Showing 1 - 20 results of 52 for search '"двухэнергетическая рентгеновская абсорбциометрия"', query time: 0.91s Refine Results
  1. 1
  2. 2
    Academic Journal

    Source: Diagnostic radiology and radiotherapy; Том 16, № 3 (2025); 100-108 ; Лучевая диагностика и терапия; Том 16, № 3 (2025); 100-108 ; 2079-5343

    File Description: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/1149/708; Низовцова Л.А., Морозов С.П., Петряйкин А.В., Босин В.Ю., Сергунова К.А., Владзимирский А.В., Шантаревич М.Ю. К унификации выполнения и интерпретации результатов остеоденситометрии // Вестник рентгенологии и радиологии. 2018. № 99 (3). С. 158–163. https://doi.org/10.20862/0042-4676-2018-99-3-158-163.; Maslaris A., Bungartz M., Layher F. et al. Feasibility Analysis of a Novel Method for the Estimation of Local Bone Mechanical Properties: A Preliminary Investigation of Different Pressure Rod Designs on Synthetic Cancellous Bone Models // Arch. Bone Jt. Surg. 2021. No. 9. Р. 203–210. doi:10.22038/abjs.2020.47854.2365.; Calciolari E., Donos N., Park J.C. et al. Panoramic measures for oral bone mass in detecting osteoporosis: a systematic review and meta-analysis // J. Dent. Res. 2015. No. 94 (3 Suppl). Р. 17S–27S. doi:10.1177/0022034514554949.; Jafari R., Spincemaille P., Zhang J. et al. Deep neural network for water/fat separation: Supervised training, unsupervised training, and no training // Magn. Reson. Med. 2021. No. 85. Р. 2263–2277. doi:10.1002/mrm.28546.; Dixon W.T. Simple proton spectroscopic imaging // Radiology. 1984. Vol. 153. No. 1. Р. 189–194. https://doi.org/10.1148/radiology.153.1.6089263.; Bydder M., Yokoo T., Hamilton G. et al. Relaxation effects in the quantification of fat using gradient echo imaging // Magn. Reson. Imaging. 2008. No. 26 (3). Р. 347– 359. doi:10.1016/j.mri.2007.08.012.; Xin-Chen Huang, Yi-Long Huang, Yi-Tong Guo et al. An experimental study for quantitative assessment of fatty infiltration and blood flow perfusion in quadriceps muscle of rats using IDEAL-IQ and BOLD-MRI for early diagnosis of sarcopenia // Experimental Gerontology. 2023. No. 183. Р. 112322. doi: https://doi.org/10.1016/j.exger.2023.112322.; Петряйкин А.В., Скрипникова И.А. Количественная компьютерная томография, современные данные. Обзор // Медицинская визуализация. 2021. № 25 (4). С. 134–146. https://doi.org/10.24835/1607-0763-1049.; Panina O.Yu., Gromov A.I., Akhmad E.S. et al. Accuracy of fat fraction estimation using Dixon: experimental phantom study // Medical Visualization. 2022. No. 26 (4). Р. 147–158. https://doi.org/10.24835/1607-0763-1160.; Aoki T., Yamaguchi S., Kinoshita S. et al. Quantification of bone marrow fat content using iterative decomposition of water and fat with echo asymmetry and leastsquares estimation (IDEAL): reproducibility, site variation and correlation with age and menopause // British Journal of Radiology. 2016. No. 89. Р. 20150538. https://doi:10.1259/bjr.20150538.; He J., Fang H., Li X. Vertebral bone marrow fat content in normal adults with varying bone densities at 3T magnetic resonance imaging // Acta Radiologica. 2018. No. 60 (4). Р. 509–515. https://doi:10.1177/0284185118786073.; Лукашев А.Д., Ахатов А.Ф., Рыжкин С.А., Михайлов М.К., Залаева Д.Р. Применение МРТ-последовательности DIXON в диагностике изменений губчатого вещества тел позвонков в сопоставлении с данными остеоденситометрии // Медицинская визуализация. 2023. № 27 (3). C. 76–83. https://doi.org/10.24835/1607-0763-1201.; Zhou F., Sheng B., Lv F. Quantitative analysis of vertebral fat fraction and R2* in osteoporosis using IDEAL-IQ sequence // BMC Musculoskelet. Disord. 2023. No. 11. Р. 1–8. doi:10.1186/s12891-023-06846-4.; Bilge E.F., Gulsah G., Elcin Y.A. et al. Fat Fraction Estimation of the Vertebrae in Females Using the T2*-IDEAL Technique in Detection of Reduced Bone Mineralization Level: Comparison With Bone Mineral Densitometry // Journal of Computer Assisted Tomography. 2014. No. 38. P. 320–324. doi:10.1097/RCT.0b013e3182aa4d9d.; Zhao Y., Huang M., Ding J. et al. Prediction of Abnormal Bone Density and Osteoporosis From Lumbar Spine MR Using Modified Dixon Quant in 257 Subjects With Quantitative Computed Tomography as Reference // J. Magn. Reson. Imaging. 2019. No. 49 (2). Р. 390–399. doi:10.1002/jmri.26233.; Liu Z., Huang D., Jiang Y., Ma X., Zhang Y., Chang R. Correlation of R2* with fat fraction and bone mineral density and its role in quantitative assessment of osteoporosis // Eur. Radiol. 2023. No. 33 (9). Р. 6001–6008. doi:10.1007/s00330-023-09599-9.

  3. 3
    Academic Journal

    Contributors: Статья подготовлена в рамках научно-исследовательской работы ФГБНУ «Научно-исследовательский институт ревматологии им. В.А. Насоновой» (№ государственного задания PK 123041800015-7).

    Source: Rheumatology Science and Practice; Vol 62, No 5 (2024); 523-528 ; Научно-практическая ревматология; Vol 62, No 5 (2024); 523-528 ; 1995-4492 ; 1995-4484

    File Description: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/3638/2406; Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):2023-2038. doi:10.1016/S0140-6736(16)30173-8; Yoshida T, Hashimoto M, Kawahara R, Yamamoto H, Tanaka M, Ito H, et al. Non-obese visceral adiposity is associated with the risk of atherosclerosis in Japanese patients with rheumatoid arthritis: A cross-sectional study. Rheumatol Int. 2018;38(9):1679-1689. doi:10.1007/s00296-018-4095-0; Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al.; Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48(4):601. doi:10.1093/ageing/afz046; Cui C, Mackey RH, Shaaban CE, Kuller LH, Lopez OL, Sekikawa A. Associations of body composition with incident dementia in older adults: Cardiovascular Health Study-Cognition Study. Alzheimers Dement. 2020;16(10):1402-1411. doi:10.1002/alz.12125; Tournadre A, Vial G, Capel F, Soubrier M, Boirie Y. Sarcopenia. Joint Bone Spine. 2019;86(3):309-314. doi:10.1016/j.jbspin.2018.08.001; Radkowski MJ, Sławiński P, Targowski T. Osteosarcopenia in rheumatoid arthritis treated with glucocorticosteroids – Essence, significance, consequences. Reumatologia. 2020;58:101-106. doi:10.5114/reum.2020.95363; Stanley A, Schuna J, Yang S, Kennedy S, Heo M, Wong M, et al. Distinct phenotypic characteristics of normal-weight adults at risk of developing cardiovascular and metabolic diseases. Am J Clin Nutr. 2020;112(4):967-978. doi:10.1093/ajcn/nqaa194; Shetty S, Kapoor N, Thomas N, Paul TV. DXA measured visceral adipose tissue, total fat, anthropometric indices and its association with cardiometabolic risk factors in mother-daughter pairs from India. J Clin Densitom. 2021;24(1):146-155. doi:10.1016/j.jocd.2020.06.001; Chen Y, He D, Yang T, Zhou H, Xiang S, Shen L, et al. Relationship between body composition indicators and risk of type 2 diabetes mellitus in Chinese adults. BMC Public Health. 2020;20(1):452. doi:10.1186/s12889-020-08552-5; England BR, Baker JF, Sayles H, Michaud K, Caplan L, Davis LA, et al. Body mass index, weight loss, and cause-specific mortality in rheumatoid arthritis. Arthritis Care Res (Hoboken). 2018;70(1):11-18. doi:10.1002/acr.23258; George M, Baker JF. The obesity epidemic and consequences for rheumatoid arthritis care. Curr Rheumatol Rep. 2016;18:6. doi:10.1007/s11926-015-0550-z; Насонов ЕЛ, Олюнин ЮА, Лила АМ. Ревматоидный артрит: проблемы ремиссии и резистентности к терапии. Научно-практическая ревматология. 2018;56(3):263-271.; Letarouilly JG, Flipo RM, Cortet B, Tournadre A, Paccou J. Body composition in patients with rheumatoid arthritis: A narrative literature review. Ther Adv Musculoskelet Dis. 2021;13:1-21. doi:10.1177/1759720X211015006; Marcora SM, Chester KR, Mittal G, Lemmey AB, Maddison PJ. Randomized phase 2 trial of anti-tumor necrosis factor therapy for cachexia in patients with early rheumatoid arthritis. Am J Clin Nutr. 2006;84(6):1463-1472. doi:10.1093/ajcn/84.6.1463; Engvall IL, Tengstrand B, Brismar K, Hafström I. Infliximab therapy increases body fat mass in early rheumatoid arthritis independently of changes in disease activity and levels of leptin and adiponectin: A randomised study over 21 months. Arthritis Res Ther. 2010;12(5):R197. doi:10.1186/ar3169; Sellen DW. Physical status: The use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organization Technical Report Series. 1995;854(1):452. doi:10.1017/S0021932098261359; Giles JT, Ling SM, Ferrucci L, Bartlett SJ, Andersen RE, Towns M, et al. Abnormal body composition phenotypes in older rheumatoid arthritis patients: Association with disease characteristics and pharmacotherapies. Arthritis Rheum. 2008;59(6):807-815. doi:10.1002/art.23719; Добровольская ОВ, Торопцова НВ, Феклистов АЮ, Демин НВ, Сорокина АО, Никитинская ОА. Фенотипы состава тела, физическая работоспособность и качество жизни у женщин с ревматоидным артритом. Терапевтический архив. 2022;94(5):654-660.; Toussirot É, Mourot L, Dehecq B, Wendling D, Grandclément É, Dumoulin G; CBT-506. TNFα blockade for inflammatory rheumatic diseases is associated with a significant gain in android fat mass and has varying effects on adipokines: A 2-year prospective study. Eur J Nutr. 2014;53(3):951-961. doi:10.1007/s00394-013-0599-2; Serelis J, Kontogianni MD, Katsiougiannis S, Bletsa M, Tektonidou MG, Skopouli FN. Effect of anti-TNF treatment on body composition and serum adiponectin levels of women with rheumatoid arthritis. Clin Rheumatol. 2008;27(6):795-797. doi:10.1007/s10067-008-0855-7; Metsios GS, Stavropoulos-Kalinoglou A, Douglas KM, Koutedakis Y, Nevill AM, Panoulas VF, et al. Blockade of tumour necrosis factor-alpha in rheumatoid arthritis: Effects on components of rheumatoid cachexia. Rheumatology (Oxford). 2007;46(12):1824-1827. doi:10.1093/rheumatology/kem291; Dao HH, Do QT, Sakamoto J. Abnormal body composition phenotypes in Vietnamese women with early rheumatoid arthritis. Rheumatology (Oxford). 2011;50:1250-1258. doi:10.1093/rheumatology/ker004; Dessein PH, Solomon A, Hollan I. Metabolic abnormalities in patients with inflammatory rheumatic diseases. Best Pract Res Clin Rheumatol. 2016;30:901-915. doi:10.1016/j.berh.2016.10.001; Vial G, Lambert C, Pereira B, Couderc M, Malochet-Guinamand S, Mathieu S, et al. The effect of TNF and non-TNF-targeted biologics on body composition in rheumatoid arthritis. J Clin Med. 2021;10(3):487. doi:10.3390/jcm10030487; Tournadre A, Pereira B, Dutheil F, Giraud C, Courteix D, Sapin V, et al. Changes in body composition and metabolic profile during interleukin 6 inhibition in rheumatoid arthritis. J Cachexia Sarcopenia Muscle. 2017;8(4):639-646. doi:10.1002/jcsm.12189; Toussirot E, Marotte H, Mulleman D, Cormier G, Coury F, Gaudin P, et al. Increased high molecular weight adiponectin and lean mass during tocilizumab treatment in patients with rheumatoid arthritis: A 12-month multicentre study. Arthritis Res Ther. 2020;22(1):224. doi:10.1186/s13075-020-02297-7; Chikugo M, Sebe M, Tsutsumi R, Iuchi M, Kishi J, Kuroda M, et al. Effect of Janus kinase inhibition by tofacitinib on body composition and glucose metabolism. J Med Invest. 2018;65(3.4):166-170. doi:10.2152/jmi.65.166; Lemmey AB, Wilkinson TJ, Clayton RJ, Sheikh F, Whale J, Jones HS, et al. Tight control of disease activity fails to improve body composition or physical function in rheumatoid arthritis patients. Rheumatology (Oxford). 2016;55(10):1736-1745. doi:10.1093/rheumatology/kew243; Levitsky A, Brismar K, Hafström I, Hambardzumyan K, Lourdudoss C, van Vollenhoven RF, et al. Obesity is a strong predictor of worse clinical outcomes and treatment responses in early rheumatoid arthritis: Results from the SWEFOT trial. RMD Open. 2017;3(2):e000458. doi:10.1136/rmdopen-2017-000458; Juan S, Jiabi Z. Impact of obesity on the efficacy of different biologic agents in inflammatory diseases: A systematic review and meta-analysis. Joint Bone Spine. 2019;86(2):173-183. doi:10.1016/j.jbspin.2018.03.007

  4. 4
  5. 5
    Academic Journal

    Contributors: Работа выполнена в рамках научно-исследовательской работы № АААА-А20-120071090045-7 в соответствии с Программой Департамента здравоохранения города Москвы «Научное обеспечение столичного здравоохранения» на 2020–2022 гг.

    Source: Rheumatology Science and Practice; Vol 60, No 3 (2022); 360-368 ; Научно-практическая ревматология; Vol 60, No 3 (2022); 360-368 ; 1995-4492 ; 1995-4484

    File Description: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/3185/2199; Белая ЖЕ, Белова КЮ, Бирюкова ЕВ, Дедов ИИ, Дзеранова ЛК, Драпкина ОМ, и др. Федеральные клинические рекомендации по диагностике, лечению и профилактике остеопороза. Остеопороз и остеопатии. 2021;24(2):4-47. doi:10.14341/osteo12930; International Society for Clinical Densitometry (ISCD). 2019 ISCD Official Positions – Adult. URL: https://iscd.org/learn/officialpositions/adult-positions (Accessed: 28th February 2022).; Link TM. Osteoporosis imaging: state of the art and advanced imaging. Radiology. 2012;263(1):3-17. doi:10.1148/radiol.2631201201; Скрипникова ИА, Щеплягина ЛА, Новиков ВЕ, Косматова ОВ, Абирова АС. Возможности костной рентгеновской денситометрии в клинической практике (Методические рекомендации). Остеопороз и остеопатии. 2010;2:23-34. doi:10.14341/osteo2010223-34; Damilakis J, Adams JE, Guglielmi G, Link TM. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol. 2010;20(11):2707-2714. doi:10.1007/s00330-010-1845-0; Cann CE, Adams JE, Brown JK, Brett AD. CTXA hip – an extension of classical DXA measurements using quantitative CT. PLoS One. 2014;9(3):e91904. doi:10.1371/journal.pone.0091904; Brown JK, Timm W, Bodeen G, Chason A, Perry M, Vernacchia F, et al. Asynchronously calibrated quantitative bone densitometry. J Clin Densitom. 2017;20(2):216-225. doi:10.1016/j.jocd.2015.11.001; Gausden EB, Nwachukwu BU, Schreiber JJ, Lorich DG, Lane JM. Opportunistic use of CT imaging for osteoporosis screening and bone density assessment: A qualitative systematic review. J Bone Joint Surg Am. 2017;99(18):1580-1590. doi:10.2106/JBJS.16.00749; Khoo BC, Brown K, Cann C, Zhu K, Henzell S, Low V, et al. Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos Int. 2009;20(9):1539-1545. doi:10.1007/s00198-008-0820-y; Pickhardt PJ, Bodeen G, Brett A, Brown JK, Binkley N. Comparison of femoral neck BMD evaluation obtained using Lunar DXA and QCT with asynchronous calibration from CT colonography. J Clin Densitom. 2015;18(1):5-12. doi:10.1016/j.jocd.2014.03.002; Engelke K, Lang T, Khosla S, Qin L, Zysset P, Leslie WD, et al. Clinical use of quantitative computed tomography (QCT) of the hip in the management of osteoporosis in adults: The 2015 ISCD official positions – Part I. J Clin Densitom. 2015;18(3):338-358. doi:10.1016/j.jocd.2015.06.012; Ziemlewicz TJ, Maciejewski A, Binkley N, Brett AD, Brown JK, Pickhardt PJ. Opportunistic quantitative CT bone mineral density measurement at the proximal femur using routine contrast-enhanced scans: direct comparison with DXA in 355 adults. J Bone Miner Res. 2016;31(10):1835-1840. doi:10.1002/jbmr.2856; Петряйкин АВ, Низовцова ЛА, Сергунова КА, Ахмад ЕС, Семенов ДС, Петряйкин ФА, и др. Оценка точности асинхронной компьютерной денситометрии по данным фантомного моделирования. Радиология – практика. 2019;78(6): 48-59.; Cameron JR. Determination of body composition in vivo. Wisconsin;1969.; Cheng X, Wang L, Wang Q, Ma Y, Su Y, Li K. Validation of quantitative computed tomography-derived areal bone mineral density with dual energy X-ray absorptiometry in an elderly Chinese population. Chin Med J (Engl). 2014;127(8):1445-1459.; Pickhardt PJ, Lee LJ, del Rio AM, Lauder T, Bruce RJ, Summers RM, et al. Simultaneous screening for osteoporosis at CT colonography: Bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J Bone Miner Res. 2011;26(9):2194-2203. doi:10.1002/jbmr.428; Yu W, Glüer CC, Grampp S, Jergas M, Fuerst T, Wu CY, et al. Spinal bone mineral assessment in postmenopausal women: A comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos Int. 1995;5(6):433-439. doi:10.1007/BF01626604

  6. 6
    Academic Journal

    Contributors: Работа выполнена в рамках научной темы «Ревматоидный артрит у мужчин: комплексная клинико-лабораторная и инструментальная оценка состояния костной ткани с учетом андрогенного статуса», утвержденной Ученым советом ФГАОУ ВО РНИМУ им. Н.И. Пирогова.

    Source: Rheumatology Science and Practice; Vol 59, No 6 (2021); 700-707 ; Научно-практическая ревматология; Vol 59, No 6 (2021); 700-707 ; 1995-4492 ; 1995-4484

    File Description: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/3098/2142; Conforti A, Di Cola I, Pavlych V, Ruscitti P, Berardicurti O, Ursini F, et al. Beyond the joints, the extra-articular manifestations in rheumatoid arthritis. Autoimmun Rev. 2021;20(2):102735. doi:10.1016/j.autrev.2020.102735; Fardellone P, Salawati E, Le Monnier L, (юёЬ V. Bone loss, osteoporosis, and fractures in patients with rheumatoid arthritis: A review. J Clin Med. 2020;9(10):3361. doi:10.3390/jcm9103361; Kwon HY, Kim HH, Sung YK, Ha YC. Incidence and mortality of osteoporotic fracture in rheumatoid arthritis in South Korea using Nationwide claims data. J Bone Metab. 2019;26(2):97-104. doi:10.11005/jbm.2019.26.2.97; Haugeberg G, 0rstavik RE, Uhlig T, Falch JA, Halse JI, Kvien TK. Clinical decision rules in rheumatoid arthritis: do they identify patients at high risk for osteoporosis? Testing clinical criteria in a population based cohort of patients with rheumatoid arthritis recruited from the Oslo Rheumatoid Arthritis Register. Ann Rheum Dis. 2002;61(12):1085-1089. doi:10.1136/ard.61.12.1085; Kweon SM, Sohn DH, Park JH, Koh JH, Park EK, Lee HN, et al. Male patients with rheumatoid arthritis have an increased risk of osteoporosis: Frequency and risk factors. Medicine (Baltimore). 2018;97(24):e11122. doi:10.1097/MD.0000000000011122; Nolla JM, Roig-Vilaseca D, Gomez-Vaquero C, Mateo L, Juanola X, Rodriguez-Moreno J, et al. Frequency of osteoporosis in 187 men with rheumatoid arthritis followed in a university hospital. J Rheumatol. 2006;33(8):1472-1475.; Kannegaard PN, van der Mark S, Eiken P, Abrahamsen BO. Excess mortality in men compared with women following a hip fracture. National analysis of comedications, comorbidity and survival. Age Ageing. 2010;39(2):203-209. doi:10.1093/ageing/afp221; Engvall IL, Elkan AC, Tengstrand B, Cederholm T, Brismar K, Hafstrom I. Cachexia in rheumatoid arthritis is associated with inflammatory activity, physical disability, and low bioavailable insulin-like growth factor. Scand J Rheumatol. 2008;37(5):321-328. doi:10.1080/03009740802055984; Giles JT, Allison M, Blumenthal RS, Post W, Gelber AC, Petri M, et al. Abdominal adiposity in rheumatoid arthritis: Association with cardiometabolic risk factors and disease characteristics. Arthritis Rheum. 2010;62(11):3173-3182. doi:10.1002/art.27629; Escalante A, Haas RW, Del Rincdn I. Paradoxical effect of body mass index on survival in rheumatoid arthritis: role of comorbidity and systemic inflammation. Arch Intern Med. 2005;165(14):1624-1629.; Kramer HR, Fontaine KR, Bathon JM, Giles JT. Muscle density in rheumatoid arthritis: Associations with disease features and functional outcomes. Arthritis Rheum. 2012;64(8):2438-2450. doi:10.1002/art.34464; Letarouilly JG, Flipo RM, Cortet B, Tournadre A, Paccou J. Body composition in patients with rheumatoid arthritis: A narrative literature review. Ther Adv Musculoskelet Dis. 2021;13:1759720X211015006. doi:10.1177/1759720X211015006; Ho-Pham LT, Nguyen UD, Nguyen TV. Association between lean mass, fat mass, and bone mineral density: A meta-analysis. J Clin Endocrinol Metab. 2014;99(1):30-38. doi:10.1210/jc.2014-v99i12-30a; Lee K. Soft tissue composition and the risk of low bone mineral density: The Fourth Korea National Health and Nutrition Examination Survey (KNHANES IV-3), 2009. Calcif Tissue Int. 2012;90(3):186-192. doi:10.1007/s00223-012-9573-x; Miller KK. Androgen deficiency: effects on body composition. Pituitary. 2009;12(2):116-124. doi:10.1007/s11102-008-0121-7; Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyfere O, Cederholm T, et al.; Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. doi:10.1093/ageing/afy169; Раскина ТА, Летаева МВ. Минеральная плотность костной ткани у мужчин при различных клинических вариантах ревматоидного артрита. Научно-практическая ревматология. 2011;49(2):21-24. doi:10.14412/19954484-2011-598; Hauser B, Riches PL, Wilson JF, Horne AE, Ralston SH. Prevalence and clinical prediction of osteoporosis in a contemporary cohort of patients with rheumatoid arthritis. Rheumatology (Oxford). 2014;53(10):1759-1766. doi:10.1093/rheumatology/ keu162; Lodder MC, de Jong Z, Kostense PJ, Molenaar ET, Staal K, Voskuyl AE, et al. Bone mineral density in patients with rheumatoid arthritis: Relation between disease severity and low bone mineral density. Ann Rheum Dis. 2004;63(12):1576-1580. doi:10.1136/ard.2003.016253; Hafez EA, Mansour HE, Hamza SH, Moftah SG, Younes TB, Ismail MA. Bone mineral density changes in patients with recent-onset rheumatoid arthritis. Clin Med Insights Arthritis Musculoskelet Disord. 2011;4:87-94. doi:10.4137/CMAMD.S7773; Qu Z, Huang J, Yang F, Hong J, Wang W, Yan S. Sex hormone-binding globulin and arthritis: A Mendelian randomization study. Arthritis Res Ther. 2020;22(1):118. doi:10.1186/s13075-020-02202-2; Mirone L, Altomonte L, D'Agostino P, Zoli A, Barini A, Magaro M. A study of serum androgen and cortisol levels in female patients with rheumatoid arthritis. Correlation with disease activity. Clin Rheumatol. 1996;15(1):15-19. doi:10.1007/BF02231678; Tengstrand B, Carlstrom K, Hafstrom I. Bioavailable testosterone in men with rheumatoid arthritis—high frequency of hypogonadism. Rheumatology (Oxford). 2002;41(3):285-289. doi:10.1093/rheumatology/41.3.285.; Navarro MA, Nolla JM, Machuca MI, Gonzdlez A, Mateo L, Bonnin RM, et al. Salivary testosterone in postmenopausal women with rheumatoid arthritis. J Rheumatol. 1998;25(6):1059-1062.; Stafford L, Bleasel J, Giles A, Handelsman D. Androgen deficiency and bone mineral density in men with rheumatoid arthritis. J Rheumatol. 2000;27(12):2786-2790.; Tengstrand B, Carlstrom K, Hafstrom I. Gonadal hormones in men with rheumatoid arthritis—from onset through 2 years. J Rheumatol. 2009;36(5):887-889. doi:10.3899/jrheum.080558; Giles JT, Ling SM, Ferrucci L, Bartlett SJ, Andersen RE, Towns M, et al. Abnormal body composition phenotypes in older rheumatoid arthritis patients: Association with disease characteristics and pharmacotherapies. Arthritis Rheum. 2008;59(6):807-815. doi:10.1002/art.23719; Book C, Karlsson MK, Nilsson JA, Akesson K, Jacobsson LT. Changes in body composition after 2 years with rheumatoid arthritis. Scand J Rheumatol. 2011;40(2):95-100. doi:10.3109/03009742.2010.507215; Baker JF, Long J, Ibrahim S, Leonard MB, Katz P. Are men at greater risk of lean mass deficits in rheumatoid arthritis? Arthritis Care Res (Hoboken). 2015;67(1):112-119. doi:10.1002/acr.22396; Tada M, Yamada Y, Mandai K, Hidaka N. Matrix metalloprotease 3 is associated with sarcopenia in rheumatoid arthritis-results from the CHIKARA study. Int J Rheum Dis. 2018;21(11):1962-1969. doi:10.1111/1756-185X.13335; Ngeuleu A, Allali F, Medrare L, Madhi A, Rkain H, Hajjaj-Hassouni N. Sarcopenia in rheumatoid arthritis: Prevalence, influence of disease activity and associated factors. Rheumatol Int. 2017;37(6):1015-1020. doi:10.1007/s00296-017-3665-x; Elkan AC, Engvall IL, Tengstrand B, Cederholm T, Hafstrom I. Malnutrition in women with rheumatoid arthritis is not revealed by clinical anthropometrical measurements or nutritional evaluation tools. Eur J Clin Nutr. 2008;62(10):1239-1247. doi:10.1038/sj.ejcn.1602845; Mouser JG, Loprinzi PD, Loenneke JP. The association between physiologic testosterone levels, lean mass, and fat mass in a nationally representative sample of men in the United States. Steroids. 2016;115:62-66. doi:10.1016/j.steroids.2016.08.009; Salamat MR, Salamat AH, Abedi I, Janghorbani M. Relationship between weight, body mass index, and bone mineral density in men referred for dual-energy X-ray absorptiometry scan in Isfahan, Iran. J Osteoporos. 2013;2013:205963. doi:10.1155/2013/205963; Paniagua MA, Malphurs JE, Samos LF. BMI and low bone mass in an elderly male nursing home population. Clin Interv Aging. 2006;1(3):283. doi:10.2147/ciia.2006.1.3.283; Haugeberg G, Uhlig T, Falch JA, Halse JI, Kvien TK. Reduced bone mineral density in male rheumatoid arthritis patients: frequencies and associations with demographic and disease variables in ninety-four patients in the Oslo County Rheumatoid Arthritis Register. Arthritis Rheum. 2000;43(12):2776-2784. doi:10.1002/1529-0131(200012)43:123.0.CO;2-N

  7. 7
    Academic Journal

    Contributors: Исследование проводилось в рамках выполнения поисковой темы «Персонализированный подход к диагностике и профилактике нарушений углеводного обмена и сердечно-сосудистых осложнений при РА и СКВ» (регистрационный номер АААА-А20-120051490038-7).

    Source: Rheumatology Science and Practice; Vol 59, No 1 (2021); 70-74 ; Научно-практическая ревматология; Vol 59, No 1 (2021); 70-74 ; 1995-4492 ; 1995-4484

    File Description: application/pdf

    Relation: https://rsp.mediar-press.net/rsp/article/view/2992/2061; Ревматология: Российские клинические рекомендации. Под ред. ЕЛ Насонова. М.: ГЭОТАР-Медиа;2017:464.; Wolf F, Michaud K. The effect of body mass index on mortality and clinical status in rheumatoid arthritis. Arthritis Care Res. 2012;64(10):1471−1479. doi:10.1002/acr.21627; Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing. 2010;39:412−423. doi:10.1093/ageing/ afq034; Giles JT, Bartlett SJ, Andersen RE, Fontaine KR, Bathon JM. Association of body composition with disability in rheumatoid arthritis: impact of appendicular fat and lean tissue mass. Arthritis Care Res. 2008;59:1407−1415. doi:10.1002/art.24109; Van Halm VP, Peters M, Voskuyl A, Boers M, Lems WF, Visser M, et al. Rheumatoid arthritis versus type 2 diabetes as a risk factor for cardiovascular disease: a cross-sectional study. Ann Rheum Dis. 2009;68(9):1395−1400. doi:10.1136/ard.2008.094151; Kremers HM, Nicola PJ, Crowson CS, Ballman KV, Gabriel SE. Prognostic importance of low body mass index in relation to cardiovascular mortality in rheumatoid arthritis. Arthritis Rheum. 2004;50:3450−3457. doi:10.1002/art.20612; Younis S, Rosner I, Rimar D, Boulman N, Rozenbaum M, Odeh M, et al. Weight change during pharmacological blockade of interleukin-6 tumor necrosis factor-α in patients with inflammatory rheumatic disorders: A 16-week comparative study. Cytokine. 2013;61:353−355. doi:10.1016/j.cyto.2012.11.007; Marcora SM, Chester KR, Mittal G, Lemmey AB, Maddison PJ. Randomized phase 2 trial of anti-tumor necrosis factor therapy for cachexia in patients with early rheumatoid arthritis. Am J Clin Nutr. 2006;84:1463−1472. doi:10.1093/ajcn/84.6.1463; Tournadre A, Pereira B, Dutheil F, Giraud C, Courteix D, Sapin V, et al. Changes in body composition and metabolic profile during interleukin 6 inhibition in rheumatoid arthritis. J Cachexia Sarcopenia Muscle. 2017;8:639−646. doi:10.1002/jcsm.12189; Prasad H, Ryan DA, Celzo M, Stapleton D. Metabolic syndrome: definition and therapeutic implications. Postgrad Med. 2012;124(1):21−30. doi:10.3810/pgm.2012.01.2514; Sellen DW. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organization Technical Report Series. 1995;854(1):452. doi:10.1017/S0021932098261359; Messina C, Monaco CG, Ulivie FM, Sardanelli F, Sconfienza LM. Dual-energy X-ray absorptiometry body composition in patients with secondary osteoporosis. Eur J Radiol. 2016;85(8):1493−1498. doi:10.1016/j.ejrad.2016.03.018; Humphreys JH, Verstappen S, Mirjafari H, Bunn D, Lunt M, Bruce IN, et al. Association of morbid obesity with disability in early inflammatory polyarthritis: Results from the Norfolk Arthritis Register. Arthritis Care Res. 2013;65(1):122−126. doi:10.1002/acr.21722; Ajeganova S, Andersson ML, Hafstrom I. Association of obesity with worse disease severity in rheumatoid arthritis as well as with comorbidities: a long-term follow-up from disease onset. Arthritis Care Res. 2013;65(1):78−87. doi:10.1002/acr.21710; Van den Berg R, van der Heijde D, Landewe R, van Lambalgen K, Huizinga T. The METEOR initiative: the way forward for optimal, worldwide data integration to improve care for RA patients. Clin Exp Rheumatol. 2014;32(5):135−140. PMID: 25365103; Klein-Wieringa IR, van der Linden M, Knevel R, Kwekkeboom JC, van Beelen E, Huizinga TW, et al. Baseline serum adipokine levels predict radiographic progression in early rheumatoid arthritis. Arthritis Rheum. 2011;63(9):2567−2574. doi:10.1002/art.30449; van der Helm-van Mil AH, van der Kooij SM, Allaart CF, Toes RE, Huizinga TW. A high body mass index has a protective effect on the amount of joint destruction in small joints in early rheumatoid arthritis. Ann Rheum Dis. 2008;67(6):769−774. doi:10.1136/ard.2007.078832; Wesley A, Bengtsson C, Elkan AC, Klareskog L, Alfredsson L, Wedrén S; Epidemiological Investigation of Rheumatoid Arthritis Study Group. Association between body mass index and anti-citrullinated protein antibody-positive and anti citrullinated protein antibody-negative rheumatoid arthritis: Results from a population-based case-control study. Arthritis Care Res. 2013;65(1):107−112. doi:10.1002/acr.21749; Crowson CS, Matteson EL, Davis JM 3rd, Gabriel SE. Contribution of obesity to the rise in incidence of rheumatoid arthritis. Obesity fuels the upsurge in rheumatoid arthritis. Arthritis Care Res. 2013;65(1):71−77. doi:10.1002/acr.21660; Giles JT, Allison MA, Blumenthal RS, Post W, Gelber AC, Petri M, et al. Abdominal adiposity in rheumatoid arthritis. Association with cardiometabolic risk factors and disease characteristics. Arthritis Rheum. 2010;62(11):3173−3182. doi:10.1002/art.27629; Inaba M, Tanaka K, Goto H, Sakai S, Yamada S, Naka H, et al. Independent association of increased trunk fat with increased arterial stiffening in postmenopausal patients with rheumatoid arthritis. J Rheumatol. 2007;34(2):290−295. PMID: 17304655.; Metsios GS, Stavropoulos-Kalinoglou A, Panoulas VF, Sandoo A, Toms TE, Nevill AM, et al. Rheumatoid cachexia and cardiovascular disease. Clin Exp Rheumatol. 2009;27(9):91−94. PMID: 20149317; Crowson CS, Myasoedova E, Davis JM 3rd, Matteson EL, Roger VL, Therneau TM, et al. Increased prevalence of metabolic syndrome associated with rheumatoid arthritis in patients without clinical cardiovascular disease. J Rheumatol. 2011;38(1):29−35. doi:10.3899/jrheum.100346; Elkan AC, Hakansson N, Frostegard J, Cederholm T, Hafström I. Rheumatoid cachexia is associated with dyslipidemia and low levels of atheroprotective natural antibodies against phosphorylcholine but not with dietary fat in patients with rheumatoid arthritis: A cross-sectional study. Arthritis Res. 2009;11(2):37. doi:10.1186/ar2643; Chung CP, Oeser AM, Solus JF, Avalos I, Gebretsadik T, Shintani A, et al. Prevalence of the metabolic syndrome is increased in rheumatoid arthritis and is associated with coronary atherosclerosis. Atherosclerosis. 2008;196(2):756−763. doi:10.1016/j.atherosclerosis.2007.01.004; Zafar ZA, Mahmud TH, Rasheed A, Wagan AA. Frequency of metabolic syndrome in Pakistani cohort of patients with rheumatoid arthritis. J Pak Med Assoc. 2016;66(6):671−676. PMID: 27339567; Turk SA, van Schaardenburg D, Boers M, de Boer S, Fokker C, Lems WF, et al. An unfavorable body composition is common in early arthritis patients: A case control study. PLoS One. 2018;13(3):е0193377. doi:10.1371/journal.pone.0193377; Мясоедова СЕ, Рубцова ОА, Мясоедова ЕЕ. Композиционный состав тела и минеральная плотность кости у женщин при ревматоидном артрите. Клиницист. 2016;10(3):41–46. doi:10.17650/1818-8338-2016-10-3-41-45; Добровольская ОВ, Торопцова НВ, Дёмин НВ, Феклистов АЮ, Никитинская ОА. Ожирение и саркопения у больных ревматоидным артритом: одномоментное исследование. Фарматека. 2020;27(4):57–63. doi:10.18565/pharmateca.2020.4.57-63; Ilich JZ, Kelly OJ, Inglis JE. Osteosarcopenic obesity syndrome: What is it and how can it be identified and diagnosed? Curr Gerontol Geriatr Res. 2016;2016:7325973. doi:10.1155/2016/7325973; Шостак НА, Мурадянц АА, Кондрашов АА. Саркопения и перекрестные синдромы – значение в клинической практике. Клиницист. 2016;10(3):10–14. doi:10.17650/1818-8338-2016-10-3-10-14

  8. 8
    Academic Journal

    Contributors: The reported study was funded by RFBR № 20-015-00260, Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-015-00260

    Source: Medical Visualization; Том 25, № 4 (2021); 134-146 ; Медицинская визуализация; Том 25, № 4 (2021); 134-146 ; 2408-9516 ; 1607-0763

    File Description: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/1049/693; https://medvis.vidar.ru/jour/article/downloadSuppFile/1049/1244; https://medvis.vidar.ru/jour/article/downloadSuppFile/1049/1245; https://medvis.vidar.ru/jour/article/downloadSuppFile/1049/1246; https://medvis.vidar.ru/jour/article/downloadSuppFile/1049/1247; https://medvis.vidar.ru/jour/article/downloadSuppFile/1049/1248; https://medvis.vidar.ru/jour/article/downloadSuppFile/1049/1249; https://medvis.vidar.ru/jour/article/downloadSuppFile/1049/1250; https://medvis.vidar.ru/jour/article/downloadSuppFile/1049/1257; Beckmann E.C. CT scanning the early days. Br. J. Radiol. 2006; 79 (937): 5–8. https://doi.org/10.1259/bjr/29444122; Whitehouse R.W., Adams J.E. Single energy quantitative computed tomography: the effects of phantom calibration material and kVp on QCT bone densitometry. Br. J. Radiol. 1992; 65 (778): 931–934. https://doi.org/10.1259/0007-1285-65-778-931; Mccready R., Gnanasegaran G., Bomanji J.B. A History of Radionuclide Studies in the UK. Cham, 2016. 152 p. https://doi.org/10.1007/978-3-319-28624-2; Genant H.K., Engelke K., Prevrhal S. Advanced CT bone imaging in osteoporosis. Rheumatology. 2008; 47 (Suppl. 4): iv9. https://doi.org/10.1093/rheumatology/ken180; Cohen A., Dempster D.W., Müller R., Guo X.E., Nickolas T.L., Liu X.S., Zhang X.H., Wirth A.J., van Lenthe G.H., Kohler T., McMahon D.J., Zhou H., Rubin M.R., Bilezikian J.P., Lappe J.M., Recker R.R., Shane E. Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: Comparison with transiliac bone biopsy. Osteoporos Int. 2010; 21 (2): 263–273. https://doi.org/10.1007/s00198-009-0945-7; Fournier R., Harrison R.E. Strategies for studying bone loss in microgravity. Reach. 2020: 17–20: 100036. https://doi.org/10.1016/j.reach.2020.100036; Dadwal U.C., Maupin K.A., Zamarioli A., Tucker A., Harris J.S., Fischer J.P., Rytlewski J.D., Scofield D.C., Wininger A.E., Bhatti F.U.R., Alvarez M., Childress P.J., Chakraborty N., Gautam A., Hammamieh R., Kacena M.A. The effects of spaceflight and fracture healing on distant skeletal sites. Sci. Rep. 2019; 9 (1): 11419 (2019). https://doi.org/10.1038/s41598-019-47695-3; Bousson V., Le Bras A., Roqueplan F., Kang Y., Mitton D., Kolta S., Bergot C., Skalli W., Vicaut E., Kalender W., Engelke K., Laredo J.D. Volumetric quantitative computed tomography of the proximal femur: Relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int. 2006; 17 (6): 855–864. https://doi.org/10.1007/s00198-006-0074-5; Guglielmi G., Lang T.F., Cammisa M., Genant H.K. Quantitative Computed Tomography of the Axial Skeleton. Bone Densitometry and Osteoporosis. Berlin, Heidelberg: Springer. 336–347. https://doi.org/10.1007/978-3-642-80440-3_16; Cann C.E., Genant H.K. Precise measurement of vertebral mineral content using computed tomography. J. Comput. Assist. Tomogr. 1980; 4 (4): 493–500. https://doi.org/10.1097/00004728-198008000-00018; Faulkner K.G., Glüer C.C., Grampp S., Genant H.K. Cross-calibration of liquid and solid QCT calibration standards: Corrections to the UCSF normative data. Osteoporos Int. 1993; 3 (1): 36–42. https://doi.org/10.1007/BF01623175; Engelke K. Quantitative Computed Tomography – Current Status and New Developments. J. Clin. Densitom. 2017; 20 (3): 309–321. https://doi.org/10.1016/j.jocd.2017.06.017; 2019 ISCD Official Positions – Adult – International Society for Clinical Densitometry Available at: https://iscd.app.box.com/s/5r713cfzvf4gr28q7zdccg2i7169fv86. Accessed July 14, 2021.; The American College of Radiology. ACR–SPR–SSR Practice Parameter for the Performance of Musculoskeletal Quantitative Computed Tomography (Qct). Published 2018. https://www.acr.org/-/media/ACR/Files/Practice-Parameters/QCT.pdf Accessed July 14, 2021; Emohare O., Cagan A., Polly D.W., Gertner E. Opportunistic computed tomography screening shows a high incidence of osteoporosis in ankylosing spondylitis patients with acute vertebral fractures. J. Clin. Densitom. 2015; 18 (1): 17–21. https://doi.org/10.1016/j.jocd.2014.07.006; Pickhardt P.J., Lee L.J., del Rio A.M., Lauder T., Bruce R.J., Summers R.M., Pooler B.D., Binkley N. Simultaneous screening for osteoporosis at CT colonography: Bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J. Bone Miner. Res. 2011; 26 (9): 2194–2203. https://doi.org/10.1002/jbmr.428; Jang S., Graffy P.M., Ziemlewicz T.J., Lee S.J., Summers R.M., Pickhardt P.J. Opportunistic osteoporosis screening at routine abdominal and Thoracic CT: Normative L1 trabecular attenuation values in more than 20 000 adults. Radiology. 2019; 291 (2): 360–367. https://doi.org/10.1148/radiol.2019181648; Alacreu E., Moratal D., Arana E. Opportunistic screening for osteoporosis by routine CT in Southern Europe. Osteoporos Int. 2017; 28 (3): 983–990. https://doi.org/10.1007/s00198-016-3804-3; Власова И.С., Терновой С.К., Сорокин А.Д., Горбатов М.М., Вожагов В.В. Возрастные изменения минеральной плотности позвонков в норме у российской популяции. Вестник рентгенологии и радиологии. 1998; 6: 28–33.; Власова И.С., Сорокин А.Д., Терновой С.К. Возрастные изменения минеральной плотности трабекулярного вещества позвонков и риск переломов. Медицинская визуализация. 1998; 4: 31–35.; Engelke K., Lang T., Khosla S., Qin L., Zysset P., Leslie W.D., Shepherd J.A., Schousboe J.T. Clinical use of quantitative computed tomography (QCT) of the hip in the management of osteoporosis in adults: the 2015 ISCD official positions Part I. J. Clin. Densitom. 2015; 18 (3): 338–358. https://doi.org/10.1016/j.jocd.2015.06.012; Laaksonen M.M.L., Sievänen H., Tolonen S., et al. Determinants of bone strength and fracture incidence in adult Finns: cardiovascular risk in young finns study (the GENDI pQCT study). Arch. Osteoporos. 2010; 5 (1–2): 119–130. https://doi.org/10.1007/s11657-010-0043-7; Scanco Medical – Xtreme CT II (specification) Available at: https://pdf.medicalexpo.com/pdf/scanco-medical/ xtremect-ii/105918-145347.html. Accessed July 14, 2021.; Guglielmi G., Grimston S.K., Fischer K.C., Pacifici R. Osteoporosis: Diagnosis with lateral and posteroanterior dual x-ray absorptiometry compared with quantitative CT. Radiology. 1994; 192 (3): 845–850. https://doi.org/10.1148/radiology.192.3.8058958; Reinbold W.D., Genant H.K., Reiser U.J., Harris S.T, Ettinger B. Bone mineral content in early-postmenopausal and postmenopausal osteoporotic women: Comparison of measurement methods. Radiology. 1986; 160 (2): 469– 478. https://doi.org/10.1148/radiology.160.2.3726129; Петряйкин А.В., Кузнецов С.Ю., Артюкова З.Р., и др. Сравнение асинхронной количественной компьютерной томографии и двуэнергетической рентгеновской абсорбциометрии с узкоугольным веерным пучком для оценки состояния МПК в области проксимального отдела бедра. Сборник тезисов VII Российского конгресса по остеопорозу. Остеопороз и остеопатии. 2020; 23 (2): 120–121.; Centre for Metabolic Bone Diseases, University of Sheffield. FRAX – Fracture Risk Assessement Tool. Available at: https://www.sheffield.ac.uk/FRAX/tool.aspx Accessed July 14, 2021; Yu W., Glüer C.C., Grampp S., Jergas M., Fuerst T., Wu C.Y., Lu Y., Fan B., Genant H.K. Spinal bone mineral assessment in postmenopausal women: A comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporos Int. 1995; 5 (6): 433– 439. https://doi.org/10.1007/BF01626604; Löffler M.T., Jacob A., Scharr A., Sollmann N., Burian E., El Husseini M., Sekuboyina A., Tetteh G., Zimmer C., Gempt J., Baum T., Kirschke J.S. Automatic opportunistic osteoporosis screening in routine CT: improved prediction of patients with prevalent vertebral fractures compared to DXA. Eur. Radiol. Published online January 2021: 1–9. https://doi.org/10.1007/s00330-020-07655-2; Engelke K., Adams J.E., Armbrecht G., Augat P., Bogado C.E., Bouxsein M.L., Felsenberg D., Ito M., Prevrhal S., Hans D.B., Lewiecki E.M. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: The 2007 ISCD Official Positions. J. Clin. Densitom. 2008; 11 (1): 123–162. https://doi.org/10.1016/j.jocd.2007.12.010; Zysset P., Qin L., Lang T., et al. Clinical Use of Quantitative Computed Tomography–Based Finite Element Analysis of the Hip and Spine in the Management of Osteoporosis in Adults: the 2015 ISCD Official Positions – Part II. J. Clin. Densitom. 2015; 18 (3): 359–392. https://doi.org/10.1016/j.jocd.2015.06.011; Engelke K., Lang T., Khosla S., Qin L., Zysset P., Leslie W.D., Shepherd J.A., Shousboe J.T. Clinical use of quantitative computed tomography-based advanced techniques in the management of osteoporosis in adults: The 2015 ISCD Official Positions-Part III. J. Clin. Densitom. 2015; 18 (3): 393–407. https://doi.org/10.1016/j.jocd.2015.06.010; Kalender W.A., Felsenberg D., Genant H.K., Fischer M., Dequeker J., Reeve J. The European Spine Phantom--a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur. J. Radiol. 1995; 20 (2): 83–92. https://doi.org/10.1016/0720-048x(95)00631-y; Петряйкин А.В., Низовцова Л.А., Сергунова К.А., et al. Оценка точности асинхронной компьютерной денситометрии по данным фантомного моделирования. Радиология – практика. 2019; 6 (78): 49–59.; Bonaretti S., Carpenter R.D., Saeed I. et al. Novel anthropomorphic hip phantom corrects systemic interscanner differences in proximal femoral vBMD. Phys. Med. Biol. 2014; 59 (24): 7819–7834. https://doi.org/10.1088/0031-9155/59/24/7819; Lang T.F., Li J., Harris S.T., Genant H.K. Assessment of vertebral bone mineral density using volumetric quantitative CT. J. Comput. Assist. Tomogr. 1999; 23 (1): 130–137. https://doi.org/10.1097/00004728-199901000-00027; Wang L., Su Y., Wang Q., Duanmu Y., Yang M., Yi C., Cheng X. Validation of asynchronous quantitative bone densitometry of the spine: Accuracy, short-term reproducibility, and a comparison with conventional quantitative computed tomography. Sci. Rep. 2017; 7 (1): 6284. https://doi.org/10.1038/s41598-017-06608-y; Brown J.K., Timm W., Bodeen G., Chason A., Perry M., Vernacchia F., DeJournett R. Asynchronously Calibrated Quantitative Bone Densitometry. J. Clin. Densitom. 2017; 20 (2): 216–225. https://doi.org/10.1016/j.jocd.2015.11.001; Pickhardt P.J., Bodeen G., Brett A., Brown J.K., Binkley N. Comparison of femoral neck BMD evaluation obtained using lunar DXA and QCT with asynchronous calibration from CT colonography. J. Clin. Densitom. 2015; 18 (1): 5–12. https://doi.org/10.1016/j.jocd.2014.03.002; Gausden E.B., Nwachukwu B.U., Schreiber J.J., Lorich D.G., Lane J.M. Opportunistic use of CT imaging for osteoporosis screening and bone density assessment: A qualitative systematic review. J. Bone Jt. Surg. – Am. Vol. 2017; 99 (18): 1580–1590. https://doi.org/10.2106/JBJS.16.00749; Ziemlewicz T.J., Maciejewski A., Binkley N., Brett A.D., Brown J.K., Pickhardt P.J. Opportunistic Quantitative CT Bone Mineral Density Measurement at the Proximal Femur Using Routine Contrast-Enhanced Scans: Direct Comparison With DXA in 355 Adults. J. Bone Miner. Res. 2016; 31 (10): 1835–1840. https://doi.org/10.1002/jbmr.2856; Summers R.M., Baecher N., Yao J., Liu J., Pickhardt P.J., Choi J.R., Hill S. Feasibility of Simultaneous Computed Tomographic Colonography and Fully Automated Bone Mineral Densitometry in a Single Examination. J. Comput. Assist. Tomogr. 2011; 35 (2): 212–216. https://doi.org/10.1097/RCT.0b013e3182032537; Cheng X., Zhao K., Zha X., et al. Opportunistic Screening Using Low-Dose CT and the Prevalence of Osteoporosis in China: A Nationwide, Multicenter Study. J. Bone Miner. Res. Published online November 2020:jbmr.4187. https://doi.org/10.1002/jbmr.4187; Boden S.D., Goodenough D.J., Stockham C.D., Jacobs E., Dina T., Allman R.M. Precise measurement of vertebral bone density using computed tomography without the use of an external reference phantom. J. Digit. Imaging. 1989; 2 (1): 31–38. https://doi.org/10.1007/BF03168013; Gudmundsdottir H., Jonsdottir B., Kristinsson S., Johannesson A., Goodenough D., Sigurdsson G. Vertebral bone density in icelandic women using quantitative computed tomography without an external reference phantom. Osteoporos Int. 1993; 3 (2): 84–89. https://doi.org/10.1007/BF01623378; Kopperdahl D.L., Aspelund T., Hoffmann P.F., Sigurdsson S., Siggeirsdottir K., Harris T.B., Gudnason V., Keaveny T.M. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J. Bone Miner. Res. 2014; 29 (3): 570–580. https://doi.org/10.1002/jbmr.2069; Valentinitsch A., Trebeschi S., Kaesmacher J., Lorenz C., Löffler M.T., Zimmer C., Baum T., Kirschke J.S. Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporos Int. 2019; 30 (6): 1275–1285. https://doi.org/10.1007/s00198-019-04910-1; Roski F., Hammel J., Mei K., Baum T., Kirschke J.S., Laugerette A., Kopp F.K., Bodden J., Pfeiffer D., Pfeiffer F., Rummeny E.J., Noël P.B., Gersing A.S., Schwaiger B.J. Bone mineral density measurements derived from dual-layer spectral CT enable opportunistic screening for osteoporosis. Eur. Radiol. 2019; 29 (11): 6355–6363. https://doi.org/10.1007/s00330-019-06263-z; Петряйкин А.В., Белая Ж.Е., Киселeва А.Н., Артюкова З.Р., Беляев М.Г., Кондратенко В.А., Писов М.Е., Соловьев А.В., Сморчкова А.К., Абуладзе Л.Р., Киева И.Н., Феданов В.А., Яссин Л.Р., Семёнов Д.С., Кудрявцев Н.Д., Щелыкалина С.П., Зинченко В.В., Ахмад Е.С., Сергунова К.А., Гомболевский В.А., Низовцова Л.А., Владзимирский А.В., Морозов С.П. Технология искусственного интеллекта для распознавания компрессионных переломов позвонков с помощью модели морфометрического анализа, основанной на сверточных нейронных сетях. Проблемы эндокринологии. 2020; 66 (5): 48–60. https://doi.org/10.14341/probl12605; Graffy P.M., Liu J., Pickhardt P.J., Burns J.E., Yao J., Summers R.M. Deep learning-based muscle segmentation and quantifcation at abdominal CT: Application to a longitudinal adult screening cohort for sarcopenia assessment. Br. J. Radiol. 2019; 92 (1100). https://doi.org/10.1259/bjr.20190327; Paris M.T. Body Composition Analysis of Computed Tomography Scans in Clinical Populations: The Role of Deep Learning. Lifestyle Genomics. 2020; 13 (1): 28–31. https://doi.org/10.1159/000503996; Pickhardt P.J., Lee S.J., Liu J., Yao J., Lay N., Graffy P.M., Summers R.M. Population-based opportunistic osteoporosis screening: Validation of a fully automated CT tool for assessing longitudinal BMD changes. Br. J. Radiol. 2019; 92 (1094). https://doi.org/10.1259/bjr.20180726; Dagan N., Elnekave E., Barda N., Bregman-Amitai O., Bar A., Orlovsky M., Bachmat E., Balicer R.D. Automated opportunistic osteoporotic fracture risk assessment using computed tomography scans to aid in FRAX underutilization. Nat. Med. 2020; 26 (1): 77–82. https://doi.org/10.1038/s41591-019-0720-z; Australian Radiation Protection and Nuclear Safety Agency. Flying and health: Cosmic radiation exposure for casual flyers and aircrew. Available at: https://www. arpansa.gov.au/understanding-radiation/radiation-sources/more-radiation-sources/flying-and-health Accessed July 14, 2021.; Damilakis J., Adams J.E., Guglielmi G., Link T.M. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur. Radiol. 2010; 20 (11): 2707–2714. https://doi.org/10.1007/s00330-010-1845-0; Jang J., Jung S.E., Jeong W.K., Lim Y.S., Choi J.I., Park M.Y., Kim Y., Lee S.K., Chung J.J., Eo H., Yong H.S., Hwang S.S. Radiation Doses of Various CT Protocols: A Multicenter Longitudinal Observation Study. J. Korean Med. Sci. 2016; 31: 24–31. https://doi.org/10.3346/jkms.2016.31.S1.S24; Khoo B.C., Brown K., Cann C., Zhu K., Henzell S., Low V., Gustafsson S., Price R.I., Prince R.L. Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos Int. 2009; 20 (9): 1539–1545. https://doi.org/10.1007/s00198-008-0820-y; https://medvis.vidar.ru/jour/article/view/1049

  9. 9
  10. 10
    Academic Journal

    Source: Medical Visualization; Том 24, № 4 (2020); 133-145 ; Медицинская визуализация; Том 24, № 4 (2020); 133-145 ; 2408-9516 ; 1607-0763

    File Description: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/977/633; Поп В.П., Рукавицин О.А. и др. Множественная миелома и родственные ей заболевания. 3-е изд., перераб. и доп. М.: ГЭОТАР-Медиа, 2016. 224 с.; Сахин В.Т., Маджанова Е.Р., Крюков Е.В., Сотников А.В., Гордиенко А.В., Казаков С.П., Рукавицын О.А. Анемия при хронических заболеваниях: ключевые механизмы патогенеза у пациентов со злокачественными новообразованиями и возможные подходы к классификации. Клиническая онкогематология. Фундаментальные исследования и клиническая практика. 2019; 12 (3): 344–349. https://doi.org/10.21320/2500-2139-2019-12-3-344-349; Rajkumar S., Kumar S. Multiple myeloma: diagnosis and treatment. Mayo Clin. Proc. 2016; 91 (1): 101–119. https://doi.org/10.1016/j.mayocp.2015.11.007.; Mariette X., Khalifa P., Ravaud P., Frija J., Laval-Jeantet M., Chastang C., Brouet J.C., Fermand J.P. Bone densitometry in patients with multiple myeloma. Am. J. Med. 1992; 6 (93): 595–598. https://doi.org/10.1016/0002-9343(92)90190-m .; Muchtar E., Dagan A., Robenshtok E., Shochat T., Oniashvili N., Amitai I., Raanani P., Magen H. Bone mineral density utilization in patients with newly diagnosed multiple myeloma. Hematological Oncology. 2017; 4 (35): 703–710. https://doi.org/10.1002/hon.2303; Durie B.G., Harousseau J.L., Miguel J.S., Bladé J., Barlogie B., Anderson K., Gertz M., Dimopoulos M., Westin J., Sonneveld P., Ludwig H., Gahrton G., Beksac M., Crowley J., Belch A., Boccadaro M., Cavo M., Turesson I., Joshua D., Vesole D., Kyle R., Alexanian R., Tricot G., Attal M., Merlini G., Powles R., Richardson P., Shimizu K., Tosi P., Morgan G., Rajkumar S.V.; International Myeloma Working Group. International uniform response criteria for multiple myeloma. Leukemia. 2006; 9 (20): 1467–1473. https://doi.org/10.1038/sj.leu.2404284; Троян В.Н., Рукавицын О.А., Крюков Е.В., Козырев С.В., Поп В.П., Симашова П.И., Сапельникова Э.Р., Дараган-Сущов И.Г. Возможности двухэнергетической рентгеновской абсорбциометрической денситометрии в мониторинге динамики лечения множественной миеломы. Военно-медицинский журнал. 2018; 339 (11): 58–59.; Крюков Е.В., Троян В.Н., Рукавицын О.А., Козырев С.В., Дараган-Сущов И.Г., Поп В.П., Алексеев С.А., Сапельникова Э.Р. Денситометрия как метод мониторинга при лечении больных множественной миеломой. Медицинская визуализация. 2018; 22 (5): 106–113. https://doi.org/10.24835/1607-0763-2018-5-106-113.; Bier G., Kloth C., Schabel C., Bongers M., Nikolaou K., Horger M. Vertebral lesion distribution in multiple myeloma-assessed by reduced-dose whole-body MDCT. Skeletal Radiol. 2016; 1 (45): 127–133. https://doi.org/10.1007/s00256-015-2268-4; Nanni C., Zamagni E., Farsad M., Castellucci P., Tosi P., Cangini D., Salizzoni E., Canini R., Cavo M., Fanti S. Role of 18F-FDG PET/CT in the assessment of bone involvement in newly diagnosed multiple myeloma: preliminary results. Eur. J. Nuclear Med. Molec. Imaging. 2006; 5 (33): 525–531. https://doi.org/10.1007/s00259-005-0004-3; Durie B.G., Waxman A.D., D'Agnolo A., Williams C.M. Whole-Body 18F-FDG PET Identifies High-Risk Myeloma. J. Nuclear Med. 2002; 11 (43): 1457–1463.; https://medvis.vidar.ru/jour/article/view/977

  11. 11
    Academic Journal

    Source: Russian Journal of Transplantology and Artificial Organs; Том 21, № 3 (2019); 90-99 ; Вестник трансплантологии и искусственных органов; Том 21, № 3 (2019); 90-99 ; 1995-1191 ; 10.15825/1995-1191-2019-3

    File Description: application/pdf

    Relation: https://journal.transpl.ru/vtio/article/view/1068/827; https://journal.transpl.ru/vtio/article/view/1068/848; Reiss AB, Miyawaki N, Moon J, Kasselman LJ, Voloshyna I, D’Avino R Jr, De Leon J. CKD, arterial calcification, atherosclerosis and bone health: Interrelationships and controversies. Atherosclerosis. 2018; 278: 49–59. doi.org/10.1016/j.atherosclerosis.2018.08.046.; Vervloet M,Cozzolino M. Vascular calcification in chronic kidney disease: different bricks in the wall? Kidney Int. 2017; 91 (4): 808–817. doi:10.1016/j.kint.2016.09.024.; Liu ZH, Yu XQ, Yang JW, Jiang AL, Liu BC, Xing CY et al. China Dialysis Calcification Study Group. Prevalence and risk factors for vascular calcification in Chinese patients receiving dialysis: baseline results from a prospective cohort study. Curr Med Res Opin. 2018; 34 (8): 1491–1500. doi:10.1080/03007995.2018.1467886.; Gungor O, Kocyigit I, Yilmaz MI, Sezer S. Role of vascular calcification inhibitors in preventing vascular dysfunction and mortality in hemodialysis patients. Seminars in Dialysis. 2018; 31: 72–81.; Wang J, Zhou JJ, Robertson GR, Lee VW. Vitamin D in vascular calcification: A double-edged sword? Nutrients. 2018; 10: 652–668. doi:10.3390/nu10050652.; D’Marco L, Bellasi A, Mazzaferro S, Raggi P. Vascular calcification, bone and mineral metabolism after kidney transplantation. World J Transplant. 2015; 24; 5 (4): 222–230.; Górriz JL, Molina P, Jamal SA. Vascular Calcification in Patients with Nondialysis CKD over 3 Years. Clin J Am Soc Nephrol. 2015; 10 (4): 654–666. doi:10.2215/ CJN.07450714.; Cianciolo G, Capelli I, Angelini ML, Valentini C, Baraldi O, Scolari MP, Stefoni S. Importance of vascular calcification in kidney transplant recipients. Am J Nephrol. 2014; 39: 418–426. doi:10.1159/000362492.; Ogawa T, Nitta K. Pathogenesis and management of vascular calcification in patients with end-stage renal disease. Contrib Nephrol. Basel, Karger, 2018; 196: 71– 77. doi:10.1159/000485702.; Benz K, Hilgers K-F, Daniel C, Amann K. Vascular calcification in chronic kidney disease: the role of inflammation. International Journal of Nephrology. 2018. https:// doi.org/10.1155/2018/4310379.; Ватазин АВ, Зулькарнаев АБ, Фоминых НМ, Карданахишвили ЗБ, Стругайло ЕВ. Сосудистый доступ у пациентов на хроническом гемодиализе в Московской области: состояние и перспективы. Альманах клинической медицины. 2017; 45 (7): 526–534. Vatazin AV, Zul’karnaev AB, Fominyh NM, Kardanahishvili ZB, Strugajlo EV. Vascular access in patients on chronic hemodialysis in the Moscow Region: current state and outlook. Al’manah klinicheskoj mediciny = Russian journal Almanac of Clinical Medicine. 2017; 45 (7): 526–534 [English abstract]. doi:10.18786/2072-05052017-45-7-526-534.; Disthabanchong S, Boongird S. Role of different imaging modalities of vascular calcification in predicting outcomes in chronic kidney disease. World J Nephrol. 2017; 6 (3): 100–110. doi:10.5527/wjn.v6.i3.100.; Krishnasamy R, Pedagogos E. Should nephrologists consider vascular calcification screening? Nephrology. 2017; 22 (Suppl. 2): 31–33. doi:10.1111/nep.13019.; Toussaint ND, Pedagogos E, Lau KK, Heinze S, Becker GJ, Beavis J et al. Lateral lumbar X-ray assessment of abdominal aortic calcification in Australian haemodialysis patients. Nephrology (Carlton) 2010. doi:10.1111/j.1440-1797.2010.01420.x.; Vetchinnikova O, Polyakova E, Zul’karnaev A. The impact of surgical treatment of secondary (renal) hyperparathyroidism on bone density. Nephrol Dial Transplant. 2018; 33 (Suppl. 1): i68.; Rodriguez-Garcia M, Gomez-Alonso C, Naves-Diaz M, Diaz-Lopez JB, Diaz-Corte C, Cannata-Andia JB and the Asturias Study Group. Vascular calcifications, vertebral fractures and mortality in haemodialysis patients. Nephrol Dial Transplant. 2009; 24: 239–246. doi:10.1093/ndt/gfn466.; Coen G, Ballanti P, Mantella D, Manni M, Lippi B, Pierantozzi A et al. Bone Turnover, Osteopenia and Vascular Calcifications in Hemodialysis Patients A Histomorphometric and Multislice CT Study. Am J Nephrol. 2009; 29: 145–152. doi: org/10.1159/000151769.; Nam HS, Lee SM, Jeong EG, Lee DY, Son YK, Kim SE et al. Vascular calcification on plain radiographs is related with the severity of lesions detected by coronary angiography in dialysis patients. Tohoku J Exp Med. 2015; 235 (2): 135–144. doi:10.1620/tjem.235.135.; Kidney Disease Improving Global Outcomes (KDIGO) CKD-MBD Work Group: clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009; 113: S1–S130.; KDIGO 2017. Clinical Practice Guideline Update for the Diagnosis, Evalution, Prevention and Treatment of Chronic Kidney Disease – Mineral and Bone Disorder (CKD-MBD). Kidney Int 2017; 7 (1): 1–59.; Vipattawat K, Kitiyakara C, Phakdeekitcharoen B, Kantachuvesiri S, Sumethkul V, Jirasiritham S, Stitchantrakul W. Vascular calcification in long-term kidney transplantation. Nephrology (Carlton). 2014; 19 (4): 251–256. doi:10.1111/nep.12210.; Chen NX, Duan D, O’Neill KD, Moe SM. High glucose increases the expression of Cbfa1 and BMP-2 and enhances the calcification of vascular smooth muscle cells. Nephrol Dial Transplant. 2006; 21: 3435–3442.; https://journal.transpl.ru/vtio/article/view/1068

  12. 12
  13. 13
    Academic Journal

    Source: Diagnostic radiology and radiotherapy; № 3 (2019); 14-21 ; Лучевая диагностика и терапия; № 3 (2019); 14-21 ; 2079-5343 ; 10.22328/2079-5343-2019-3

    File Description: application/pdf

    Relation: https://radiag.bmoc-spb.ru/jour/article/view/428/353; Fonseca J.E. Bone biology: from macrostructure to gene expression // Medicographia. 2012. No 34. P. 142–148.; Ермак Е.М. Ультразвуковая диагностика патологии опорно-двигательного аппарата: рук. для врачей. М.: СТРОМ, 2015. 592 с. [Yermak Ye.M. Ultra-sound diagnostics of locomotor apparatus pathology: manual for doctors. Moscow: Izdatel’stvo STROM, 2015, рр. 592 (In Russ.)].; Менщикова Т.И., Неретин А.С. Использование ультразвукового метода исследования для оценки структурного состояния дистракционного регенерата четвертой плюсневой кости у пациентов с брахиметатарзией // Успехи современного естествознания. 2015. № 3. С. 55–59. [Menschikova T.I., Neretin A.S. Application of ultra-sound method of the study for evaluation of structural condition of the distraction regenerate of the 4th metatarsal bone in the patients with brachymetatarsia. Successes of current natural sciences, 2005, No. 3, рр. 55–59 (In Russ.)].; Огарев Е.В., Морозов А.К. Диагностические возможности мультиспиральной компьютерной томографии в оценке состояния тазобедренного сустава у детей и подростков // Вестник травматологии и ортопедии им. Н. Н. Приорова. 2013. № 4. С. 68–75. [Ogarev Ye.V., Morozov A.K. Diagnostic possibilities of multi-spiral computer tomography in evaluation of hip condition in children and adolescents. N. N. Priorov Journal of Traumatology and Orthopedics, No. 4, рр. 68–75 (In Russ.)].; Baum T. еt al. Automated 3D trabecular bone structure analysis of the proximal femur — prediction of biomechanical strength by CT and DXA // Osteoporos. Int. 2010. Vol. 21, No. 9. P. 1553–1564.; Chappard D. Bone microarchitecture // Bull. Acad. Natl. Med. 2010. Vol. 194, No. 8. P. 1469–1480.; Klintström E., Smedby O., Moreno R., Brismar T.B. Trabecular bone structure parameters from 3D image processing of clinical multi-slice and cone-beam computed tomography data // Skeletal Radiol. 2014. Vol. 43, No. 2. P. 197–204.; Kocijan R. et al. Bone structure assessed by HR-pQCT, TBS and DXL in adult patients with different types of osteogenesis imperfecta // Osteoporos. Int. 2015. Vol. 26, No. 10. P. 2431–2440.; Carballido-Gamio J. et al. Automatic multi-parametric quantification of the proximal femur with quantitative computed tomography // Quant. Imaging Med. Surg. 2015. Vol. 5, No. 4. P. 552–568.; Gee C.S. et al. Validation of bone marrow fat quantification in the presence of trabecular bone using MRI // J. Magn. Reson. Imaging. 2015. Vol. 42, № 2. P. 539–544.; Васильев А.Ю. и др. Возможности цифровой микрофокусной рентгенографии при оценке репаративной регенерации костной ткани в эксперименте // Вестн. рентгенол. радиол. 2008. № 2–3. C. 21–25. [Vasiliev A.Yu. et al. Possibilities of microfocus radiography in evaluation of reparative regeneration of the bone tissue in experiment. Journal of radiology and nuclear medicine, 2008, No. 2–3, рр. 21–25 (In Russ.)].; Гаркавенко Ю.Е., Янакова О.М., Бергалиев А.Н. Комплексный мониторинг процессов остеогенеза дистракционного регенерата у детей с последствиями гематогенного остеомиелита при удлинении нижних конечностей // Травматология и ортопедия России. 2011. № 1 (59). С. 106–111. [Garkavenko Yu.Ye., Yanakova O.M., Bergaliev A.N. Complex monitoring of osteogenesis processes of distraction regenerate in children with consequences of hematogenous osteomyelitis in lower limbs lengthening. Traumatology and Orthopedics of Russia, 2011, No. 1 (59), рр. 106–111 (In Russ.)].; Меньшикова Т.И., Борзунов Д.Ю., Долганова Т.И. Ультразвуковое сканирование дистракционного регенерата при полилокальном удлинении отломков у больных с дефектами длинных костей // Хирургия. Журнал им. Н. И. Пирогова. 2014. № 3.С. 20–24. [Menschikova T.I., Borzunov D.Yu., Dolganova T.I. Ultrasound scanning of distraction regenerate in polyfocal fragments lengthening in the patient with long bones defects. Pirogov Russian Journal of Surgery, 2014, No. 3, рр. 20–24 (In Russ.)].; Урьев Г.А., Борейко С.Б., Степуро Л.И. Рентген-ультразвуковые параллели в оценке состояния дистракционного регенерата при удлинении конечностей // Мед. журнал. 2008. № 1. Режим доступа: http://www.bsmu.by [Uriev G.A., Boreiko S.B., Stepuro L.I. Radiographic and ultrasound parallels in evaluation of distraction regenerate condition in lumb lengthening. Med. Journal, 2008, No. 1, http://www.bsmu.by (In Russ.)].; Giannikas K.A. et al. Cross-sectional anatomy in postdistraction osteogenesis tibia // J. Orthop. Sci. 2007. Vol. 12, No. 5. P. 430–436.; Kokoroghiannis C. et al. Correlation of pQCT bone strength index with mechanical testing in distraction osteogenesis // Bone. 2009. Vol. 45, No. 3. P. 512–516.; Stiller M. et al. Quantification of bone tissue regeneration employing beta-tricalcium phosphate by three-dimensional non-invasive synchrotron micro-tomography — a comparative examination with histomorphometry // Bone. 2009. Vol. 44, No. 4. P. 619–628.; Аранович А.М. и др. Методики цифрового анализа рентгенологического изображения дистракционного регенерата при удлинении голеней у больных ахондроплазией // Фундаментальные исследования. 2015. № 1. С. 1115–1119. [Aranovich A.M. et al. The techniques of digital analysis of radiological imaging of distraction regenerate in tibial lengthening in achondroplasia patients. Basic research, 2015, No. 1, рр. 1115–1119 (In Russ.)].; Дьячков К.А., Дьячкова Г.В., Александров Ю.М. Рентгеноморфологические особенности и плотность корковой пластинки большеберцовой кости на различных этапах удлинения // Вестн. травматологии и ортопедии им. Н. Н. Приорова. 2012. № 4. С. 58–61. [Diachkov K.A., Diachkova G.V., Aleksandrov Yu.M. Roentgenmorphological peculiarities and density of the tibial cortical plate at different stages of lengthening. N. N. Priorov Journal of Traumatology and Orthopedics, 2012, No. 4, рр. 58–61 (In Russ.)].; Новиков К.И. и др. Особенности удлинения голени в проксимальной трети методом чрескостного остеосинтеза по Илизарову в зависимости от величины удлинения // Фундаментальные исследования. 2014. № 7–4. С. 763–766. [Novikov K.I. et al. Peciliarities of proximal tibial lengthening using Ilizarov transosseous osteosynthesis method depending on the amount of lengthening. Basic research, 2014, No. 7–4. P. 763–766 (In Russ.)].; Emara K.M. et al. Foot and ankle function after tibial overlengthening // J. Foot Ankle Surg. 2014. Vol. 53, No. 1. P. 12–15.; Li R. et al. Radiographic classification of osteogenesis during bone distraction // J. Orthop. Res. 2006. Vol. 24, No. 3. P. 339–347.; Алгоритм описания дистракционного регенерата: метод. рекомендации / ФГУ «РНЦ «ВТО» им. Г. А. Илизарова»; сост.: Г. В. Дьячкова, С. А. Ерофеев, Е. С. Михайлов. Курган, 2003. 16 с. [Algorithm of distraction regenerate description: method and recommendations / FGU «RISC «RTO»; compiled by G. V. Diachkova, S. A. Yerofeev, Ye. S. Mikhailov. Kurgan, 2003. (In Russ.)].; Devmurari K.N. et al. Callus features of regenerate fracture cases in femoral lengthening in achondroplasia // Skeletal Radiol. 2010. Vol. 39, No. 9. P. 897–903.; Isaac D. et al. Callus patterns in femur lengthening using a monolateral external fixator // Skeletal Radiol. 2008. Vol. 37, No. 4. P. 329–334.; Muzaffar N. et al. Callus patterns in femoral lengthening over an intramedullary nail // J. Orthop. Res. 2011. Vol. 29, No. 7. P. 1106–1113.; Tesiorowski M. et al. Regeneration formation index- new method of quantitative evaluation of distraction osteogenesis // Chir. Narzadow Ruchu Ortop. Pol. 2009. Vol. 74, No. 3. P. 121–126.; Singh S. et al. Analysis of callus pattern of tibia lengthening in achondroplasia and a novel method of regeneration assessment using pixel values // Skeletal Radiol. 2010. Vol. 39, No. 3. P. 261–266.; Hazra S. et al. Quantitative assessment of mineralization in distraction osteogenesis // Skeletal Radiol. 2008. Vol. 37, No. 9. P. 843–847.; Shyam A.K. et al. The effect of distraction-resisting forces on the tibia during distraction osteogenesis// J. Bone Joint Surg. Am. 2009. Vol. 91, No. 7. P. 1671–1682.; Дьячкова Г.В., Климов О.В., Аранович А.М., Дьячков К.А. Новые возможности изучения дистракционного регенерата по данным рентгенографии // Гений ортопедии. 2015. № 3. С. 60–66. [Diachkova G.V., Klimov O.V., Aranovich A.M., Diachkov K.A. New possibilities of distraction regenerate study according to the radiographic data. Genius of Orthopaedics. 2015. No. 3, рр. 60–66 (In Russ.)].; Song S.H. et al. Serial bone mineral density ratio measurement for fixator removal in tibia distraction osteogenesis and need of a supportive method using the pixel value ratio // J. Pediatr. Orthop. B. 2012. Vol. 21, No. 2. P. 137–145.; Chotel F. et al. Bone stiffness in children: part II. Objectives criteria for children to assess healing during leg lengthening // J. Pediatr. Orthop. 2008. Vol. 28, No. 5. P. 538–543.; Saran N., Hamdy R.C. DEXA as a predictor of fixator removal in distraction osteogenesis // Clin. Orthop. Relat. Res. 2008. Vol. 466, No. 12. P. 2955–2961.; Monsell F. et al. Can the material properties of regenerate bone be predicted with non-invasive methods of assessment? Exploring the correlation between dual X-ray absorptiometry and compression testing to failure in an animal model of distraction osteogenesis // Strategies Trauma Limb Reconstr. 2014. Vol. 9, No. 1. P. 45–51.; Борейко С.Б., Урьев Г.А., Степуро Л.И. Оценка состояния дистракционного регенерата при удлинении конечностей лучевыми методами диагностики // Современные диагностические технологии, внедрение в практику: сб. материалов, посвящ. 15-летию Витебского областного диагностического центра. Витебск, 2010. С. 34–36. [Boreiko S.B., Uriev G.A., Stepuro L.I. Evaluation of distraction regenerate condition in limb lengthening using radiological methods of diagnostics // Current diagnostic technologies and introduction into practice: collect. of materials dedicated to 15th year anniversary of Vitebsk regional diagnostic Center. Vitebsk, 2010, рр. 34–36 (In Russ.)].; Еськин Н.А. и др. Возможности ультразвукового метода исследо- вания в оценке зрелости дистракционного регенерата при удлинении длинных костей нижних конечностей // Биомед. радио- электроника. 2011. № 12. С. 65–72. [Yeskin N.A. et al. Possibilities of ultrasound method of the study in evaluation of distraction regenerate maturity in the lower limb lengthening. Biomedical Radioelectronics, 2011, No. 12, рр. 65–72 (In Russ.)].; Luk H.K. et al. Computed radiographic and ultrasonic evaluation of bone regeneration during tibial distraction osteogenesis in rabbits // Ultrasound Med. Biol. 2012. Vol. 38, No. 10. P. 1744–1758.; Issar Y. et al. Comparative evaluation of the mandibular distraction zone using ultrasonography and conventional radiography // Int. J. Oral Maxillofac. Surg. 2014. Vol. 43, No. 5. P. 587–594.; Selim H. et al. Evaluation of distracted mandibular bone using computed tomography scan and ultrasonography: technical note // Dentomaxillofac Radiol. 2009. Vol. 38, No. 5. P. 274–280.; Poposka A., Atanasov N., Dzoleva-Tolevska R. Use of ultrasonography in evaluation of new bone formation in patients treated by the method of Ilizarov // Prilozi. 2012. Vol. 33, No. 1. P. 199–208.; Babatunde O.M., Fragomen A.T., Rozbruch S.R. Noninvasive quantitative assessment of bone healing after distraction osteogenesis // HSS J. 2010. Vol. 6, No. 1. P. 71–78.; Дьячков К.А., Корабельников М.А., Дьячкова Г.В., Аранович А.М., Климов О.В. МРТ-семиотика дистракционного регенерата // Мед. визуализация. 2011. № 5. С. 99–103. [Diachkov K.A., Korabelnikov M.A., Diachkova G.V., Aranovich A.M., Klimov O.V. MRI-semiotics of distraction regenerate // Мedical Visualization, 2011, No. 5, рр. 99–103 (In Russ.)]; Eski M. et al. Assessment of distraction regenerate using quantitative bone scintigraphy // Ann. Plast. Surg. 2007. Vol. 58, No. 3. P. 328–334.; Пусева М.Э. и др. Влияние стимуляции бат на состояние дистракционного регенерата костей предплечья в эксперименте // Сибир. мед. журн. 2013. Т. 123, № 8. С. 60–67. [Puseva M.E. et al. BAP stimulation effect on condition distraction regenerate of the forearm bones in experiment. The Siberian Medical Journal, 2013, Vol. 123, No. 8, рр. 60–67 (In Russ.)].; Zapata U. et al. Architecture and microstructure of cortical bone in reconstructed canine mandibles after bone transport distraction osteogenesis et al. // Calcif. Tissue Int. 2011. Vol. 89, No. 5. P. 379–388.; Kontogiorgos E. et al. Three-dimensional evaluation of mandibular bone regenerated by bone transport distraction osteogenesis // Calcif. Tissue Int. 2011. Vol. 89, No. 1. P. 43–52.; Moore C. et al. Effects of latency on the quality and quantity of bone produced by dentoalveolar distraction osteogenesis // Am. J. Orthod. Dentofacial Orthop. 2011. Vol. 140, No. 4. P. 470–478.; Spencer A.C. et al. How does the rate of dentoalveolar distraction affect the bone regenerate produced? // Am. J. Orthod. Dentofacial Orthop. 2011. Vol. 140, No. 5. P. e211–e221.; Elsalanty M.E. et al. Reconstruction of canine mandibular bone defects using a bone transport reconstruction plate // Ann. Plast. Surg. 2009. Vol. 63, No. 4. P. 441–448.; Воложин А.И. и др. Оценка репаративной регенерации костной ткани с помощью микрофокусной рентгенографии в эксперименте с использованием аутологичных и аллогенных мезенхимальных стволовых клеток // Рос. стоматология. 2010. № 3 (1). C. 50–55. [Volozhin A.I. et al. Evaluation of reparative bone regeneration using microfocus radiography in experiment using autologous and allogenous mesenchymal stem cells. Russian Stomatology, 2010, No. 3 (1), рр. 50–55 (In Russ.)].; Васильев А.Ю. и др. Малодозовая микрофокусная рентгенография в стоматологии и челюстно-лицевой хирургии // Радиология — практика. 2011. № 6. С. 26–33. [Vasiliev A.Yu. et al. Small dosage digital microfocus radiography in dentistry and maxillofacial surgery. Radiology — practice, 2011, No. 6, рр. 26–33 (In Russ.)].; Буланова И.М., Смирнова В.А., Бойчак Д.В. Малодозовая микрофокусная рентгенография в характеристике костной ткани (клинико-экспериментальное исследование) // Радиология — практика. 2011. № 4.С. 13–20. [Bulanova I.M., Smirnova V.A., Boichal D.V. Small dosage digital microfocus radiography in bone tissue characteristics (clinical and experimental study). Radiology — practice, 2011, No. 4, рр. 13–20 (In Russ.)].; Djasim U.M. et al. Single versus triple daily activation of the distractor: no significant effects of frequency of distraction on bone regenerate quantity and architecture // J. Craniomaxillofac. Surg. 2008. Vol. 36, No. 3. Р. 143–151.; Кармазановский Г.Г., Федоров В.Д., Мишин В.А. Компьютерно-томографическая характеристика дистракционного регенерата большеберцовой кости // Вестн. рентгенологии и радиологии. 1993. № 2. С. 34–37. [Karmazanovskiy G.G., Fyodorov V.D., Mishin V.A. Computer tomography characteristics of tibial distraction regenerate. Journal of radiology and nuclear medicine, 1993, No. 2, рр. 34–37 (In Russ.)].; Шевцов В.И. и др. Качественный и количественный анализ КТ- морфологии дистракционного регенерата при удлинении и устранении деформаций нижних конечностей // Травматология и ортопедия России. 2007. № 3 (45). С. 56–62. [Shevtsov V.I. et al. Qualitative and quantitative analysis of CT-morphology of distraction regenerate in lengthening and deformity correction of the lower limbs. Traumatology and Orthopedics of Russia, 2007, Nо. 3 (45), рр. 56–62 (In Russ.)].; Neelakandan R.S. Transport distraction osteogenesis for maxillomandibular reconstruction: current concepts and applications // J. Maxillofac. Oral Surg. 2012. Vol. 11, Nо. 3. P. 291–299.

  14. 14
    Academic Journal

    Source: Research and Practical Medicine Journal; Том 6, № 4 (2019); 127-137 ; Research'n Practical Medicine Journal; Том 6, № 4 (2019); 127-137 ; 2410-1893 ; 10.17709/2409-2231-2019-6-4

    File Description: application/pdf

    Relation: https://www.rpmj.ru/rpmj/article/view/456/325; Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia. European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in older people. Age Ageing. 2010; 39(4):412-423. DOI:10.1093/ageing/afq034; Старческая астения: клинические рекомендации. Общероссийская общественная организация «Российская ассоциация геронтологов и гериатров» М. 2018. Доступно по: http://uzrf.ru/userfiles/file/rokgw/GeriatricCenter/01-1-astenia_recomend.pdf; Collard RM. Prevalence of frailty in community dwelling older persons: a systematic review. J. Am. Geriatr. Soc. 2012 Aug; 60 (8):1487—1492. DOI:10.1111/j.1532-5415.2012.04054.x; Gurina NA, Frolova EV, Degryse JM. A roadmap of aging in Russia: the prevalence of frailty in community-dwelling older adults in the St. Petersburg district — the «Crystal» study. J. Amer. Geriatr. Soc. 2011 Jun;59(6):980-988. DOI:10.1111/j.1532—5415.2011.03448.x; Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G. Un-tangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. Journals of Gerontology Series A-Biological Sciences & Medical Sciences. 2004; 59 (3):255—263. DOI:10.1093/gerona/59.3.m255; Fisher AL. Just what defines frailty? Journal of the American Geriatrics Society. 2007; 53(12):2229-2230. DOI:10.1111/j.1532—5415.2005.00510.x; Curcio F, Ferro G, Basile C, Liguori I, Parrella P, Pirozzi F et al. Biomarkers in sarcopenia: a multifactorial approach. Exp Gerontol. 2016 Dec; 85:1-8. DOI:10.1016/j.exger.2016.09.007; Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019 Jan; 48(1):16-31. DOI:10.1093/ageing/afy169; Beaudart C, Zaaria M, Pasleau FEO, Reginster JY, Bruyere O. Health outcomes of sarcopenia: A systematic review and meta-analysis. PLoS One. 2017 Jan; 12(1):e0169548. DOI:10.1371/journal.pone.0169548; Marzeffi E. Editorial: imaging, functional and biological markers for sarcopenia: the pursuit of the golden ratio. J Frailty Aging. 2012; 1(3):97-98. DOI:10.14283/jfa.2012.15; Sherk VD, Thiebaud RS, Chen Z, Karabulut M, Kim SJ, Bemben DA. Associations between pQCT-based fat and muscle area and density and DXA-based total and leg soft tissue mass in healthy women and men. J Musculoskelet Neuronal Interact. 2014; 14(4):411-417.; Kim JS, Kim WY, Park HK, Kim MC, Jung W, Ko BS. Simple age specific cutoff value for sarcopenia evaluated by computed tomography. Annals of nutrition & metabolism. 2017 Jan; 71(3-4):157-163. DOI:10.1159/000480407; Joglekar S, Asghar A, Mott SL, Johnson BE, Button AM, Clark E, et al. Sarcopenia is an independent predictor of com-plications following pancreatectomy for adenocarcinoma. J Surg Oncol. 2015 Dec; 111(6):771-775. DOI:10.1002/jso.23862; Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts. A population based study. Lancet. Oncol. 2008 Jun 1; 9(7):629-635. DOI:10.1016/S1470-2045(08)70153-0; Takahashi N, Sugimoto M, Psutka SP, Chen B, Moynagh MR, Carter RE. Validation study of a new semiautomated software program for CT body composition analysis. Abdom Radiol. 2017 Apr; 42(9):2369-2375. DOI:10.1007/s00261-017-1123-6; Van Vugt JL, Levolger S, Gharbharan A, Koek M, Niessen WJ, Burger JW, et al. A comparative study of software programmes for cross-sectional skeletal muscle and adipose tissue measurements on abdominal computed tomography scans of rectal cancer patients. J Cachexia Sarcopenia Muscle. 2017 Apr; 8(2):285-297. DOI:10.1002/jcsm.12158; Yokota F, Otake Y, Takao M, Ogawa T, Okada T, Sugano N, et al. Automated muscle segmentation from CT images of the hip and thigh using a hierarchical multi-atlas method. Int J Comput Assist Radiol Surg. 2018 Jul; 13(7):977-986. DOI:10.1007/s11548-018-1758-y; Erlandson MC, Lorbergs AL, Mathur S, Cheung AM. Muscle analysis using pQCT, DXA and MRI. Eur J Radiol. 2016 Aug; 85(8):1505-1511. DOI:10.1016/j.ejrad.2016.03.001; Hyun SJ, Bae CW, Lee SH, Rhim SC. Fatty degeneration of the paraspinal muscle in patients with degenerative lumbar kyphosis: a new evaluation method of quantitative digital analysis using MRI and CT scan. Clin Spine Surg. 2016 Dec; 29(10):441-447. DOI:10.1097/BSD.0b013e3182aa28b0; Lee SH, Park SW, Kim YB, Nam TK, Lee YS. The fatty degeneration of lumbar paraspinal muscles on computed tomography scan according to age and disc level. Spine J. 2017 Jan; 17(1):81-87. DOI:10.1016/j.spinee.2016.08.001; Коков А. Н., Брель Н. К., Масенко В. Л., Груздева О. В., Каретникова В. Н., Кашталап В. В. и др. Количественная оценка висцерального жирового депо у больных ишемической болезнью сердца с использованием современных томографических методик. Комплексные проблемы сердечно-сосудистых заболеваний. 2017; 8(3):113-119.; Schrauwen-Hinderling VB, Hesselink MK, Schrauwen P, Kooi ME. Intramyocellular lipid content in human skeletal muscle. Obesity. 2006; 14(3):357-367. DOI:10.1038/oby.2006.47; Yim JE, Heshka S, Albu J, Heymsfield S, Kuznia P, Harris T, et al. Intermuscular adipose tissue rivals' visceral adipose tissue in independent associations with cardiovascular risk. Int J Obes. 2007; 31(9):1400-1405. DOI:10.1038/sj.ijo.0803621; Perreault L, Bergman BC, Hunerdosse DM, Eckel RH. Altered intramuscular lipid metabolism relates to diminished insulin action in men, but not women, in progression to diabetes. Obesity. 2010; 18(11):2093-2100. DOI:10.1038/oby.2010.76; Aubrey J, Esfandiari N, Baracos VE, Buteau FA, Frenette J, Putman CT, et al. Measurement of skeletal muscle radiation attenuation and basis of its biological variation. Acta Physiol. 2014; 210(3):489-497. DOI:10.1111/apha.12224; Werf A van der, Langius JAE, Schueren MAE de van der, Nurmohamed SA, Pant KAMI van der, Blauwhoff-Buskermolen S, et al. Percentiles for skeletal muscle index, area and radiation attenuation based on computed tomography imaging in a healthy Caucasian population. Eur J Clin Nutr. 2018 Feb; 72(2):288-296. DOI:10.1038/s41430-017-0034-5; Мисникова И. В., Ковалева Ю. А., Климина Н. А. Саркопеническое ожирение. Русский медицинский журнал. 2017; 25(1):24-29.; Hamaguchi Y, Kaido T, Okumura S, Ito T, Fujimoto Y, Ogawa K, et al. Preoperative intramuscular adipose tissue content is a novel prognostic predictor after hepatectomy for hepatocellular carcinoma. J Hepatobiliary Pancreat Sci. 2015; 22(6):475-485. DOI:10.1002/jhbp.236; Boer BC, de Graaff F, Brusse-Keizer M, Bouman DE, Slump=CH, Slee-Valentijn M, et al. Skeletal muscle mass and quality as risk factors for postoperative outcome after open colon resection for cancer. Int J Colorectal Dis. 2016; 31(6):1117-1124. DOI:10.1007/s00384-016-2538-1; Del Fabbro E, Parsons H, Warneke CL, Pulivarthi K, Litton JK, Dev R, et al. The relationship between body composition and response to neoadjuvant chemotherapy in women with operable breast cancer. Oncologist. 2012; 17(10):1240-1245. DOI:10.1634/theoncologist.2012-0169; Paknikar R, Friedman J, Cron D, Deeb GM, Chetcuti S, Gross¬man PM, et al. Psoas muscle size as a frailty measure for open and transcatheter aortic valve replacement. J Thorac Cardiovasc Surg. 2016; 151(3):745-750. DOI:10.1016/j.jtcvs.2015.11.022; Dalakas MC. Inflammatory muscle diseases, N. Engl. J. Med. 2015; 373(4):393-394. DOI:10.1056/NEJMra1402225; Grogey AS, Dudley GA. Skeletal muscle atrophy and increased instramuscular fat after imcomplete spinal cord injury. Spinal Cord. 2007; 45(5):304-309. DOI:10.1038/sj.sc.3101968; Mathur S, Lott DJ, Senesac C, Germain SA, Vohra RS, Sweeney HL, et al. Age-related differences in lower-limb muscle cross-sectional area and torque production in boys with Duchenne muscular dystrophy. Arch. Phys. Med. Rehabil. 2010; 91(7):1051-1058. DOI:10.1016/j.apmr.2010.03.024; Seabolt LA, Welch EB, Silver HJ. Imaging methods for analyzing body composition in human obesity and cardiometabolic disease. Ann N Y Acad Sci. 2015; 1353(1):41-59. DOI:10.1111/nyas.12842; Prado CM, Heymsfield SB. Lean tissue imaging: a new era for nutritional assessment and intervention. JPEN J Parenter Enteral Nutr. 2014; 38(8):940-953. DOI:10.1177/0148607114550189; Sinelnikov A, Chuanxing Qu, David T, Fetzer M, Pelletier JS, Michael A, et al. Measurement of Skeletal Muscle Area: Comparison of CT and MR Imaging. Eur J Radiol. 2016; 85(10):1716-1721. DOI:10.1016/j.ejrad.2016.07.006; Kovanlikaya A, Guclu C, Desai C, Becerra R, Gilsanz V. Fat quantification using three-point Dixon technique: in vitro validation. Acad Radiol. 2005;12(5):636-639. DOI:10.1016/j.acra.2005.01.019; Schlaeger S, Inhuber S, Rohrmeier A, Dieckmeyer M, Freitag F, Klupp E, et al. Association of paraspinal muscle water-fat MRI-based measurements with isometric strength measurements. Eur Radiol. 2019 Feb; 29(2):599-608. DOI:10.1007/s00330-018-5631-8; Teichtahl AJ, Urquhart DM, Wang Y, Wluka AE, Wijethilake P, O'Sullivan R, et al. Fat infiltration of paraspinal muscles is associated with low back pain, disability, and structural abnormalities in community-based adults. Spine J. 2015; 15(7):1593-1601. DOI:10.1016/j.spinee.2015.03.039; Buford TW, Lott DJ, Marzeffi E, Wohlgemuth SE, Vandenborne K, Pahor M, et al. Age-related differences in lower extremity tissue compartments and associations with physical function in older adults. Exp. Gerontol. 2012; 47(1):38-44. DOI:10.1016/j.exger.2011.10.001; Lorbergs AL, Noseworthy MD, Adachi JD, Stratford PW, MacIntyre NJ. Fat infiltration in the leg is associated with bone geometry and physical function in healthy older women. Calcif. Tissue Int. 2015; 97(4):353-363. DOI:10.1007/s00223-015-0018-1; Han A, Bokshan SL, Marcaccio SE, DePasse JM, Daniels AH. Di-agnostic Criteria and Clinical Outcomes in Sarcopenia Research: A Literature Review. J Clin Med. 2018; 7(4):70. DOI:10.3390/jcm7040070; Murphy RA, Reinders I, Register TC, Ayonayon HN, Newman AB, Satterfield S, et al. Associations of BMI and adipose tissue area and density with incident mobility limitation and poor performance in older adults. Am J Clin Nutr. 2014; 99(5):1059-1065. DOI:10.3945/ajcn.113.080796; White LJ, Ferguson MA, McCoy SC, Kim H. Intramyocellular lipid changes in men and women during aerobic exercise: a(1) H-magnetic resonance spectroscopy study. J Clin Endocrinol Metab. 2003; 88(12):5638-5643. DOI:10.1210/jc.2003-031006; Rubbieri G, Mossello E, Di Bari M. Techniques for the diagnosis of sarcopenia. Clinical cases in mineral and bone metabolism: the official journal of the Italian Society of Osteoporosis, Mineral Metabolism, and Skeletal Diseases. 2014; 11(3):181-184 DOI:10.11138/ccmbm/2014.11.3.181; Pietrobelli A, Formica C, Wang Z, Hetmsfield SB. Dual-energy X-ray absorptiometry body composition model: review of physical concepts. Am. J. Physiol.-Endocrinol. Metab. 1996; 271(6):941-951. DOI:10.1152/ajpendo.1996.271.6.E941; Freda P, Wei S, Reyes-Vidal C, Eliza B, Arias-Mendoza F, Gallagher D, et al. Skeletal muscle mass in acromegaly assessed by magnetic resonance imaging and dual-photon X-ray absorptiometry. J. Clin. Endocrinol. Metab. 2009; 94(8):2880-2886. DOI:10.1210/jc.2009-0026; Sirola J, Kroger H. Similarities in acquired factors related to postmenopausal osteoporosis and sarcopenia. J Osteoporos. 2011; 2011:14. DOI:10.4061/2011/536735; Мисникова И. В., Ковалева Ю. А., Климина Н. А., Полякова Е. Ю. Оценка мышечной и жировой массы у пациентов с сахарным диабетом 2-го типа по результатам двухэнергетической рентгеновской абсорбциометрии. Альманах клинической медицины. 2018; 46(3):222-232. /; Lee S, Kuk JL. Changes in fat and skeletal muscle with exercise training in obese adolescents: comparison of whole-body MRI and dual energy X-ray absorptiometry. Obesity.2013; 21(10):2063-2071. DOI:10.1002/oby.20448; Ticinesi A, Meschi T, Narici MV, Lauretani F, Maggio M. Muscle Ultrasound and Sarcopenia in Older Individuals: A Clinical Perspective. J Am Med Dir Assoc. 2017; 18(4):290-300. DOI:10.1016/j.jamda.2016.11.013; Berger J, Bunout D, Barrera G, de la Maza MP, Henriquez S, Leiva L, et al. Rectus femoris(RF) ultrasound for the assessment of muscle mass in older people. Arch Gerontol Geriatr. 2015; 61(1):33-38. DOI:10.1016/j.archger.2015.03.006; Sanada K, Kearns CF, Midorikawa T, Abe T. Prediction and validation of total and regional skeletal muscle mass by ultrasound in Japanese adults. Eur J Appl Physiol. 2006; 96(1):24-31. DOI:10.1007/s00421-005-0061-0; Narici M, Franchi M, Maganaris C. Muscle structural assembly and functional consequences. J Exp Biol. 2016; 219:276-284. DOI:10.1242/jeb.128017; Watanabe Y, Yamada Y, Fukumoto Y, Ishihara T, Yokoyama K, Yoshida T, et al. Echo intensity obtained from ultrasonography images reflecting muscle strength in elderly men. Clin Interv Aging. 2013; 8:993-998. DOI:10.2147/CIA.S47263; Drakonaki EE, Allen GM, Wilson DJ. Ultrasound elastography for musculoskeletal applications. Br J Radiol. 2012; 85(1019):1435-1445. DOI:10.1259/bjr/93042867; https://www.rpmj.ru/rpmj/article/view/456

  15. 15
    Academic Journal

    Source: Medical Visualization; № 5 (2018); 106-113 ; Медицинская визуализация; № 5 (2018); 106-113 ; 2408-9516 ; 1607-0763

    File Description: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/660/512; Вотякова О.М. Множественная миелома: достижения лекарственного лечения XX–XXI веков. VII Российская онкологическая конференция. М.: РОНЦ, 2003: 108–110.; Гальцева И.В., Давыдова Ю.О., Капранов С.Т., Родионова С.С. Роль и место проточной цитометрии в диагностике и мониторинге минимальной остаточной болезни при множественной миеломе. Онкогематология. 2017;12 (2): 80–94.; Зацепин С.Т., Родионова С.С., Божеков Н.В., Лесняк А.Т. Дифференциальная диагностика системного остеопороза и миеломной болезни. Ортопедия. 1987; 11: 46–49.; Бессмельцев С.С. Лечение костной болезни при множественной миеломе. Вестник гематологии. 2016; 12 (1): 5–23.; Гельцер Б.И., Жилкова Н.Н., Ануфриева Н.Д., Кочеткова Е.А. Поражение костей при множественной миеломе. Тихоокеанский медицинский журнал. 2011; 3: 11–16.; Giuliani N., Colla S., Morandi F., Lazzaretti M., Sala R., Bonomini S., Grano M., Colucci S., Svaldi M., Rizzoli V. Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitorsand inhibit osteoblast formation and differentiation. Blood. 2005; 106 (7): 2472–2254. DOI:10.1182/blood-2004-12-4986; Chow C.W., Rincon M., Davis R.J. Requirement for transcription factor NFAT in interleukin--2 expression. Molecular and cellular biology. 1999; 19 (3): 2300–2307.; Morgan G.J., Kaiser M.F. How to use new biology to guide therapy in multiple myeloma. ASH Education Book. 2012; 1: 342–349.; Поп В.П., Рукавицин О.А. Множественная миелома и родственные ей заболевания. 3-е изд., перераб. и доп. М.: ГОЭТАР-Медиа, 2016. 224 с.; Benitez C.L., Schneider D.L., Barrett-Connor E., Sartoris D.J. Hand ultrasound for osteoporosis screening in postmenopausal women. Osteoporos. Int. 2000; 11 (3): 203–210. DOI:10.1007/s001980050282.; Маркина Ю.Ю. Сравнительные аспекты лучевой диагностики поражений скелета при миеломной болезни: Автореф. дис. . канд. мед. наук. Томск, 2010. 21 с.; Augat P., Fan B., Lane N.E., Lang T.F., LeHir P., Lu Y., Uffmann M., Genant H.K. Assessment of bone mineral at appendicular sites in females with fractures of the proximal femur. Bone. 1998; 22: 395–402.; Bone ultrasonometry: is it equal or superior to DEXA? Lunar News. 2000; Winter: 3–6.; Карельская Н.А., Кармазановский Г.Г. Диффузионно-взвешенная магнитно-резонансная томография всего тела. Хирургия. Журнал им. Н.И. Пирогова. 2010; 8: 57.; Croucher P. Bisphosphonates in the treatment of myeloma bone disease. Eur. J. Haematol. 2003; 70 (4): 271–272.; Моисеев С.И., Салогуб Г.Н., Степанова Н.В. Современные принципы диагностики и лечения множественной миеломы: Пособие. СПб.: Изд-во СПб ГМУ, 2006. 39 с.; Труфанов Е. Г. Рентгеновская компьютерная томография: Руководство для врачей; Под ред. проф. Г.Е. Труфанова, С.Д. Рудя. СПб: ООО “Издательство ФОЛИАНТ”, 2008. 1189 с.; Palumbo A., Cavallo F., Gay F., Di Raimondo F., Yehuda D.B., Petrucci M. T., Pezzatti S., Caravita T., Cerrato C., Ribakovsky E., Genuardi M., Cafro A., Marcatti M., Catalano L., Offidani M., Carella A. M., Zamagni E., Patriarca F., Musto P., Evangelista A., Ciccone G., Omedé P., Crippa C., Corradini P., Nagler A., Boccadoro M., Cavo M. Autologous transplantation and maintenance therapy in multiple myeloma. N. Engl. J. Med. 2014; 371 (10): 895–905. DOI:10.1056/nejmoa1402888. PMID: 25184862.; https://medvis.vidar.ru/jour/article/view/660

  16. 16
  17. 17
  18. 18
  19. 19
    Academic Journal

    Source: Medical Visualization; № 4 (2016); 100-108 ; Медицинская визуализация; № 4 (2016); 100-108 ; 2408-9516 ; 1607-0763

    File Description: application/pdf

    Relation: https://medvis.vidar.ru/jour/article/view/301/302; Cohen B., Rushton N. Bone remodelling in the proximal femur after charnley total hip arthroplasty. J. Bone Joint Surg. (Br.). 1995; 77 (5): 815-819.; Gallinaro P., Mass A., Leonardi F. et al. Eight- to ten-year results of a variable geometry stem. Orthopedics. 2007; 30 (11): 954-958.; Cohen B., Rushton N. Accuracy of DEXA measurement of bone mineral density after total hip arthroplasty. J. Bone Joint Surg. (Br). 1995; 77 (3): 479-483.; Boden H., Adolphson P., Oberg M. Unstable versus stable uncemented femoral stems: a radiological study of periprosthetic bone changes in two types of uncemented stems with different concepts of fixation. Arch. Orthop. Trauma Surg. 2004; 124 (6): 382-392.; Boden H.S.G., Skoldenberg O.G., Salemyr M.O.F. et al. Continuous bone loss around a tapered uncemented femoral stem. A long-term evaluation with DEXA. Acta Orthopaedica. 2006; 77 (6): 877-885.; Martini F., Lebherz C., Mayer F. et al. Precision of the measurements of periprosthetic bone mineral density in hips with a custom-made femoral stem. J. Bone Joint Surg. (Br.). 2000; 82 (7): 1065-1071.; Аврунин А.С., Голиков В.Ю., Сарычева С.С. и др. Дозы облучения пациентов при использовании рентгеновского денситометра PRODIGY для индивидуального мониторинга плотности костной ткани. Медицинская радиология и радиоционная безопасность. 2009; 54 (4): 32-37.; Bonnick S.L., Lewis L.A. Bone densitometry for technologists. Humana Press Inc. Totowa, New Jersey, 2006. 416 p.; Аврунин А.С., Тихилов Р.М., Шубняков И.И. и др. Об определении минеральной плотности костной ткани в перипротезной зоне. Ортопедия, травматология и протезирование. 2009; 3: 121-126.; Аврунин А.С., Тихилов Р.М., Шубняков И.И. и др. Ошибка воспроизводимости метода двухэнергетической рентгеновской абсорбциометрии при исследовании перипротезной зоны вокруг бедренного компонента клиновидной формы типа SPOTORNO (экспериментальное исследование). Травматология и ортопедия России. 2009; 2: 89-95.; Аврунин А.С., Тихилов Р.М., Шубняков И.И. и др. Ошибка воспроизводимости ДЭРА при оценке ПМПКТ в перипротезной зоне полированного клиновидного бедренного компонента цементной фиксации. Гений ортопедии. 2010; 1: 96-102.; Аврунин А.С., Тихилов Р.М., Шубняков И.И. и др. Ошибка воспроизводимости аппаратно-программного комплекса Lunar Prodigy (version Encore) (Prodigy) при исследовании фантомов и костных структур. Гений ортопедии. 2010; 4: 104-110.; Abrahamsen B., Gram J., Hansen T. B., Beck-Nielsen H. Cross calibration of QDR-2000 and QDR-1000 dualenergy X-ray densitometers for bone mineral and softtissue measurements. Bone. 1995; 16 (3): 385-390.; Goh J.C.H., Low S.L., Bose K. Effect of femoral rotation on bone mineral density measurements with dual energy x-ray absorptiometry. Calcif. Tissue Int. 1995; 57 (5): 340-343.; Dequeker J., Pearson J., Reeve J. et al. Dual X-ray absorptiometry - cross-calibration and normative reference ranges for the spine: Results of a European Community Concerted Action. Bone. 1995; 17 (3): 247-254.; Dirrigl F.J., Dalsky G.P., Warner S.E. Dual-energy X-ray absorptiometry of birds: an examination of excised skeletal specimens. J. Vet. Med. A. Physiol. Clin. Med. 2004; 51 (6): 313-319.; Аврунин А.С., Тихилов Р.М., Шубняков И.И. и др. Метод двухэнергетической рентгеновской абсорбциометрии. Влияние ротации бедренной кости на величину проекционной минеральной плотности костной ткани в зонах интереса проксимального отдела. Медицинская визуализация. 2009; 4: 120-127.; Аврунин А.С., Тихилов Р.М., Шубняков И.И., Емельянов В.Г. Позволяет ли метод двухэнергетической рентгеновской абсорбциометрии выявить быстрые колебания проекционной минеральной плотности костной ткани в поясничном отделе позвоночника? Вестник травматологии и ортопедии им. Н.Н. Приорова. 2008; 3: 47-52.; Аврунин А.С., Тихилов Р.М., Шубняков И.И., Емельянов В.Г. Неинвазивный клинический метод оценки остеоцитарного ремоделирования. Новые возможности двухэнергетической рентгеновской абсорбциометрии. Ортопедия, травматология и протезирование. 2008; 2: 67-74.; Аврунин А.С., Тихилов Р.М., Шубняков И.И., Емельянов В.Г. Оценивает ли двухэнергетическая рентгеновская абсорбциометрия параметры физиологического обмена минерального матрикса? Гений ортопедии. 2008; 1: 41-49.; Аврунин А.С., Тихилов Р.М., Шубняков И.И. Динамическая оценка остеоцитарного ремоделирования костной ткани при использовании неинвазивного метода. Морфология. 2009; 2: 66-73.; Аврунин А.С., Тихилов Р.М., Шубняков И.И. и др. Минимально необходимое количество исследований ПМПКТ методом ДЭРА при индивидуальной диагностике остеопороза и мониторинге состояния скелета по дистальному отделу предплечья (предварительные рекомендации). Ортопедия, травматология и протезирование. 2009; 1: 9-56.; Деряпа Н.Р., Мошкин М.П., Постный В.С. Проблемы медицинской биоритмологии. М.: Медицина, 1985. 206 с.; Elble R.J. Tremor: clinical features, pathophysiology, and treatment. Neurol. Clin. 2009; 27 (3): 679-695.; Ayachea S.S., Al-ani T., Lefaucheura J.-P. Distinction between essential and physiological tremor using Hilbert-Huang transform. Neurophysiol. Clin. 2014; 44 (2): 203-212.; Basden C. Medication- and toxin-induced neurologic syndromes. Prim. Care. 2015; 42 (2): 259-265.; Руководство по хирургии тазобедренного сустава: в 2-х томах; Под ред. Р.М. Тихилова, И.И. Шубнякова. СПб.: РНИИТО им. Р.Р. Вредена, 2014. Т.1. 368 с.; Хронобиология и хрономедицина: Руководство; Под ред. Ф.И. Комарова. М.: Медицина, 1989. 400 с.; de Jong W.C., Koolstra J.H., Korfage J.A.M. et al. The daily habitual in vivo strain history of a non-weight-bearing bone. Bone. 2010; 46 (1): 196-202.; https://medvis.vidar.ru/jour/article/view/301

  20. 20