Showing 1 - 20 results of 98 for search '"дегенеративно-дистрофические заболевания"', query time: 0.72s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Source: The Russian Archives of Internal Medicine; Том 12, № 4 (2022); 310-315 ; Архивъ внутренней медицины; Том 12, № 4 (2022); 310-315 ; 2411-6564 ; 2226-6704

    File Description: application/pdf

    Relation: https://www.medarhive.ru/jour/article/view/1484/1142; https://www.medarhive.ru/jour/article/view/1484/1151; Эрдес Ш.Ф., Ребров А.П., Дубинина Т.В., и др. Спондилоартриты: современная терминология и определения. Терапевтический архив. 2019; 91(5): 84–8. doi:10.26442/004036 60.2019.05.000208; Abdelaziz M.M., Gamal R.M., Ismail N.M., et al. Diagnostic value of anti-CD74 antibodies in early and late axial spondyloarthritis and its relationship to disease activity. Rheumatology (Oxford). 2021 Jan 5; 60(1): 263-268. doi:10.1093/rheumatology/keaa292. PMID: 32710117; Liu Y., Liao Х., Shi G. Autoantibodies in Spondyloarthritis, Focusing on Anti-CD74 Antibodies. Front Immunol. 2019 Jan 22; 10: 5. doi:10.3389/fimmu.2019.00005; Baerlecken N.T., Nothdorft S., Stummvoll G.H., et al. Autoantibodies against CD74 in spondyloarthritis. Ann. Rheum. Dis. 2014; 73(6): 1211-4. doi:10.1136/annrheumdis-2012-202208.; Ziade N.R., Mallak I., Merheb G., et al. Added Value of AntiCD74 Autoantibodies in Axial SpondyloArthritis in a Population With Low HLA-B27 Prevalence. Front. Immunol. 10: 574. doi:10.3389/fimmu.2019.00574.; Кузнецова Д.А., Лапин С.В., Гайдукова И.З., и др. Клиникодиагностическая значимость аутоантител к CD74 при аксиальных спондилоартритах. Клиническая лабораторная диагностика. 2018; 68 (5): 297-301. doi:10.18821/0869-2084- 2018-63-5-297-301.; Garrett S., Jenkinson T., Kennedy L.G., et al. A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index. J Rheumatol. 1994;21(12):2286–2291.; Lukas C., Landewé R., Sieper J., et al. Assessmentof Spondylo Arthritis international Society. Developmentof an ASAS-endorsed disease activity score (ASDAS) in patientswith ankylosing spondylitis. Ann Rheum Dis. 2009; 68(1): 18–24. doi:10.1136/ard.2008.094870; Poddubnyy D. Classification vs diagnostic criteria: the challenge of diagnosing axial spondyloarthritis. Rheumatology (Oxford). 2020; 59(Suppl4): iv6-iv17. doi:10.1093/rheumatology/keaa250.; Baerlecken N.T., Witte T. Methods and means for diagnosing spondyloarthritis using autoantibody markers. Patent EP, № 2420834A1; 2010.; Baerlecken N.T., Nothdorft S., Stummvoll G.H., et al. Autoantibodies against CD74 in spondyloarthritis. Ann. Rheum. Dis. 2014; 73(6): 1211-4.doi:10.1136/annrheumdis-2012-202208.; Baraliakos X., Baerlecken N., Witte T., et al. High prevalence of anti-CD74 antibodies specific for the HLA class IIassociated invariant chain peptide (CLIP) in patients with axial spondyloarthritis. Ann. Rheum. Dis. 2014; 73(6): 1079-82. doi:10.1136/annrheumdis-2012-202177.; Prajzlerová K., Grobelná K., Pavelka K., et al. An update on biomarkers in axial spondyloarthritis. Autoimmun. Rev.2016; 15(6): 501-9. doi:10.1016/j.autrev.2016.02.002.; Weber K.T., Alipui D.O., Sison C.P., et al. Serum levels of the proinflammatory cytokine interleukin-6 vary based on diagnoses in individuals with lumbar intervertebral disc diseases. Arthritis Res Ther. 2016 Jan 7;18:3. doi:10.1186/s13075-015-0887-8.; Rodrigues L.M.R., Oliveira L.Z., Silva M.B.R.D. et al. Share Inflammatory biomarkers in sera of patients with intervertebral disc degeneration. Einstein (Sao Paulo). 2019 Aug 29; 17(4): eAO4637. doi:10.31744/einstein_journal/2019AO4637.; https://www.medarhive.ru/jour/article/view/1484

  7. 7
    Academic Journal

    Source: Acta Biomedica Scientifica; Том 5, № 6 (2020); 113-123 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/2503/2087; Lan X, Gao J, Xu JZ, Liu XM. Treatment of ossification of Ligamentum flavum complicated with lumbar spinal stenosis. Zhongguo Gu Shang. 2017; 30(2): 175-178. doi:10.3969/j.issn.1003-0034.2017.02.016; Ye S, Kwon WK, Bae T, Kim S, Lee JB, Cho TH, et al. CCN5 reduces Ligamentum flavum hypertrophy by modulating the TGF-β pathway. J Orthop Res. 2019; 37(12): 2634-2644. doi:10.1002/jor.24425; Haig AJ, Adewole A, Yamakawa KSJ, Kelemen B, Aagesen AL. The Ligamentum flavum at L4-5: relationship with anthropomorphic factors and clinical findings in older persons with and without spinal disorders. PMR. 2012; 4(1): 23-29.; Rahimizadeh A, Soufiani H, Amirzadeh M, Rahimizadeh Sh. Ossification of the Ligamentum flavum of the lumbar spine in Caucasians: case series. J Spine Neurosurg. 2017; 6(5). doi:10.4172/2325-9701.1000283; Mori T, Sakai Y, Kayano M, Matsuda A, Oboki K, Matsumoto K. MicroRNA transcriptome analysis on hypertrophy of Ligamentum flavum in patients with lumbar spinal stenosis. Spine Surg Relat Res. 2017; 1(4): 211-217. doi:10.22603/ssrr.1.2017-0023; Qu X, Chen Z, Fan D, Sun C, Zeng Y, Hou X, et al. Notch signaling pathways in human thoracic ossification of the Ligamentum flavum. J Orthop Res. 2016; 34(8): 1481-1491. doi:10.1002/jor.23303; Le Maitre CL, Richardson SM, Baird P, Freemont AJ, Hoyland JA. Expression of receptors for putative anabolic growth factors in human intervertebral disc: implications for repair and regeneration of the disc. J Pathol. 2005; 207(4): 445-452. doi:10.1002/path.1862; Guo W, Zhang B, Li Y, Duan HQ, Sun C, Xu YQ, et al. Gene expression profile identifies potential biomarkers for human intervertebral disc degeneration. Mol Med Rep. 2017; 16(6): 8665-8672. doi:10.3892/mmr.2017.7741; Hong J, Yan J, Chen J, Li S, Huang Y, Huang Z, et al. Identification of key potential targets for TNF-α/TNFR1-related intervertebral disc degeneration by bioinformatics analysis. Connect Tissue Res. 2020; 26: 1-11. doi:10.1080/03008207.2020.1797709; Северин Е.С. (ред.). Биохимия: учебник. М.: ГЭОТАРМЕД; 2003.; Bringhurst FR. PTH receptors and apoptosis in osteocytes. J Musculoskelet Neuronal Interact. 2002; 2(3): 245-251.; Åkesson K, Tenne M, Gerdhem P, Luthman H, McGuigan FE. Variation in the PTH2R gene is associated with age-related degenerative changes in the lumbar spine. J Bone Miner Metab. 2015; 33(1): 9-15. doi:10.1007/s00774-013-0550-x; Galloway TS, Fletcher T, Thomas OJ, Lee BP, Pilling LC, Harries LW. PFOA and PFOS are associated with reduced expression of the parathyroid hormone 2 receptor (PTH2R) gene in women. Chemosphere. 2015; 120: 555-562. doi:10.1016/j.chemosphere.2014.09.066; Bisello A, Manen D, Pierroz DD, Usdin TB, Rizzoli R, Ferrari SL. Agonist-specific regulation of parathyroid hormone (PTH) receptor type 2 activity: structural and functional analysis of PTHand tuberoinfundibular peptide (TIP) 39-stimulated desensitization and internalization. Mol Endocrinol. 2004; 18(6): 1486-1498. doi:10.1210/me.2003-0487; Sato E, Zhang LJ, Dorschner RA, Adase CA, Choudhury BP, Gallo RL. Activation of parathyroid hormone 2 receptor induces decorin expression and promotes wound repair. J Invest Dermatol. 2017; 137(8): 1774-1783. doi:10.1016/j.jid.2017.03.034; Dimitrov EL, Petrus E, Usdin TB. Tuberoinfundibular peptide of 39 residues (TIP39) signaling modulates acute and tonic nociception. Exp Neurol. 2010; 226(1): 68-83. doi:10.1016/j.expneurol.2010.08.004; Tsuda MC, Yeung HM, Kuo J, Usdin TB. Incubation of fear is regulated by TIP39 peptide signaling in the medial nucleus of the amygdala. J Neurosci. 2015; 35(35): 12152-12161. doi:10.1523/JNEUROSCI.1736-15.2015; Dobolyi A, Palkovits M, Usdin TB. The TIP39-PTH2 receptor system: unique peptidergic cell groups in the brainstem and their interactions with central regulatory mechanisms. Prog Neurobiol. 2010; 90(1): 29-59. doi:10.1016/j.pneurobio.2009.10.017; Panda D, Goltzman D, Jüppner H, Karaplis AC. TIP39/parathyroid hormone type 2 receptor signaling is a potent inhibitor of chondrocyte proliferation and differentiation. Am J Physiol Endocrinol Metab. 2009; 297(5): E1125-E1136. doi:10.1152/ajpendo.00254.2009; Bagó AG, Dimitrov E, Saunders R, Seress L, Palkovits M, Usdin TB, et al. Parathyroid hormone 2 receptor and its endogenous ligand tuberoinfundibular peptide of 39 residues are concentrated in endocrine, viscerosensory and auditory brain regions in macaque and human. Neuroscience. 2009; 162(1): 128-147. doi:10.1016/j.neuroscience.2009.04.054; Dimitrov EL, Kuo J, Kohno K, Usdin TB. Neuropathic and inflammatory pain are modulated by tuberoinfundibular peptide of 39 residues. Proc Natl Acad Sci USA. 2013; 110(32): 13156-13161. doi:10.1073/pnas.1306342110; Родионова Л.В., Самойлова Л.Г., Шурыгина И.А., Скляренко О.В., Животенко А.П., Кошкарева З.В., и др. Особенности реакций ацетилирования у больных со стенозирующим процессом позвоночного канала и дурального мешка поясничного отдела позвоночника в зависимости от выраженности оссификации Ligamentum flavum. Патогенез. 2020; 13(3): 45-52. doi:10.25557/2310-0435.2020.03.45-52; Bai M, Yin H, Zhao J, Li Y, Wu Y. miR-182-5p overexpression inhibits chondrogenesis by down-regulating PTHLH. Cell Biol Int. 2019; 43(3): 222-232. doi:10.1002/cbin.11047; https://www.actabiomedica.ru/jour/article/view/2503

  8. 8
    Academic Journal

    Source: Acta Biomedica Scientifica; Том 5, № 6 (2020); 144-150 ; 2587-9596 ; 2541-9420

    File Description: application/pdf

    Relation: https://www.actabiomedica.ru/jour/article/view/2506/2090; Животенко А.П., Кошкарева З.В., Сороковиков В.А. Профилактика послеоперационного рубцово-спаечного эпидурита: современное состояние вопроса. Хирургия позвоночника. 2019; 16(3): 74-81. doi:10.14531/ss2019.3.74-81; Кириенко А.Н., Сороковиков В.А., Поздеева Н.А. Дегенеративно-дистрофические поражения шейного отдела позвоночника. Сибирский медицинский журнал (Иркутск). 2015; 7: 21-25.; Lan X, Gao J, Xu JZ, Liu XM. Treatment of ossification of ligamentum flavum complicated with lumbar spinal stenosis. Zhongguo Gu Shang. 2017; 30(2): 175-178. doi:10.3969/j.issn.1003-0034.2017.02.016; Haig AJ, Adewole A, Yamakawa KSJ, Kelemen B, Aagesen AL. The Ligamentum flavum at L4-5: Relationship with anthropomorphic factors and clinical findings in older persons with and without spinal disorders. PMR. 2012; 4(1): 23-29.; Rahimizadeh A, Soufiani H, Amirzadeh M, Rahimizadeh Sh. Ossification of the Ligamentum Flavum of the Lumbar Spine in Caucasians: Case Series. J Spine Neurosurg. 2017. 6(5). doi:10.4172/2325-9701.1000283; Zhong ZM, Zha DS, Xiao WD, Wu SH, Wu Q, Zhang Y, et al. Hypertrophy of Ligamentum flavum in lumbar spine stenosis associated with the increased expression of connective tissue growth factor. J Orthop Res. 2011; 29(10): 1592-1597. doi:10.1002/jor.21431; Zhang Y, Xu XM, Wu SP, Xia XZ, Li CT, Dedg CL, et al. Overexpression of platelet-derived growth factor-BB in degenerative hypertrophied Ligamentum flavum. Nan Fang Yi Ke Da Xue Xue Bao. 2011; 31(7): 1268-1272.; Zhong ZM, Chen JT, Zhang Y, Zha DS, Lin ZS, Zhao CY, et al. Growth/differentiation factor-5 induces osteogenic differentiation of human Ligamentum flavum cells through activation of ERK1/2 and p38 MAPK. Cell Physiol Biochem. 2010; 26(2): 179-186. doi:10.1159/000320526; Matsushita T, Wilcox WR, Chan YY, Kawanami A, Bükülmez H, Balmes G, et al. FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway. Hum Mol Genet. 2009; 18(2): 227-240.; Chen MH, Hu CK, Chen PR, Chen YS, Sun JS, Chen MH. Dose-dependent regulation of cell proliferation and collagen degradation by estradiol on ligamentum flavum. BMC Musculoskelet Disord. 2014; 15: 238. doi:10.1186/1471-2474-15-238; Родионова Л.В., Самойлова Л.Г., Шурыгина И.А., Скляренко О.В., Животенко А.П., Кошкарева З.В., и др. Особенности реакций ацетилирования у больных со стенозирующим процессом позвоночного канала и дурального мешка поясничного отдела позвоночника в зависимости от выраженности оссификации Ligamentum flavum. Патогенез. 2020; 13(3): 45-52. doi:10.25557/2310-0435.2020.03.45-52; Родионова Л.В., Сороковиков В.А., Самойлова Л.Г., Негреева М.Б., Скляренко О.В., Кошкарева З.В. Исследование факторов, определяющих половозрастные различия в течении дегенеративно-дистрофической патологии позвоночника, осложненной стенозом позвоночного канала. Современные проблемы науки и образования. 2016; 6: 200. URL: http://www.science-education.ru/article/view?id=25829.; Родионова Л.В., Самойлова Л.Г., Невежина А.В., Шурыгина И.А. Экспрессия генов дейодиназ в интраоперационных образцах Ligamentum flavum пациентов со стенозирующими процессами позвоночного канала и дурального мешка на поясничном отделе позвоночника. Acta biomedica scientifica. 2019; 4(6): 20-25. doi:10.29413/ABS.2019-4.6.3; https://www.actabiomedica.ru/jour/article/view/2506

  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20