.M., Al’perina E.L., Zhanaeva S.Ya. Cytokine production by splenic cells in C57BL/6J mice with depression-like behavior depends on the duration of social stress. Bull. Exp. Biol. Med., 2018, Vol. 164, no. 5, pp. 645-649.; Liu J.J., Wei Y.B., Strawbridge R. Peripheral cytokine levels and response to antidepressant treatment in depression: a systematic review and meta-analysis. Mol. Psychiatry, 2020, Vol. 25, no. 2, pp. 339-350.; Markova E.V. Immune system and higher nervous activity. Mechanisms of neuroimmune interactions in the implementation and regulation of behavioral responses. Saarbrücken, 2012. (In Russ.); Markova E.V., Knyazheva M.A., Amstislavskaya T.G., Tichonova M. Stimulation of neurogenesis in the hippocampus in depressive-like animals by modulated immune cells. Eur. Psychiatry, 2019, Vol. 56, no. S1, pp. S122-S123.; Markova E.V., Knyazheva M.A., Kozlov V.A. Cellular mechanisms of neuroimmune interactions in the regulation of the exploratory behavior. Siberian Bulletin of Psychiatry and Narcology, 2013, no. 1 (76), pp. 49-52. (In Russ.); Markova E.V., Knyazheva M.A., Shushpanova T.V., Kozlov V. Stimulation of passive behavior by the transplantation of immune cells pre-treated with psychoactiive drug. Siberian Bulletin of Psychiatry and Narcology, 2015, no. 4 (89), pp. 5-9. (In Russ.).; Markova E., Knyazheva M., Savkin I., Аmstislavskaya T. Psychoneuroimmunomodulating effect of immune cells treated with psychoactive drug in depressive – like animals. Eur. Psychiatry, 2018, Vol. 48, no. S 1, p. S293.; Markova E.V., Knyazheva M.A., Savkin I.V., Tikhonova M.A., Amstislavskaya T.G. Method for stimulating neurogenesis in the hippocampus. Patent RU 2675111 С2, 17.12.2018 (In Russ).; Miller A., Raison C. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat. Rev. Immunol., 2016, Vol. 16, no. 1, pp. 22-34.; Nemets V.V., Vinogradova E.P. Stress and neurobiology of coping styles. National Psychological Journal, 2017, no. 2, pp. 59-72. (In Russ.); https://www.mimmun.ru/mimmun/article/view/2418
-
2
-
3Academic Journal
Συγγραφείς: E. Y. Bazhenova, D. V. Fursenko, N. V. Khotskin, I. E. Sorokin, A. V. Kulikov, Е. Ю. Баженова, Д. В. Фурсенко, Н. В. Хоцкин, И. Е. Сорокин, А. В. Куликов
Πηγή: Vavilov Journal of Genetics and Breeding; Том 23, № 1 (2019); 55-61 ; Вавиловский журнал генетики и селекции; Том 23, № 1 (2019); 55-61 ; 2500-3259
Θεματικοί όροι: мыши, photoperiod, activity, anxiety, depressive-like behavior, mice, фотопериод, активность, тревожность, депрессивно-подобное поведение
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/1868/1179; Alves R., Barbosa De Carvalho G., Antonio M., Venditti C. High-and low-rearing rats differ in the brain excitability controlled by the allosteric benzodiazepine site in the GABAA receptor. J. Behav. Brain Sci. 2012;2:315-325. DOI 10.4236/jbbs.2012.23036.; Bains R.S., Wells S., Sillito R.R., Armstrong J.D., Cater H.L., Banks G., Nolan P.M. Assessing mouse behaviour throughout the light/dark cycle using automated in-cage analysis tools. J. Neurosci. Methods. 2018;300:37-47. DOI 10.1016/j.jneumeth.2017.04.014.; Bazhan N.M., Yakovleva T.V., Kazantseva A.Y., Makarova E.N. Exaggerated anorexigenic response to restraint stress in A(y) mice is associated with elevated CRFR2 mRNA expression in the hypothalamus. Physiol. Behav. 2013;120:19-25. DOI 10.1016/j.physbeh.2013.06.023.; Boston B.A., Blaydon K.M., Varnerin J., Cone R.D. Independent and additive effects of central POMC and leptin pathways on murine obesity. Science. 1997;278:1641-1644. DOI 10.1126/science.278. 5343.1641.; Carola V., D’Olimpio F., Brunamonti E., Mangia F., Renzi P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav. Brain Res. 2002;134:49-57. DOI 10.1016/S0166-4328(01)00452-1.; Caruso V., Lagerström M.C., Olszewski P.K., Fredriksson R., Schiöth H.B. Synaptic changes induced by melanocortin signaling. Nat. Rev. Neurosci. 2014;15:98-110. DOI 10.1038/nrn3657.; Chaki S., Okubo T. Melanocortin-4 receptor antagonists for the treatment of depression and anxiety disorders. Curr. Top. Med. Chem. 2007;7:1145-1151. DOI 10.2174/156802607780906618.; Chaki S., Okuyama S. Involvement of melanocortin-4 receptor in anxiety and depression. Peptides. 2005;26:1952-1964. DOI 10.1016/j.peptides.2004.11.029.; Chaki S., Oshida Y., Ogawa S.I., Funakoshi T., Shimazaki T., Okubo T., Nakazato A., Okuyama S. MCL0042: A nonpeptidic MC4 receptor antagonist and serotonin reuptake inhibitor with anxiolytic- and antidepressant-like activity. Pharmacol. Biochem. Behav. 2005; 82:621-626. DOI 10.1016/j.pbb.2005.11.001.; Crusio W.E. Genetic dissection of mouse exploratory behavior. Behav. Brain Res. 2001;125:127-132. DOI 10.1016/S0166-4328(01)00280-7.; Fisher S.P., Godinho S.I.H., Pothecary C.A., Hankins M.W., FosterR.G., Peirson S.N. Rapid assessment of sleep-wake behavior in mice. J. Biol. Rhythms. 2012;27:48-58. DOI 10.1177/0748730411431550.; Gragnoli C. Hypothesis of the neuroendocrine cortisol pathway gene role in the comorbidity of depression, type 2 diabetes, and metabolic syndrome. Appl. Clin. Genet. 2014;7:43-53. DOI 10.2147/TACG. S39993.; Khotskin N.V., Sorokin I.E., Kulikova E.A., Kulikov А.V. Effect of Zbtb33 gene knockout and bacterial lipopolysaccharide on home cage behavior in mice. Vavilovskii Zhurnal Genetiki i Selektsii= Vavilov Journal of Genetics and Breeding. 2017;21(7):804-809. DOI 10.18699/VJ17.297. (in Russian); Kulikov A.V., Morozova M.V., Kulikov V.A., Kirichuk V.S., Popova N.K. Automated analysis of antidepressants’ effect in the forced swim test. J. Neurosci. Methods. 2010;191:26-31. DOI 10.1016/j.jneumeth.2010.06.002.; Kulikov A.V., Tikhonova M.A., Kulikov V.A. Automated measurement of spatial preference in the open field test with transmitted lighting. J. Neurosci. Methods. 2008;170:345-351. DOI 10.1016/j.jneumeth.2008.01.024.; Kulikov V.A., Khotskin N.V., Nikitin S.V., Lankin V.S., Kulikov A.V., Trapezov O.V. Application of 3-D imaging sensor for tracking minipigs in the open field test. J. Neurosci. Methods. 2014;235:219-225. DOI 10.1016/j.jneumeth.2014.07.012.; Levitan R.D. The chronobiology and neurobiology of winter seasonal affective disorder. Dialogues Clin. Neurosci. 2007;9:315-324. DOI 10.1016/j.jcin.2015.10.034.; Łojko D., Buzuk G., Owecki M., Ruchała M., Rybakowski J.K. Atypical features in depression: Association with obesity and bipolar disorder. J. Affect. Disord. 2015;185:76-80. DOI 10.1016/j.jad.2015.06.020.; Lu D., Willard D., Patel I.R., Kadwell S., Overton L., Kost T., Luther M., Chen W., Woychik R.P., Wilkison W.O., Cone R.D. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature. 1994;371:799-802. DOI 10.1038/371799a0.; Luppino F.S., de Wit L.M., Bouvy P.F., Stijnen T., Cuijpers P., Penninx B.W.J.H., Zitman F.G. Overweight, obesity, and depression. Arch. Gen. Psychiatry. 2010;67:220-229. DOI 10.1001/archgenpsychiatry.2010.2.; Miller A.L. Epidemiology, etiology, and natural treatment of seasonal affective disorder. Altern. Med. Rev. 2005;10:5-13.; Monteiro S., Roque S., de Sá-Calçada D., Sousa N., Correia-Neves M., Cerqueira J.J. An efficient chronic unpredictable stress protocol to induce stress-related responses in C57BL/6 mice. Front. Psychiatry. 2015;6:6. DOI 10.3389/fpsyt.2015.00006.; Otsuka T., Kawai M., Togo Y., Goda R., Kawase T., Matsuo H., Iwamoto A., Nagasawa M., Furuse M., Yasuo S. Photoperiodic responses of depression-like behavior, the brain serotonergic system, and peripheral metabolism in laboratory mice. Psychoneuroendocrinology. 2014;40:37-47. DOI 10.1016/j.psyneuen.2013.10.013.; Pack A.I., Galante R.J., Maislin G., Cater J., Metaxas D., Lu S., Zhang L., Von Smith R., Kay T., Lian J., Svenson K., Peters L.L. Novel method for high-throughput phenotyping of sleep in mice. Physiol. Genomics. 2007;28:232-238. DOI 10.1152/physiolgenomics.00139.2006.; Perry W.L., Copeland N.G., Jenkins N.A. The molecular basis for dominant yellow agouti coat color mutations. BioEssays. 1994;16:705707. DOI 10.1002/bies.950161002.; Prut L., Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur. J. Pharmacol. 2003;463:3-33. DOI 10.1016/S0014-2999(03)01272-X.; Sharma A.N., Elased K.M., Garrett T.L., Lucot J.B. Neurobehavioral deficits in db/db diabetic mice. Physiol. Behav. 2010;101:381-388. DOI 10.1016/j.physbeh.2010.07.002.; Simon G.E., Von Korff M., Saunders K., Miglioretti D.L., Crane P.K., Van Belle G., Kessler R.C. Association between obesity and psychiatric disorders in the US adult population. Arch. Gen. Psychiatry. 2006;63:824-830. DOI 10.1001/archpsyc.63.7.824.; Stunkard A.J., Faith M.S., Allison K.C. Depression and obesity. Biol. Psychiatry. 2003;54:330-337. DOI 10.1016/S0006-3223(03)00608-5.; Young J.W., Cope Z.A., Romoli B., Schrurs E., Joosen A., Van Enkhuizen J., Sharp R.F., Dulcis D. Mice with reduced DAT levels recreate seasonal-induced switching between states in bipolar disorder. Neuropsychopharmacology. 2018;43:1721-1731. DOI 10.1038/s41386018-0031-y.; https://vavilov.elpub.ru/jour/article/view/1868
-
4Academic Journal
Συγγραφείς: E. M. Kondaurova, T. V. Ilchibaeva, A. S. Tsybko, Е. G. Ponimaskin, V. S. Naumenko, Е. М. Кондаурова, Т. В. Ильчибаева, А. С. Цыбко, Е. Г. Понимаскин, В. С. Науменко
Πηγή: Vavilov Journal of Genetics and Breeding; Том 22, № 5 (2018); 593-599 ; Вавиловский журнал генетики и селекции; Том 22, № 5 (2018); 593-599 ; 2500-3259
Θεματικοί όροι: депрессивно-подобное поведение, ZDHHC9 and ZDHHC21 palmitoyl transferases, Zdhhc5, Zdhhc9, Zdhhc21 genes, gene expression, protein level, ASC mice, depressive-like behavior, ZDHHC9 и ZDHHC21 пальмитилтрансферазы, гены Zdhhc5, Zdhhc21, экспрессия генов, уровень белка, мыши ASC
Περιγραφή αρχείου: application/pdf
Relation: https://vavilov.elpub.ru/jour/article/view/1595/1105; Alperina E.L., Kulikov A.V., Popova N.K., Idova G.V. Immnune response in mice of a new strain ASC (antidepressant-sensitive catalepsy). Byulleten Eksperimentalnoy Biologii i Meditsiny = Bulletin of Experimental Biology and Medicine. 2007; 144(8):188-190. (in Russian); Badawy S.M.M., Okada T., Kajimoto T., Ijuin T., Nakamura S.I. DHHC5-mediated palmitoylation of S1P receptor subtype 1 determines G-protein coupling. Sci. Rep. 2017;7(1):16552. DOI 10.1038/s41598-017-16457-4.; Bazovkina D.V., Kulikov A.V., Kondaurova E.M., Popova N.K. Selection for the predisposition to catalepsy enhances depressive-like traits in mice. Genetika = Genetics (Moscow). 2005; 41(9):12221228. (in Russian); Beard R.S.Jr., Yang X., Meegan J.E., Overstreet J.W., Yang C.G., Elliott J.A., Reynolds J.J., Cha B.J., Pivetti C.D., Mitchell D.A., Wu M.H., Deschenes R.J., Yuan S.Y. Palmitoyl acyltransferase DHHC21 mediates endothelial dysfunction in systemic inflammatory response syndrome. Nat. Commun. 2016;7(12823). DOI 10.1038/ncomms12823.; Brigidi G.S., Santyr B., Shimell J., Jovellar B., Bamji S.X. Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5. Nat. Commun. 2015;6(8200). DOI 10.1038/ncomms9200.; Cho E., Park M. Palmitoylation in Alzheimer’s disease and other neurodegenerative diseases. Pharmacol. Res. 2016;111(133-151). DOI 10.1016/j.phrs.2016.06.008.; Duman R.S., Heninger G.R., Nestler E.J. A molecular and cellular theory of depression. Arch. Gen. Psychiatry. 1997;54(7):597-606.; Dutta D., Mandal C., Mandal C. Unusual glycosylation of proteins: Beyond the universal sequon and other amino acids. Biochim. Biophys. Acta. 2017;1861(12):3096-3108. DOI 10.1016/j.bbagen.2017.08.025.; Fukata Y., Fukata M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat. Rev. Neurosci. 2010;11(3):161-175. DOI 10.1038/nrn2788.; Gorinski N., Ponimaskin E. Palmitoylation of serotonin receptors. Biochem. Soc. Trans. 2013;41(1):89-94. DOI 10.1042/BST20120235.; Harro J., Oreland L. Depression as a spreading neuronal adjustment disorder. Eur. Neuropsychopharmacol. 1996;6(3):207-223.; Jacobs B.L., Azmitia E.C. Structure and function of the brain serotonin system. Physiol. Rev. 1992;72(1):165-229.; Katkova L.E., Solenov E.I., Ivanova L.N. The role of protein kinase C in the formation of the mechanism of vasopressin antidiuretic action in the rat kidney during mammalian postnatal development. Ontogenez = Ontogenesis (Moscow). 2009;40(6):442-448. (in Russian); Kondaurova E.M., Bazovkina D.V., Kulikov A.V., Popova N.K. Selective breeding for catalepsy changes the distribution of microsatelite D13Mit76 alleles linked to the 5-HT serotonin receptor gene in mice. Genes Brain Behav. 2006;5(8):596-601. DOI GBB212.; Kulikov A.V., Naumenko V.S., Voronova I.P., Tikhonova M.A., Popo¬va N.K. Quantitative RT-PCR assay of 5-HT1A and 5-HT2A serotonin receptor mRNAs using genomic DNA as an external standard. J. Neurosci. Meth. 2005;141(1):97-101. DOI S016502700400216X.; Li Y., Hu J., Hofer K., Wong A.M., Cooper J.D., Birnbaum S.G., Hammer R.E., Hofmann S.L. DHHC5 interacts with PDZ domain 3 of post-synaptic density-95 (PSD-95) protein and plays a role in learn¬ing and memory. J. Biol. Chem. 2010;285(17):13022-13031. DOI 10.1074/jbc.M109.079426.; Maes M., Meltzer H.Y. The serotonin hypothesis of major depression. Psychopharmacology: The Fourth Generation of Progress. Eds. E.E. Bloom, N.N. Kupfer. New York, 1995;933-944.; Naumenko V.S., Kondaurova E.M., Bazovkina D.V., Tsybko A.S., Tikhonova M.A., Kulikov A.V., Popova N.K. Effect of brain-derived neurotrophic factor on behavior and key members of the brain se¬rotonin system in genetically predisposed to behavioral disorders mouse strains. Neuroscience. 2012;214:59-67. DOI S0306-4522(12)00390-9.; Naumenko V.S., Kulikov A.V. Quantitative assay of 5-HT1A receptor gene expression in the brain. Molekulyarnaya Biologiya = Molecular Biology (Moscow). 2006;40(1):37-44. (in Russian); Naumenko V.S., Osipova D.V., Kostina E.V., Kulikov A.V. Utilization of a two-standard system in real-time PCR for quantification of gene expression in the brain. J. Neurosci. Meth. 2008;170(2):197-203. DOI S0165-0270(08)00044-7.; Neumeister A., Wood S., Bonne O., Nugent A.C., Luckenbaugh D.A., Young T., Bain E.E., Charney D.S., Drevets W.C. Reduced hippocampal volume in unmedicated, remitted patients with major depres-sion versus control subjects. Biol. Psychiatry. 2005;57(8):935-937. DOI 10.1016/j.biopsych.2005.01.016.; Papoucheva E., Dumuis A., Sebben M., Richter D.W., Ponimaskin E.G. The 5-hydroxytryptamine(1A) receptor is stably palmitoylated, and acylation is critical for communication of receptor with Gi pro-tein. J. Biol. Chem. 2004;279(5):3280-3291. DOI 10.1074/jbc.M308177200.; Renner U., Glebov K., Lang T., Papusheva E., Balakrishnan S., Keller B., Richter D.W., Jahn R., Ponimaskin E. Localization of the mouse 5-hydroxytryptamine(1A) receptor in lipid microdomains depends on its palmitoylation and is involved in receptor-mediated signaling. Mol. Pharmacol. 2007;72(3):502-513. DOI 10.1124/mol.107.037085.; Ressler K.J., Mayberg H.S. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat. Neurosci. 2007;10(9):1116-1124. DOI 10.1038/nn1944.; Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 1993;3(2):97-130.; https://vavilov.elpub.ru/jour/article/view/1595
-
5Academic Journal
Πηγή: Иммунология.
Θεματικοί όροι: 03 medical and health sciences, 0302 clinical medicine, CD4+И CD8 +T-ЛИМФОЦИТЫ, ПРОТОЧНАЯ ЦИТОФЛЮОРОМЕТРИЯ, ДЕПРЕССИВНО-ПОДОБНОЕ ПОВЕДЕНИЕ, CD4+ AND CD8+T-LYMPHOCYTES
Περιγραφή αρχείου: text/html