Showing 1 - 20 results of 81 for search '"гранулоцитарный колониестимулирующий фактор"', query time: 0.88s Refine Results
  1. 1
    Academic Journal

    Source: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2566/1382; Сотникова Н.Ю., Малышкина А.И., Куст А.В., Воронин Д.Н. Анализ дифференцировки периферических B-лимфоцитов у женщин с угрожающим самопроизвольным выкидышем и привычным невынашиванием беременности в анамнезе. Сибирский научный медицинский журнал. 2021;41(3):38–44. https://doi.org/10.18699/SSMJ20210305.; Галкина Д.Е., Макаренко Т.А., Окладников Д.В. Иммунологические аспекты нормальной и патологически протекающей беременности. Вестник Российской академии медицинских наук. 2022;77(1):13–24. https://doi.org/10.15690/vramn1507.; Ticconi C., Di Simone N., Campagnolo L., Fazleabas A. Clinical consequences of defective decidualization. Tissue Cell. 2021;72:101586. https://doi.org/10.1016/j.tice.2021.101586.; Saribas G.S., Akarca Dizakar O., Ozogul C. et al. Ellagic acid increases implantation rates with its antifibrotic effect in the rat model of intrauterine adhesion. Pathol Res Pract. 2023;246:154499. https://doi.org/10.1016/j.prp.2023.154499.; Марьин А.А., Танцерева И.Г., Большаков В.В., Коломиец Н.Э. Лекарственные растения в коррекции климактерических расстройств. Фундаментальная и клиническая медицина. 2019;4(1):80–90.; Arck P.C., Hecher K. Fetomaternal immune cross-talk and its consequences for maternal and offspring's health. Nat Med. 2013;19(5):548–56. https://doi.org/10.1038/nm.3160.; Vacca P., Vitale C., Montaldo E. et al. CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells. Proc Natl Acad Sci U S A. 2011;108(6):2402–7. https://doi.org/10.1073/pnas.1016257108.; Acar N., Ustunel I., Demir R. Uterine natural killer (uNK) cells and their missions during pregnancy: a review. Acta Histochem. 2011;113(2):82–91. https://doi.org/10.1016/j.acthis.2009.12.001.; Kopcow H.D., Allan D.S., Chen X. et al. Human decidual NK cells form immature activating synapses and are not cytotoxic. Proc Natl Acad Sci U S A. 2005;102(43):15563–8. https://doi.org/10.1073/pnas.0507835102.; Huhn O., Zhao X., Esposito L. et al. How do uterine natural killer and innate lymphoid cells contribute to successful pregnancy? Front Immunol. 2021;12:607669. https://doi.org/10.3389/fimmu.2021.607669.; Zhang X., Wei H. Role of decidual natural killer cells in human pregnancy and related pregnancy complications. Front Immunol. 2021;12:728291. https://doi.org/10.3389/fimmu.2021.728291.; Chao K.H., Yang Y.S., Ho H.N. et al. Decidual natural killer cytotoxicity decreased in normal pregnancy but not in anembryonic pregnancy and recurrent spontaneous abortion. Am J Reprod Immunol. 1995;34(5):274–80. https://doi.org/10.1111/j.1600-0897.1995.tb00953.x.; King A., Birkby C., Loke Y.W. Early human decidual cells exhibit NK activity against the K562 cell line but not against first trimester trophoblast. Cell Immunol. 1989;118(2):337–44. https://doi.org/10.1016/0008-8749(89)90382-1.; Sojka D.K., Yang L., Plougastel-Douglas B. et al. Cutting edge: local proliferation of uterine tissue-resident NK cells during decidualization in mice. J Immunol. 2018;201(9):2551-2556. https://doi.org/10.4049/jimmunol.1800651.; Sojka D.K., Yang L., Yokoyama W.M. Uterine natural killer cells. Front Immunol. 2019;10:960. https://doi.org/10.3389/fimmu.2019.00960.; Gamliel M., Goldman-Wohl D., Isaacson B. et al. Trained memory of human uterine NK cells enhances their function in subsequent pregnancies. Immunity. 2018;48(5):951–962.e5. https://doi.org/10.1016/j.immuni.2018.03.030.; Prefumo F., Ganapathy R., Thilaganathan B., Sebire N.J. Influence of parity on first trimester endovascular trophoblast invasion. Fertil Steril. 2006;85(4):1032–6. https://doi.org/10.1016/j.fertnstert.2005.09.055.; Ashkar A.A., Di Santo J.P., Croy B.A. Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J Exp Med. 2000;192(2):259–70. https://doi.org/10.1084/jem.192.2.259.; Ruiz J.E., Kwak J.Y., Baum L. et al. Effect of intravenous immunoglobulin G on natural killer cell cytotoxicity in vitro in women with recurrent spontaneous abortion. J Reprod Immunol. 1996;31(1–2):125–41. https://doi.org/10.1016/0165-0378(96)00969-2.; Kuroda K., Venkatakrishnan R., James S. et al. Elevated periimplantation uterine natural killer cell density in human endometrium is associated with impaired corticosteroid signaling in decidualizing stromal cells. J Clin Endocrinol Metab. 2013;98(11):4429–37. https://doi.org/10.1210/jc.2013-1977.; Wilkens J., Male V., Ghazal P. et al. Uterine NK cells regulate endometrial bleeding in women and are suppressed by the progesterone receptor modulator asoprisnil. J Immunol. 2013;191(5):2226–35. https://doi.org/10.4049/jimmunol.1300958.; Kalkunte S.S., Mselle T.F., Norris W.E. еt al. Vascular endothelial growth factor C facilitates immune tolerance and endovascular activity of human uterine NK cells at the maternal-fetal interface. J Immunol. 2009;182(7):4085–92. https://doi.org/10.4049/jimmunol.0803769.; Zhou Y., Fisher S.J., Janatpour M. et al. Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J Clin Invest. 1997;99(9):2139–51. https://doi.org/10.1172/JCI119387.; Co E.C., Gormley M., Kapidzic M. et al. Maternal decidual macrophages inhibit NK cell killing of invasive cytotrophoblasts during human pregnancy. Biol Reprod. 2013;88(6):155. https://doi.org/10.1095/biolreprod.112.099465.; Liu Y., Gao S., Zhao Y. et al. Decidual natural killer cells: a good nanny at the maternal-fetal interface during early pregnancy. Front Immunol. 2021;12:663660. https://doi.org/10.3389/fimmu.2021.663660.; King A., Allan D.S., Bowen M. et al. HLA-E is expressed on trophoblast and interacts with CD94/NKG2 receptors on decidual NK cells. Eur J Immunol. 2000;30(6):1623–31. https://doi.org/10.1002/1521-4141(200006)30:63.0.CO;2-M.; Shojaei Z., Jafarpour R., Mehdizadeh S. et al. Functional prominence of natural killer cells and natural killer T cells in pregnancy and infertility: а comprehensive review and update. Pathol Res Pract. 2022;238:154062. https://doi.org/10.1016/j.prp.2022.154062.; Martin P., Gurevich D.B. Macrophage regulation of angiogenesis in health and disease. Semin Cell Dev Biol. 2021;119:101–10. https://doi.org/10.1016/j.semcdb.2021.06.010.; Li X.F., Charnock-Jones D.S., Zhang E. et al. Angiogenic growth factor messenger ribonucleic acids in uterine natural killer cells. J Clin Endocrinol Metab. 2001;86(4):1823–34. https://doi.org/10.1210/jcem.86.4.7418.; El-Azzamy H., Dambaeva S.V., Katukurundage D. et al. Dysregulated uterine natural killer cells and vascular remodeling in women with recurrent pregnancy losses. Am J Reprod Immunol. 2018;80(4):e13024. https://doi.org/10.1111/aji.13024.; Quenby S., Kalumbi C., Bates M. et al. Prednisolone reduces preconceptual endometrial natural killer cells in women with recurrent miscarriage. Fertil Steril. 2005;84(4):980–4. https://doi.org/10.1016/j.fertnstert.2005.05.012.; Tuckerman E., Mariee N., Prakash A. et al. Uterine natural killer cells in peri-implantation endometrium from women with repeated implantation failure after IVF. J Reprod Immunol. 2010;87(1–2):60–6. https://doi.org/10.1016/j.jri.2010.07.001.; Michimata T., Ogasawara M.S., Tsuda H. et al. Distributions of endometrial NK cells, B cells, T cells, and Th2/Tc2 cells fail to predict pregnancy outcome following recurrent abortion. Am J Reprod Immunol. 2002;47(4):196–202. https://doi.org/10.1034/j.1600-0897.2002.01048.x.; Lachapelle M.H., Miron P., Hemmings R., Roy D.C. Endometrial T, B, and NK cells in patients with recurrent spontaneous abortion. Altered profile and pregnancy outcome. J Immunol. 1996;156(10):4027–34.; Li H., Hou Y., Zhang S. et al. CD49a regulates the function of human decidual natural killer cells. Am J Reprod Immunol. 2019;81(4):e13101. https://doi.org/10.1111/aji.13101; Guo W., Fang L., Li B. et al. Decreased human leukocyte antigen-G expression by miR-133a contributes to impairment of proinvasion and proangiogenesis functions of decidual NK cells. Front Immunol. 2017;8:741. https://doi.org/10.3389/fimmu.2017.00741.; Маев И.В., Андреев Д.Н., Кучерявый Ю.А. Инфекция Helicobacter pylori и экстрагастродуоденальные заболевания. Терапевтический архив. 2015;87(8):103–10. https://doi.org/10.17116/terarkh2015878103-110.; Tossetta G., Fantone S., Giannubilo S.R. et al. Pre-eclampsia onset and SPARC: a possible involvement in placenta development. J Cell Physiol. 2019;234(5):6091–8. https://doi.org/10.1002/jcp.27344.; Croy B.A., van den Heuvel M.J., Borzychowski A.M., Tayade C. Uterine natural killer cells: a specialized differentiation regulated by ovarian hormones. Immunol Rev. 2006;214:161–85. https://doi.org/10.1111/j.1600-065X.2006.00447.x.; Kieckbusch J., Gaynor L.M., Moffett A., Colucci F. MHC-dependent inhibition of uterine NK cells impedes fetal growth and decidual vascular remodelling. Nat Commun. 2014;5:3359. https://doi.org/10.1038/ncomms4359.; Moffett A., Shreeve N. First do no harm: uterine natural killer (NK) cells in assisted reproduction. Hum Reprod. 2015;30(7):1519–25. https://doi.org/10.1093/humrep/dev098.; Fukui A., Funamizu A., Yokota M. et al. Uterine and circulating natural killer cells and their roles in women with recurrent pregnancy loss, implantation failure and preeclampsia. J Reprod Immunol. 2011;90(1):105–10. https://doi.org/10.1016/j.jri.2011.04.006.; Zhang J., Dunk C.E., Shynlova O. et al. TGFb1 suppresses the activation of distinct dNK subpopulations in preeclampsia. EBioMedicine. 2019;39:531–9. https://doi.org/10.1016/j.ebiom.2018.12.015.; Du M., Wang W., Huang L. et al. Natural killer cells in the pathogenesis of preeclampsia: a double-edged sword. J Matern Fetal Neonatal Med. 2022;35(6):1028–35. https://doi.org/10.1080/14767058.2020.1740675.; Saghafian Larijani S., Biglari E., Biglarifar R. The correlation between serum sodium levels and preeclampsia severity in pregnant women: a cross-sectional study. J Renal Inj Prev. 2025;14(4):e38440. https://doi.org/10.34172/jrip.2025.38440.; Габидуллина Р.И., Кошельникова Е.А., Шигабутдинова Т.Н. и др. Эндометриоз: влияние на фертильность и исходы беременности. Гинекология. 2021;23(1):12–7. https://doi.org/10.26442/20795696.2021.1.200477.; Pant A., Moar K., Arora T.K., Maurya P.K. Implication of biosignatures in the progression of endometriosis. Pathol Res Pract. 2024;254:155103. https://doi.org/10.1016/j.prp.2024.155103.; Giuliani E., Parkin K.L., Lessey B.A. et al. Characterization of uterine NK cells in women with infertility or recurrent pregnancy loss and associated endometriosis. Am J Reprod Immunol. 2014;72(3):262–9. https://doi.org/10.1111/aji.12259.; Thiruchelvam U., Wingfield M., O'Farrelly C. Increased uNK progenitor cells in Women with endometriosis and Infertility are associated with low levels of endometrial stem cell factor. Am J Reprod Immunol. 2016;75(4):493–502. https://doi.org/10.1111/aji.12486.; Pašalić E., Tambuwala M.M., Hromić-Jahjefendić A. Endometriosis: classification, pathophysiology, and treatment options. Pathol Res Pract. 2023;251:154847. https://doi.org/10.1016/j.prp.2023.154847.; Tang A.W., Alfirevic Z., Turner M.A. et al. A feasibility trial of screening women with idiopathic recurrent miscarriage for high uterine natural killer cell density and randomizing to prednisolone or placebo when pregnant. Hum Reprod. 2013;28(7):1743–52. https://doi.org/10.1093/humrep/det117.; Yang Y., Ru H., Zhang S. et al. The effect of granulocyte colony-stimulating factor on endometrial receptivity of implantation failure mouse. Reprod Sci. 2025;32(1):200–17. https://doi.org/10.1007/s43032-024-01527-6.; Kalem Z., Namli Kalem M., Bakirarar B. et al. Intrauterine G-CSF administration in recurrent implantation failure (RIF): An Rct. Sci Rep. 2020;10(1):5139. https://doi.org/10.1038/s41598-020-61955-7.; Bumbăcea R.S., Udrea M.R., Ali S., Bojincă V.C. Balancing benefits and risks: a literature review on hypersensitivity reactions to human G-CSF (granulocyte colony-stimulating factor). Int J Mol Sci. 2024;25(9):4807. https://doi.org/10.3390/ijms25094807.; Scarpellini F., Sbracia M. Use of granulocyte colony-stimulating factor for the treatment of unexplained recurrent miscarriage: a randomised controlled trial. Hum Reprod. 2009;24(11):2703–8. https://doi.org/10.1093/humrep/dep240.; Arefi S., Fazeli E., Esfahani M. et al. Granulocyte-colony stimulating factor may improve pregnancy outcome in patients with history of unexplained recurrent implantation failure: an RCT. Int J Reprod Biomed. 2018;16(5):299–304.; Santjohanser C., Knieper C., Franz C. et al. Granulocyte-colony stimulating factor as treatment option in patients with recurrent miscarriage. Arch Immunol Ther Exp (Warsz). 2013;61(2):159–64. https://doi.org/10.1007/s00005-012-0212-z.; https://www.gynecology.su/jour/article/view/2566

  2. 2
    Academic Journal

    Contributors: Not declared, Отсутствует

    Source: Current Pediatrics; Том 23, № 3 (2024); 162-167 ; Вопросы современной педиатрии; Том 23, № 3 (2024); 162-167 ; 1682-5535 ; 1682-5527

    File Description: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/3521/1376; Gümüş E, Özen H. Glycogen storage diseases: An update. World J Gastroenterol. 2023;29(25):3932–3963. https://doi.org/10.3748/wjg.v29.i25.3932; Баранов А.А., Намазова-Баранова Л.С., Сурков А.Н. и др. Ведение детей с гликогеновой болезнью (нозологические формы с поражением печени). Современные клинические рекомендации // Педиатрическая фармакология. — 2020. — Т. 17. — № 4. — С. 303–317. — https://doi.org/10.15690/pf.v17i4.2159; Sim SW, Weinstein DA, Lee YM, Jun HS. Glycogen storage disease type Ib: role of glucose-6-phosphate transporter in cell metabolism and function. FEBS Lett. 2020;594(1):3–18. https://doi.org/10.1002/1873-3468.13666; Jang Y, Park TS, Park BC, et al. Aberrant glucose metabolism underlies impaired macrophage differentiation in glycogen storage disease type Ib. FASEB J. 2023;37(11):e23216. https://doi.org/10.1096/fj.202300592RR; Сурков А.Н. Гликогеновая болезнь у детей: современные представления (часть I) // Вопросы современной педиатрии. — 2012. — Т. 11. — № 2. — С. 30–42. — https://doi.org/10.15690/vsp.v11i2.208; Сурков А.Н., Черников В.В., Баранов А.А. и др. Результаты оценки качества жизни детей с печеночной формой гликогеновой болезни // Педиатрическая фармакология. — 2013. — Т. 10. — № 4. — С. 90–94. — https://doi.org/10.15690/pf.v10i4.759; Dale DC, Bolyard AA, Marrero T, et al. Neutropenia in glycogen storage disease Ib: outcomes for patients treated with granulocyte colony-stimulating factor. Curr Opin Hematol. 2019;26(1):16–21. https://doi.org/10.1097/MOH.0000000000000474; Grünert SC, Venema A, LaFreniere J, et al. Patient-reported outcomes on empagliflozin treatment in glycogen storage disease type Ib: An international questionnaire study. JIMD Rep. 2023;64(3):252–258. https://doi.org/10.1002/jmd2.12364; Li AM, Thyagu S, Maze D, et al. Prolonged granulocyte colony stimulating factor use in glycogen storage disease type 1b associated with acute myeloid leukemia and with shortened telomere length. Pediatr Hematol Oncol. 2018;35(1):45–51. https://doi.org/10.1080/08880018.2018.1440675; Pinsk M, Burzynski J, Yhap M, et al. Acute myelogenous leukemia and glycogen storage disease 1b. J Pediatr Hematol Oncol. 2002;24(9):756–758. https://doi.org/10.1097/00043426-200212000-00015; Schroeder T, Hildebrandt B, Mayatepek E, et al. A patient with glycogen storage disease type Ib presenting with acute myeloid leukemia (AML) bearing monosomy 7 and translocation t(3;8) (q26;q24) after 14 years of treatment with granulocyte colony-stimulating factor (G-CSF): a case report. J Med Case Rep. 2008; 2:319. https://doi.org/10.1186/1752-1947-2-319; Wortmann SB, Van Hove JLK, Derks TGJ, et al. Treating neutropenia and neutrophil dysfunction in glycogen storage disease type Ib with an SGLT2 inhibitor. Blood. 2020;136(9):1033–1043. https://doi.org/10.1182/blood.2019004465; Fortuna D, McCloskey LJ, Stickle DF. Model analysis of effect of canagliflozin (Invokana), a sodium-glucose cotransporter 2 inhibitor, to alter plasma 1,5-anhydroglucitol. Clin Chim Acta. 2016;452: 138–141. https://doi.org/10.1016/j.cca.2015.11.010; Tazawa S, Yamato T, Fujikura H, et al. SLC5A9/SGLT4, a new Na+-dependent glucose transporter, is an essential transporter for mannose, 1,5-anhydro-D-glucitol, and fructose. Life Sci. 2005;76(9):1039–1050. https://doi.org/10.1016/j.lfs.2004.10.016; Grünert SC, Derks TGJ, Adrian K, et al. Efficacy and safety of empagliflozin in glycogen storage disease type Ib: data from an international questionnaire. Genet Med. 2022;24(8):1781–1788. https://doi.org/10.1016/j.gim.2022.04.001; D’Acierno M, Resaz R, Iervolino A, et al. Dapagliflozin Prevents Kidney Glycogen Accumulation and Improves Renal Proximal Tubule Cell Functions in a Mouse Model of Glycogen Storage Disease Type 1b. J Am Soc Nephrol. 2022;33(10):1864–1875. https://doi.org/10.1681/ASN.2021070935; Resaz R, Raggi F, Segalerba D. The SGLT2-inhibitor dapagliflozin improves neutropenia and neutrophil dysfunction in a mouse model of the inherited metabolic disorder GSDIb. Mol Genet Metab Rep. 2021;29:100813. https://doi.org/10.1016/j.ymgmr.2021.100813; Tahara A, Takasu T, Yokono M, et al. Characterization and comparison of sodium-glucose cotransporter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects. J Pharmacol Sci. 2016;130(3):159–169. https://doi.org/10.1016/j.jphs.2016.02.003; Шумилова Н.А., Павлова С.И. Глифлозины: гликемические и негликемические эффекты // Acta medica Eurasica. — 2019. — № 1. — С. 44–51.; Kaczor M, Greczan M, Kierus K, et al. Sodium-glucose cotransporter type 2 channel inhibitor: breakthrough in the treatment of neutropenia in patients with glycogen storage disease type 1b? JIMD Rep. 2022;63(3):199–206. https://doi.org/10.1002/jmd2.12278; Makrilakis K, Barmpagianni A, Veiga-da-Cunha M. Repurposing of empagliflozin as a possible treatment for neutropenia and inflammatory bowel disease in glycogen storage disease type Ib: a case report. Cureus. 2022;14(7):e27264. https://doi.org/10.7759/cureus.27264; Grünert SC, Elling R, Maag B, et al. Improved inflammatory bowel disease, wound healing and normal oxidative burst under treatment with empagliflozin in glycogen storage disease type Ib. Orphanet J Rare Dis. 2020;15(1):218. https://doi.org/10.1186/s13023-020-01503-8; Bidiuk J, Gaciong ZA, Sobieraj P. The overall benefits of empagliflozin treatment in adult siblings with glycogen storage disease type Ib: one year experience. Arch Med Sci. 2022;18(4):1095–1099. https://doi.org/10.5114/aoms/150029; Hexner-Erlichman Z, Veiga-da-Cunha M, Zehavi Y, et al. Favorable outcome of empagliflozin treatment in two pediatric glycogen storage disease type 1b patients. Front Pediatr. 2022;10:1071464. https://doi.org/10.3389/fped.2022; Grünert SC, Rosenbaum-Fabian S, Schumann A, et al. Two successful pregnancies and first use of empagliflozin during pregnancy in glycogen storage disease type Ib. JIMD Rep. 2022;63(4):303–308. https://doi.org/10.1002/jmd2.12295; Амосова М.В., Фадеев В.В. Эмпаглифлозин — новые показания к применению — поворотный момент в лечении сахарного диабета 2-го типа // Медицинский Совет. — 2017. — № 3. — С. 38–43.; Alsahli M, Gerich JE. Renal glucose metabolism in normal physiological conditions and in diabetes. Diabetes Res Clin Pract. 2017;133:1–9. https://doi.org/10.1016/j.diabres.2017.07.033; Букатина Т.М., Казаков А.С., Вельц Н.Ю. и др. Ингибиторы натрий-глюкозного котранспортера 2: риск кетоацидоза // Безопасность и риск фармакотерапии. — 2016. — № 2. — С. 33–37.; Goldenberg RM, Berard LD, Cheng AYY, et al. SGLT2 Inhibitor-associated Diabetic Ketoacidosis: Clinical Review and Recommendations for Prevention and Diagnosis. Clin Ther. 2016;38(12):2654–2664.e1. https://doi.org/10.1016/j.clinthera.2016.11.002

  3. 3
    Academic Journal

    Source: Messenger of ANESTHESIOLOGY AND RESUSCITATION; Том 21, № 1 (2024); 65-74 ; Вестник анестезиологии и реаниматологии; Том 21, № 1 (2024); 65-74 ; 2541-8653 ; 2078-5658

    File Description: application/pdf

    Relation: https://www.vair-journal.com/jour/article/view/930/691; Бударова К. В., Шмаков А. Н., Чеканов М. Н. и др. Прогнозирование результатов лечения новорожденных с врожденными пороками развития желудочно-кишечного тракта // Экспериментальная и клиническая гастроэнтерология. – 2021. – Т. 190, № 6. – С. 96–103. DOI:10.31146/1682-8658-ecg-190-6-96-103.; Гребенюк В. В., Юсан Н. В. Значение показателей иммунитета в оценке тяжести состояния пациентов с абдоминальным сепсисом // Медицинская иммунология. – 2010. – Т. 12, № 3. – С. 253–258. DOI:10.15789/1563-0625-2010-3-253-258.; Зинина Е. П., Царенко С. В., Логунов Д. Ю. и др. Роль провоспалительных и противовоспалительных цитокинов при бактериальной пневмонии. Обзор литературы // Вестник интенсивной терапии им. А. И. Салтанова. – 2021. – Т. 1. – С. 77–89. DOI:10.21320/1818-474X-2021-1-77-89.; Калинин Р. Е., Сучков И. А., Климентова Э. А. и др. Апоптоз в сосудистой патологии: настоящее и будущее // Российский медико-биологический вестник имени академика И. П. Павлова. – 2020. – Т. 28, № 1. – С. 79–87. DOI:10.23888/PAVLOVJ202028167-75.; Луговая А. В., Калинина Н. М., Митрейкин В. Ф. и др. Оценка эффективности Fas-опосредованного апоптоза лимфоцитов периферической крови у больных сахарным диабетом I типа // Медицинский алфавит. Серия «Современная лаборатория». – 2019. – Т. 22, № 397. – С. 26–32. DOI:10.33667/2078–5631–2019–3–22(397)-26–32.; Миронов П. И., Лекманов А. У. Оценка валидности шкалы nSOFA у новорожденных с сепсисом // Вестник анестезиологии и реаниматологии. – 2021. – Т. 18, № 2. – С. 56–61. DOI:10.21292/2078-5658-2021-18-2-56-61.; Миронов П. И., Лекманов А. У., Амирова В. Р. и др. Оценка тяжести органной дисфункции и прогнозирование исходов у недоношенных новорожденных на основе шкалы nSOFA // Вестник анестезиологии и реаниматологии. – 2022. – Т. 19, № 5. – С. 87–92. DOI:10.21292/2078-5658-2022-19-5-87-92.; Мухаметшин Р. Ф., Давыдова Н. С., Кинжалова С. В. Оценка предиктивной ценности шкалы TRIPS у новорожденных // Вестник анестезиологии и реаниматологии. – 2021. – T. 18, № 4. – C. 73–79. DOI:10.21292/2078-5658-2021-18-4-73-79.; Мухаметшин Р. Ф., Давыдова Н. С. Применение угрозометрических шкал при оценке транспортабельности новорожденных: когортное ретроспективное исследование // Вестник интенсивной терапии им. А. И. Салтанова. – 2021. – T. 4. – C. 98–105. DOI:10.21320/1818-474X-2021-4-98-105.; Никитина И. В., Жукова А. С., Ванько Л. В. и др. Особенности цитокинового статуса у недоношенных новорожденных с заболеваниями легких инфекционного и неинфекционного генеза // Неонатология: новости, мнения, обучение. – 2018. – T. 6, № 4. – C. 16–23. DOI:10.24411/2308-2402-2018-14002.; Никитина И. В., Инвияева Е. В., Крог-Йенсен О. А. и др. Динамика уровня цитокинов в плазме крови недоношенных новорожденных с дыхательными нарушениями различного генеза в раннем неонатальном периоде // Акушерство и гинекология. – 2021. – T. 8. – C. 133–142. DOI:10.18565/aig.2021.8.133-142.; Новиков В. Е., Левченкова О. С., Пожилова Е. В. Митохондриальная синтаза оксида азота и ее роль в механизмах адаптации клеток к гипоксии // Обзоры по клинической фармакологии и лекарственной терапии. – 2016. – T. 14, № 2. – C. 38–46. DOI:10.17816/RCF14238-4616.; Перепелица С. А., Голубев А. М., Мороз В. В. Расстройства микроциркуляции при респираторном дистресс-синдроме новорожденного (морфологическое исследование) // Общая реаниматология. – 2016. – T. 12, № 6. – C. 16–27. DOI:10.15360/1813-9779-2016-6-16-26.; Перепелица С. А. Острый респираторный дистресс-синдром у недоношенных новорожденных (морфологическое исследование) // Общая реаниматология. – 2020. – T. 16, № 1. – C. 35–44. Doi:10.15360/1813-9779-2020-1-35-44.; Пшенников А. С., Деев Р. В. Морфологическая иллюстрация изменений артериального эндотелия на фоне ишемического и реперфузионного повреждений // Российский медико-биологический вестник имени академика И. П. Павлова. – 2018. – T. 26, № 2. – C. 184–194. DOI:10.23888/PAVLOVJ2018262184-19.; Пухтинская М. Г., Эстрин В. В. Стратегия профилактики бактериальных осложнений ингаляционным оксидом азота у новорожденных // Российский вестник детской хирургии, анестезиологии и реаниматологии. – 2021. – T. 11, № 2. – C. 141–150. DOI:10.17816/psaic960.; Пухтинская М. Г., Эстрин В. В. Алгоритм прогнозирования сепсиса у новорожденных с респираторной патологией и перинатальным поражением центральной нервной системы, находящихся на искусственной вентиляции легких // Российский вестник детской хирургии, анестезиологии и реаниматологии. – 2022. – T. 12, № 2. – C. 119–130. DOI:10.17816/psaic1242.; Салина Т. Ю., Морозова Т. И. FAS (CD95) антиген и продукция фактора некроза опухоли-α в периферической крови больных с разными клиническими проявлениями туберкулеза // Пульмонология. – 2015. – Т. 25, № 4. – С. 456–460. DOI:10.18093/086901892015254456460.; Ставинская О. А., Добродеева Л. К., Патракеева В. П. Уровни апоптотической гибели лимфоцитов в зависимости от содержания цитотоксических клеток CD8+ у практически здоровых людей // Экология человека. – 2021. – T. 9. – C. 4–10. DOI:10.33396/1728-0869-2021-9-4-10.; Хайдуков С. В., Байдун Л. А., Зурочка А. В., Тотолян А.А. Стандартизованная технология «Исследование субпопуляционного состава лимфоцитов периферической крови с применением проточных цитофлюориметров-анализаторов» (Проект) // Медицинская иммунология. – 2012. – T. 14, № 3. – C. 255–268. DOI:10.15789/1563-0625-2012-3-255-268.; Bellani G., Laffey J. G., Pham T. et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries // JAMA. – 2016. – Vol. 315, № 8. – Р. 788–800. DOI:10.1001/jama.2016.0291.; Chang M., Lu H. Y., Xiang H. et al. Clinical effects of different ways of mechanical ventilation combined with pulmonary surfactant in treatment of acute lung injury/acute respiratory distress syndrome in neonates: a comparative analysis // Zhongguo Dang Dai Er Ke Za Zhi. – 2016. – Vol. 18. – Р. 1069–1074. DOI:10.7499/j.issn.1008-8830.2016.11.003.; Curley M. A., Hibberd P. L., Fineman L. D. et al. Effect of prone positioning on clinical outcomes in children with acute lung injury: a randomized controlled trial // JAMA. – 2005. – Vol. 294. – P. 229–237. DOI:10.1001/jama.294.2.229.; De Luca D., van Kaam A. H., Tingay D. G. et al. The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity // Lancet Respir Med. – 2017. – Vol. 5, № 8. – P. 657–666. DOI:10.1016/S2213-2600(17)30214-X.; Dong Y., Glaser K., Schlegel N. et al. An underestimated pathogen: Staphylococcus epidermidis induces pro-inflammatory responses in human alveolar epithelial cells // Cytokine. – 2019. – Vol. 123. – P. 154761. DOI:10.1016/j.cyto.2019.154761.; Flori H. R., Glidden D. V., Rutherford G. W. et al. Pediatric acute lung injury: prospective evaluation of risk factors associated with mortality // Am J Respir Crit Care Med. – 2005. – Vol. 171. – P. 995–1001. DOI:10.1164/rccm.200404-544OC.; Gao Y., Luan X., Melamed J. et al. Role of glycans on key cell surface receptors that regulate cell proliferation and cell death // Cells. – 2021. – Vol. 10, № 5. – P. 1252. DOI:10.3390/cells10051252.; Girón-Carrillo J. L., Cedillo-Rivera R., Velazquez J. R. Cytokine profile as diagnostic and prognostic factor in neonatal sepsis // J. Matern. Fetal Neonatal Med. – 2019. – Vol. 32, № 17. – P. 2830–2836. DOI:10.1080/14767058.2018.449828.; Hajishengallis G., Chavakis T., Hajishengallis E. et al. Neutrophil homeostasis and inflammation: novel paradigms from studying periodontitis // J. Leukoc Biol. – 2015. – Vol. 98, № 4. – P. 539–548. DOI:10.1189/jlb.3VMR1014-468R.; Heidemann S. M., Nair A., Bulut Y. et al. Pathophysiology and management of acute respiratory distress syndrome in children // Pediatr Clin North Am. – 2017. – Vol. 64, № 5. – P. 1017–1037. DOI: 11016/j.pcl.2017.06.004.; Heuer L. S., Croen L. A., Jones K. L. et al. An exploratory examination of neonatal cytokines and chemokines as predictors of autism risk: the early markers for autism study // Biol. Psychiatry. – 2019. – Vol. 86, № 4. – P. 255–264. DOI:10.1016/j.biopsych.2019.04.037.; Khemani R. G., Smith L., Lopez-Fernandez Y. M. et al. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study // Lancet Respir Med. – 2019. – Vol. 7, № 2. – P. 115–128. DOI:10.1016/S2213-2600(18)30344-8.; Kamenshchikov N. O., Mandel I. A., Podoksenov Yu. K. et al. Nitric oxide provides myocardial protection when added to the cardiopulmonary bypass circuit during cardiac surgery: randomized trial // J Thorac Cardiovasc Surg. – 2019. – Vol. 157, № 6. – P. 2328–36. DOI:10.1016/j.jtcvs.2018.08.117.; Kajikawa O., Herrero R., Chow Y. H. et al. The bioactivity of soluble Fas ligand is modulated by key amino acids of its stalk region // PLoS One. – 2021. – Vol.16, №6. – P. e0253260. DOI:10.1371/journal.pone.0253260.; Kim Y.-M., Bombeck C. A., Billiar T. R. Nitric oxide as a bifunctional regulator of apoptosis // Circ.Res. – 1999. – № 84. – P. 253–256. DOI:10.1161/01.RES.84.3.253.; Mirzarahimi M., Barak M., Eslami A. et al. The role of interleukin-6 in the early diagnosis of sepsis in premature infants // Pediatr. Rep. – 2017. – Vol. 9, № 3. – P. 7305. DOI:10.4081/pr.2017.7305.; Pappas A., Shankaran S., McDonald S. A. et al. Blood biomarkers and 6- to 7-year childhood outcomes following neonatal encephalopathy // Am. J. Perinatol. – 2022. – Vol. 39, № 7. – Р. 732–749. DOI:10.1055/s-0040-1717072.; Phung T. T. B., Suzuki T., Phan P. H. et al. Pathogen screening and prognostic factors in children with severe ARDS of pulmonary origin // Pediatr Pulmonol. – 2017. – Vol. 52, № 11. – P. 1469–1477. DOI:10.1002/ppul.23694.; Puppo F., Contini P., Ghio M. Soluble HLA class I molecules/CD8 ligation trigger apoptosis of CD8+ cells by Fas/Fas-ligand interaction // Indiveri F. Scientific World Journal. – 2002. – Vol. 12, № 2. – P. 421–423. DOI:10.1100/tsw.2002.122.; Robertson S. A., Hutchinson M. R., Rice K. C. et al. Targeting Toll-like receptor-4 to tackle preterm birth and fetal inflammatory injury // Clin. Transl. Immunology. – 2020. – Vol. 9, № 4. – Р. 1121. DOI:10.1002/cti2.1121.; Russell N. J., Stöhr W. Plakkal N. et al. Patterns of antibiotic use, pathogens, and prediction of mortality in hospitalized neonates and young infants with sepsis: A global neonatal sepsis observational cohort study (NeoOBS) // PLoS Med. – 2023. – Vol. 20, № 6. – P. e1004179. DOI:10.1371/journal.pmed.1004179.; Schneider P., Bodmer J. L., Holler N. et al. Characterization of Fas (Apo-1, CD95)-Fas ligand interaction // J Biol Chem. – 1997. – Vol. 272, № 30. – P. 18827–18833. DOI:10.1074/jbc.272.30.18827.; Sweet D. G., Carnielli V., Greisen G. et al. European consensus guidelines on the management of respiratory distress syndrome. 2022. Update // Neonatology. – 2023. – Vol. 120, № 1. – Р. 3–23. DOI:10.1159/000528914.; Wong J. J., Jit M., Sultana R. et al. Mortality in pediatric acute respiratory distress syndrome: a systematic review and meta-analysis // J Intensive Care Med. – 2019. – Vol. 34, № 7. – P. 563–571. DOI:10.1177/0885066617705109.; Yang R., Masters A. R., Fortner K. A. et al. IL-6 promotes the differentiation of a subset of naive CD8+ T cells into IL-21-producing B helper CD8+T cells // J. Exp. Med. – 2016. – Vol. 213, № 11. – Р. 2281–2291. DOI:10.1084/jem.20160417.; Youn Y. А. The role of cytokines in seizures: interleukin (IL)-1β, IL-1Ra, IL-8, and IL-10 // Korean J Pediatr. – 2013. – Vol. 56, № 7. – P. 271–274. DOI:10.3345/kjp.2013.56.7.271.; Zasada M., Lenart M., Rutkowska-Zapała M. et al. Analysis of selected aspects of inflammasome function in the monocytes from neonates born extremely and very prematurely // Immunobiology. – 2018. – Vol. 223, № 1. – Р. 18–24. DOI:10.1016/j.imbio.2017.10.019.; Zhou D., Shi F., Xiong Y. et al. Increased serum Th2 chemokine levels are associated with bronchopulmonary dysplasia in premature infants // Eur. J. Pediatr. – 2019. – Vol. 178, № 1. – P. 81–87. DOI:10.1007/s00431-018-3266-z.

  4. 4
  5. 5
    Academic Journal

    Contributors: This research was supported by the the Ministry of Science and Higher Education of the Russian Federation, Research Program No. 122041500061-8.

    Source: Medical Immunology (Russia); Том 26, № 6 (2024); 1301-1308 ; Медицинская иммунология; Том 26, № 6 (2024); 1301-1308 ; 2313-741X ; 1563-0625

    File Description: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2872/1845; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2872/12593; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2872/12594; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2872/12595; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2872/12597; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2872/12598; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2872/12599; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2872/12750; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2872/12751; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2872/13021; Arefi S., Fazeli E., Esfahani M., Borhani N., Yamini N., Hosseini A., Farifteh F. Granulocyte-colony stimulating factor may improve pregnancy outcome in patients with history of unexplained recurrent implantation failure: An RCT. Int. J. Reprod. Biomed., 2018, Vol. 16, no. 5, pp. 299-304.; Arumugam T.V., Tang S.C., Lathia J.D., Cheng A., Mughal M.R., Chigurupati S., Magnus T., Chan S.L., Jo D., Ouyang X., Fairlie D.P., Granger D.N., Vortmeyer A., Basta M., Mattson M.P. Intravenous immunoglobulin (IVIG) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death. Proc. Natl. Acad. Sci. USA, 2007, Vol. 104, no. 35, pp. 14104–14109.; Barclay N., Gavin J., Brooke G., Brown M. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol., 2002, Vol. 23, Iss. 6, pp. 285-290.; Clark D.A., Wong K., Banwatt D. CD200-dependent and nonCD200-dependant pathways of NK cell suppression by human IVIG. J. Assist. Reprod. Genet., 2008, Vol. 25, no. 2-3, pp. 67-72.; Ding J., Zhang Y., Cai X., Diao L., Yang C., Yang J. Crosstalk between trophoblast and macrophage at the maternal-fetal interface: current status and future perspectives. Front. Immunol., 2021, Vol. 12, 758281. doi:10.3389/fimmu.2021.758281.; Ho Y.K., Chen H.H., Huang C.C., Lee C.I., Lin P.Y., Lee M.S., Lee T.H. Peripheral CD56+ CD16+ NK cell populations in the early follicular phase are associated with successful clinical outcomes of intravenous immunoglobulin treatment in women with repeated implantation failure. Front. Endocrinol. (Lausanne), 2019, Vol. 10, 937. doi:10.3389/fendo.2019.00937.; Mikhailova V.A., Davydova A.A., Bazhenov D.O., Kovaleva A.A., Zagaynova V.A., Kogan I.Yu., Bespalova O.N., Gzgzyan A.M., Sokolov D.I., Selkov S.A. Modulation of the interaction between NK-cells and trophoblast by intravenous immunoglobulin. Obstetrics and Gynecology (Russia), 2022, no. 6, pp. 105-113. (In Russ.); Ronda N., Gatti R., Orlandini G., Borghetti A. Binding and internalization of human IgG by living cultured endothelial cells. Clin. Exp. Immunol., 1997, Vol. 109, no. 1, pp. 211-216.; Salazar M.D., Wang W.J., Skariah A., He Q., Field K., Nixon M., Reed R., Dambaeva S., Beaman K., Gilman-Sachs A., Kwak-Kim J. Post-hoc evaluation of peripheral blood natural killer cell cytotoxicity in predicting the risk of recurrent pregnancy losses and repeated implantation failures. J. Reprod. Immunol., 2022, Vol. 150, 103487. doi:10.1016/j.jri.2022.103487.; Scarpellini F., Sbracia M. Use of granulocyte colony-stimulating factor for the treatment of unexplained recurrent miscarriage: a randomised controlled trial. Hum. Reprod., 2009, Vol. 24, no. 11, pp. 2703-2708.; Schlahsa L., Jaimes Y., Blasczyk R., Figueiredo C. Granulocyte-colony-stimulatory factor: a strong inhibitor of natural killer cell function. Transfusion, 2011, Vol. 51, no. 2, pp. 293-305.; Shemesh A., Tirosh D., Sheiner E., Benshalom Tirosh N., Brusilovsky M., Segev R., Rosental B., Porgador A. First trimester pregnancy loss and the expression of alternatively spliced NKp30 isoforms in maternal blood and placental tissue. Front. Immunol., 2015, Vol. 6, 189. doi:10.3389/fimmu.2015.00189.; Sokolov D.I., Mikhailova V.A., Agnayeva A.O., Bazhenov D.O., Khokhlova E.V., Bespalova O.N., Gzgzyan A.M., Selkov S.A. NK and trophoblast cells interaction: cytotoxic activity on recurrent pregnancy loss. Gynecol. Endocrinol., 2019, Vol. 35, Suppl. 1, pp. 5-10.; Tha-In T., Metselaar H.J, Tilanus H.W, Groothuismink Z.M.A., Kuipers E.J., de Man R.A., Kwekkeboom J. Intravenous immunoglobulins suppress T-cell priming by modulating the bidirectional interaction between dendritic cells and natural killer cells. Blood, 2007, Vol. 110, no. 9, pp. 3253-3262.; Zhang H., Huang C., Chen X., Li L., Liu S., Li Y., Zhang Y., Zeng Y., Hu L. The number and cytotoxicity and the expression of cytotoxicity-related molecules in peripheral natural killer (NK) cells do not predict the repeated implantation failure (RIF) for the in vitro fertilization patients. Genes Dis., 2019, Vol. 7, no. 2, pp. 283-289.; https://www.mimmun.ru/mimmun/article/view/2872

  6. 6
    Academic Journal

    Source: Neurology, Neuropsychiatry, Psychosomatics; Vol 14, No 2 (2022); 35-42 ; Неврология, нейропсихиатрия, психосоматика; Vol 14, No 2 (2022); 35-42 ; 2310-1342 ; 2074-2711 ; 10.14412/2074-2711-2022-2

    File Description: application/pdf

    Relation: https://nnp.ima-press.net/nnp/article/view/1782/1389; FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and other Tools) Resource. Silver Spring (MD): Food and Drug Administration (US); Bethesda (MD): National Institutes of Health (US); 2016. Available from: www.ncbi.nlm.nih.gov/books/NBK326791/ (accessed 22.09.2017).; Califf RM. Biomarker definitions and their applications. Exp Biol Med (Maywood). 2018 Feb;243(3):213-21. doi:10.1177/1535370217750088; Jack CR Jr, Albert MS, Knopman DS, et al. Introduction to the recommendations from the National Institute on Aging- Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):257-62. doi:10.1016/j.jalz.2011.03.004. Epub 2011 Apr 21.; Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging- Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):270-9. doi:10.1016/j.jalz.2011.03.008. Epub 2011 Apr 21.; Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging- Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):280-92. doi:10.1016/j.jalz.2011.03.003. Epub 2011 Apr 21.; McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011 May;7(3):263-9. doi:10.1016/j.jalz.2011.03.005. Epub 2011 Apr 21.; Molinuevo JL, Gispert JD, Dubois B, et al. The AD-CSF-index discriminates Alzheimer's disease patients from healthy controls: a validation study. J Alzheimers Dis. 2013;36(1):67-77. doi:10.3233/JAD-130203; Bayer AJ. The role of biomarkers and imaging in the clinical diagnosis of dementia. Age Ageing. 2018;0:1-3. doi:10.1093/ageing/afy004; Ritchie C, Smailagic N, Noel-Storr AH, et al. CSF tau and the CSF tau/ABeta ratio for the diagnosis of Alzheimer's disease dementia and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2017 Mar 22;3(3):CD010803. doi:10.1002/14651858.CD010803.pub2; Song F, Poljak A, Smythe GA, Sachdev P. Plasma biomarkers for mild cognitive impairment and Alzheimer's disease. Brain Res Rev. 2009 Oct;61(2):69-80. doi:10.1016/j.brainresrev.2009.05.003. Epub 2009 May 21.; Bazenet C, Lovestone S. Plasma biomarkers for Alzheimer's disease: much needed but tough to find. Biomark Med. 2012 Aug;6(4):441-54. doi:10.2217/bmm.12.48; Hanon O, Vidal JS, Lehmann S, et al; BALTAZAR study group. Plasma amyloid levels within the Alzheimer's process and correlations with central biomarkers. Alzheimers Dement. 2018 Jul;14(7):858-68. doi:10.1016/j.jalz.2018.01.004. Epub 2018 Feb 17.; Britschgi M, Wyss-Coray T. Systemic and acquired immune responses in Alzheimer's disease. Int Rev Neurobiol. 2007;82:205-33. doi:10.1016/S0074-7742(07)82011-3; Xiu MH, Lin CG, Tian L, et al. Increased IL-3 serum levels in chronic patients with schizophrenia: Associated with psychopathology. Psychiatry Res. 2015 Sep 30;229(1-2):225-9. doi:10.1016/j.psychres.2015.07.029. Epub 2015 Jul 16.; Steinman L. Elaborate interactions between the immune and nervous systems. Nat Immunol. 2004 Jun;5(6):575-81. doi:10.1038/ni1078; Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med. 2006 Sep;12(9):1005-15. doi:10.1038/nm1484; Skaper SD, Facci L, Zusso M, Giusti P. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Front Cell Neurosci. 2018 Mar 21;12:72. doi:10.3389/fncel.2018.00072. Erratum in: Front Cell Neurosci. 2020 Feb 03;13:578.; Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer's disease. Neurobiol Aging. 2000 May-Jun;21(3):383-421. doi:10.1016/s0197-4580(00)00124-x; Teixeira AL, Reis HJ, Coelho FM, et al. All-or-nothing type biphasic cytokine production of human lymphocytes after exposure to Alzheimer's beta-amyloid peptide. Biol Psychiatry. 2008 Nov 15;64(10):891-5. doi:10.1016/j.biopsych.2008.07.019. Epub 2008 Aug 30.; Tarkowski E, Andreasen N, Tarkowski A, Blennow K. Intrathecal inflammation precedes development of Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2003 Sep;74(9):1200-5. doi:10.1136/jnnp.74.9.1200; Kinney JW, Bemiller SM, Murtishaw AS, et al. Inflammation as a central mechanism in Alzheimer's disease. Alzheimers Dement (N Y). 2018 Sep 6;4:575-90. doi:10.1016/j.trci.2018.06.014; Chee SEJ, Solito E. The Impact of Ageing on the CNS Immune Response in Alzheimer's Disease. Front Immunol. 2021 Sep 17;12:738511. doi:10.3389/fimmu.2021.738511; Ogunmokun G, Dewanjee S, Chakraborty P, et al. The Potential Role of Cytokines and Growth Factors in the Pathogenesis of Alzheimer's Disease. Cells. 2021 Oct 18;10(10):2790. doi:10.3390/cells10102790; Krabbe G, Halle A, Matyash V, et al. Functional impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS One. 2013;8(4):e60921. doi:10.1371/journal.pone.0060921. Epub 2013 Apr 8.; Michelucci A, Heurtaux T, Grandbarbe L, et al. Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-beta. J Neuroimmunol. 2009 May 29;210(1-2):3-12. doi:10.1016/j.jneuroim.2009.02.003. Epub 2009 Mar 9.; Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice. J Neurosci. 2008 Aug 13;28(33):8354-60. doi:10.1523/JNEUROSCI.0616-08.2008; Qin C, Li Y, Wang K. Functional Mechanism of Bone Marrow-Derived Mesenchymal Stem Cells in the Treatment of Animal Models with Alzheimer's Disease: Inhibition of Neuroinflammation. J Inflamm Res. 2021 Sep 17;14:4761-75. doi:10.2147/JIR.S327538; Angiulli F, Conti E, Zoia CP, et al. Blood- Based Biomarkers of Neuroinflammation in Alzheimer's Disease: A Central Role for Periphery? Diagnostics (Basel). 2021 Aug 24;11(9):1525. doi:10.3390/diagnostics11091525; Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189-98. doi:10.1016/0022-3956(75)90026-6; Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB: a Frontal Assessment Battery at bedside. Neurology. 2000 Dec 12;55(11):1621-6. doi:10.1212/wnl.55.11.1621; Nasreddine ZS, Phillips NA, Bеdirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005 Apr;53(4):695-9. doi:10.1111/j.1532-5415.2005.53221.x. Erratum in: J Am Geriatr Soc. 2019 Sep;67(9):1991.; Llinas-Regla J, Vilalta-Franch J, Lopez-Pousa S, et al. The Trail Making Test. Assessment. 2017 Mar;24(2):183-96. doi:10.1177/1073191115602552. Epub 2016 Jul 28.; Castilhos RM, Chaves ML. Free and Cued Selective Reminding Test sensitivity. Alzheimers Dement (Amst). 2017 Nov 26;10:75. doi:10.1016/j.dadm.2017.11.005; Burgette LF, Reiter JP. Multiple imputation for missing data via sequential regression trees. Am J Epidemiol. 2010 Nov 1;172(9):1070-6. doi:10.1093/aje/kwq260. Epub 2010 Sep 14.; Müllner D. Modern hierarchical, agglomerative clustering algorithms. Computer science; 2011. Available from: http://dblp.unitrier.de/db/journals/corr/corr1109.html#abs-1109-2378; Conte M, Ostan R, Fabbri C, et al. Human Aging and Longevity Are Characterized by High Levels of Mitokines. J Gerontol A Biol Sci Med Sci. 2019 Apr 23;74(5):600-7. doi:10.1093/gerona/gly153; Kim DH, Lee D, Lim H, et al. Effect of growth differentiation factor-15 secreted by human umbilical cord blood-derived mesenchymal stem cells on amyloid beta levels in in vitro and in vivo models of Alzheimer's disease. Biochem Biophys Res Commun. 2018 Oct 12;504(4):933-40. doi:10.1016/j.bbrc.2018.09.012. Epub 2018 Sep 14.; Wu PF, Zhang XH, Zhou P, et al. Growth Differentiation Factor 15 Is Associated With Alzheimer's Disease Risk. Front Genet. 2021 Aug 13;12:700371. doi:10.3389/fgene.2021.700371; Wojsiat J, Zoltowska KM, Laskowska-Kaszub K, Wojda U. Oxidant/Antioxidant Imbalance in Alzheimer's Disease: Therapeutic and Diagnostic Prospects. Oxid Med Cell Longev. 2018 Jan 31;2018:6435861. doi:10.1155/2018/6435861; Лобзин ВЮ. Сосудисто-нейродегенеративные когнитивные нарушения (патогенез, клинические проявления, ранняя и дифференциальная диагностика): Автореф. дисс. … докт. мед. наук. Санкт-Петербург; 2016. С. 33.; Taipa R, das Neves SP, Sousa AL, et al. Proinflammatory and anti-inflammatory cytokines in the CSF of patients with Alzheimer's disease and their correlation with cognitive decline. Neurobiol Aging. 2019 Apr;76:125-32. doi:10.1016/j.neurobiolaging.2018.12.019. Epub 2019 Jan 7.; Motta C, Finardi A, Toniolo S, et al. Protective Role of Cerebrospinal Fluid Inflammatory Cytokines in Patients with Amnestic Mild Cognitive Impairment and Early Alzheimer's Disease Carrying Apolipoprotein E4 Genotype. J Alzheimers Dis. 2020;76(2):681-9. doi:10.3233/JAD-191250; Musella A, Fresegna D, Rizzo FR, et al. 'Prototypical' proinflammatory cytokine (IL-1) in multiple sclerosis: role in pathogenesis and therapeutic targeting. Expert Opin Ther Targets. 2020 Jan;24(1):37-46. doi:10.1080/14728222.2020.1709823. Epub 2020 Jan 3.; Clausen BH, Lambertsen KL, Dagaes-Hansen F, et al. Cell therapy centered on IL-1Ra is neuroprotective in experimental stroke. Acta Neuropathol. 2016 May;131(5):775-91. doi:10.1007/s00401-016-1541-5. Epub 2016 Feb 9.; Oprica M, Hjorth E, Spulber S, et al. Studies on brain volume, Alzheimer-related proteins and cytokines in mice with chronic overexpression of IL-1 receptor antagonist. J Cell Mol Med. 2007 Jul-Aug;11(4):810-25. doi:10.1111/j.1582-4934.2007.00074.x; Spulber S, Mateos L, Oprica M, et al. Impaired long term memory consolidation in transgenic mice overexpressing the human soluble form of IL-1ra in the brain. J Neuroimmunol. 2009 Mar 31;208(1-2):46-53. doi:10.1016/j.jneuroim.2009.01.010. Epub 2009 Feb 10.

  7. 7
    Academic Journal

    Source: Сучасна педіатрія. Україна; № 3(123) (2022): Сучасна педіатрія. Україна; 80-84
    Modern Pediatrics. Ukraine; No. 3(123) (2022): Modern pediatrics. Ukraine; 80-84
    Modern Pediatrics. Ukraine; № 3(123) (2022): Modern pediatrics. Ukraine; 80-84

    File Description: application/pdf

  8. 8
    Academic Journal

    Source: Head and Neck Tumors (HNT); Том 11, № 3 (2021); 72-82 ; Опухоли головы и шеи; Том 11, № 3 (2021); 72-82 ; 2411-4634 ; 2222-1468 ; 10.17650/2222-1468-2021-11-3

    File Description: application/pdf

    Relation: https://ogsh.abvpress.ru/jour/article/view/675/491; Nguyen-Tan P.F., Zhang Q., Ang K.K. et al. Randomized phase III trial to test accelerated versus standard fractionation in combination with concurrent cisplatin for head and neck carcinomas in the Radiation Therapy Oncology Group 0129 trial: long-term report of efficacy and toxicity. J Clin Oncol 2014;32(34):3858–66. DOI:10.1200/JCO.2014.55.3925.; Bonadonna G., Moliterni A., Zambetti M. et al. 30 years’ follow up of randomized study of adjuvant CMF in operable breast cancer: cogort study. BMJ 2005;330:217–20. DOI:10.1136/bmj.38314.622095.8F.; Сакаева Д.Д., Курмуков И.А., Орлова Р.В., Шабаева М.М. Практические рекомендации по диагностике и лечению фебрильной нейтропении. Злокачественные опухоли: Практические рекомендации RUSSCO #3s2 2020;10(39). Доступно по: https://www.rosoncoweb.ru/standarts/RUSSCO/2020/2020-39.pdf. DOI:10.18027/2224-5057-2020-10-3s2-39/; Weycker D., Barron R., Edelsberg J. et al. Risk and consequences of chemotherapyinduced neutropenic complications in patients receiving daily filgrastim: the importance of duration of prophylaxis. BMC Health Serv Res 2014;14:189. DOI:10.1186/1472-6963-14-189.; Cornes P., Gascon P., Chan S. et al. Systematic review and meta-analysis of short-versus long-acting granulocyte colony-stimulating factors for reduction of chemotherapy-induced febrile neutropenia Adv Ther 2018;35(11):1816–29. DOI:10.1007/s12325-018-0798-6.; Криворотько П.В., Бурдаева О.Н., Ничаева М.Н. и др. Эффективность и безопасность препарата Экстимия® (эмпэгфилграстим) у пациентов с диагнозом «рак молочной железы», получающих миелосупрессивную химиотерапию: результаты двойного слепого сравнительного клинического исследования III фазы. Современная онкология 2015;17(2):45–52.; Wang Y., Chen L., Liu F. et al. Efficacy and tolerability of granulocyte colonystimulating factors in cancer patients after chemotherapy: a systematic review and Bayesian network meta-analysis. Sci Rep 2019;9(1):15374. DOI:10.1038/s41598-019-51982-4.; Нестерова Е.С., Клиточенко Т.Ю., Глонина Н.Н. и др. Промежуточные результаты многоцентрового ретроспективно-проспективного наблюдательного пострегистрационного исследования безопасности и эффективности применения препарата Экстимия ЗАО «Биокад» у пациентов с лимфопролиферативными заболеваниями, получающих цитотоксическую терапию. Современная онкология 2020;22(4):77–84. DOI:10.26442.18151434.2020.4.200492.; Lyman G.H., Dale D.C., Culakova E. et al. The impact of the granulocyte colony-stimulating factor on chemotherapy dose intensity and cancer survival: a systematic review and meta-analysis of randomized controlled trials. Ann Oncol 2013;24(10):2475–84. DOI:10.1093/annonc/mdt226.; Kuderer N.M., Dale D.C., Crawford J., Lyman G.H. Impact of primary prophylaxis with granulocyte colonystimulating factor on febrile neutropenia and mortality in adult cancer patients receiving chemotherapy: a systematic review. J Clin Oncol 2007;25(21):3158–67. DOI:10.1200/JCO.2006.08.8823.; Crawford J., Ozer H., Stoller R. et al. Reduction by granulocyte colonystimulating factor of fever and neutropenia induced by chemotherapy in patients with small-cell lung cancer. N Engl J Med 1991;325:164–70. DOI:10.1056/NEJM199107183250305.; Pettengell R., Gurney H., Radford J.A. et al. Granulocyte colony-stimulating factor to prevent dose-limiting neutropenia in non-Hodgkin’s lymphoma: a randomized controlled trial. Blood 1992;80(6):1430–6.; Trillet-Lenoir V., Green J., Manegold C. et al. Recombinant granulocyte colony stimulating factor reduces the infectious complications of cytotoxic chemotherapy. Eur J Cancer 1993;29A(3):319–24. DOI:10.1016/0959-8049(93)90376-q.; Zinzani P.L., Pavone E., Storti S. et al. Randomized trial with or without granulocyte colonystimulating factor as adjunct to induction VNCOP-B treatment of elderly high-grade non-Hodgkin’s lymphoma. Blood 1997;89(11):3974–9.; Fossa S.D., Kaye S.B., Mead G.M. et al. Filgrastim during combination chemotherapy of patients with poorprognosis metastatic germ cell malignancy: European Organization for Research and Treatment of Cancer, Genito-Urinary Group, and the Medical Research Council Testicular Cancer Working Party, Cambridge, United Kingdom. J Clin Oncol 1998;16(2):716–24. DOI:10.1200/JCO.1998.16.2.716.; Doorduijn J.K., van der Holt B., van Imhoff G.W. et al. CHOP compared with CHOP plus granulocyte colonystimulating factor in elderly patients with aggressive non-Hodgkin’s lymphoma. J Clin Oncol 2003;21(16):3041–50. DOI:10.1200/JCO.2003.01.076.; Osby E., Hagberg H., Kvaloy S. et al. CHOP is superior to CNOP in elderly patients with aggressive lymphoma while outcome is unaffected by filgrastim treatment: results of a Nordic Lymphoma Group randomized trial. Blood 2003;101(10):3840–8. DOI:10.1182/blood-2002-10-3238.; Timmer-Bonte J.N., de Boo T.M., Smit H.J. et al. Prevention of chemotherapy-induced febrile neutropenia by prophylactic antibiotics plus or minus granulocyte colony-stimulating factor in small-cell lung cancer: A Dutch randomized phase III study. J Clin Oncol 2005;23(31):7974–84. DOI:10.1200/JCO.2004.00.7955.; Chevallier B, Chollet P, Merrouche Y, et al. Lenograstim prevents morbidity from intensive induction chemotherapy in the treatment of inflammatory breast cancer. J Clin Oncol 1995;13(7):1564–71. DOI:10.1200/jco.1995.13.7.1564.; Bui B.N., Chevallier B., Chevreau C. et al. Efficacy of lenograstim on hematologic tolerance to MAID chemotherapy in patients with advanced soft tissue sarcoma and consequences on treatment dose-intensity. J Clin Oncol 1995;13(10):2629–36. DOI:10.1200/JCO.1995.13.10.2629.; Gisselbrecht C., Haioun C., Lepage E. et al. Placebo-controlled phase III study of lenograstim (glycosylated recombinant human granulocyte colony-stimulating factor) in aggressive nonHodgkin’s lymphoma: factors influencing chemotherapy administration – Groupe d’Etude des Lymphomes de l’Adulte. Leuk Lymphoma 1997;25(3–4):289–300. DOI:10.3109/10428199709114168.; Gatzemeier U., Kleisbauer J.P., Drings P. et al. Lenograstim as support for ACE chemotherapy of small-cell lung cancer: a phase III, multicenter, randomized study. Am J Clin Oncol 2000;23(4):393–400.; Vogel C.L., Wojtukiewicz M.Z., Carroll R.R. et al. First and subsequent cycle use of pegfilgrastim prevents febrile neutropenia in patients with breast cancer: a multicenter, double-blind, placebocontrolled phase III study. J Clin Oncol 2005;23(6):1178–84. DOI:10.1200/JCO.2005.09.102.; Su Y.B., Vickers A.J., Zelefsky M.J. et al. Double-blind, placebo-controlled, randomized trial of granulocytecolony stimulating factor during postoperative radiotherapy for squamous head and neck cancer. Avaliable at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.487.9730&rep=rep1&type=pdf.; Gawade P., Li S., Henry D. et al. Patterns of granulocyte colony-stimulating factor prophylaxis in patients with cancer receiving myelosuppressive chemotherapy Suppor Care Cancer 2020:28(9):4413–24. DOI:10.1007/s00520-020-05295-2.; Linot B., Augereau P., Breheret R., Laccourreye L., Capitain O. Efficacy and safety of early G-CSF administration in patients with head and neck cancer treated by docetaxel-cisplatin and 5-fluorouracil (DCF protocol): a retrospective study. Support Care Cancer 2014;22(10):2831–7. DOI:10.1007/s00520-014-2270-8.; https://ogsh.abvpress.ru/jour/article/view/675

  9. 9
  10. 10
    Academic Journal

    Source: Zaporozhye Medical Journal; Vol. 22 No. 1 (2020) ; Запорожский медицинский журнал; Том 22 № 1 (2020) ; Запорізький медичний журнал; Том 22 № 1 (2020) ; 2310-1210 ; 2306-4145

  11. 11
    Academic Journal

    Authors: Shevchuk, O. O.

    Source: Achievements of Clinical and Experimental Medicine; No. 4 (2019); 161-166 ; Достижения клинической и экспериментальной медицины; № 4 (2019); 161-166 ; Здобутки клінічної і експериментальної медицини; № 4 (2019); 161-166 ; 2415-8836 ; 1811-2471 ; 10.11603/1811-2471.2019.v.i4

    File Description: application/pdf

  12. 12
    Academic Journal

    Source: Russian Journal of Pediatric Hematology and Oncology; Том 7, № 2 (2020); 78-85 ; Российский журнал детской гематологии и онкологии (РЖДГиО); Том 7, № 2 (2020); 78-85 ; 2413-5496 ; 2311-1267 ; 10.21682/2311-1267-2020-7-2

    File Description: application/pdf

    Relation: https://journal.nodgo.org/jour/article/view/606/553; Владимирская Е.Б. Нормальное кроветворение и его регуляция. Клиническая онкогематология 2015;8(2):109–19.; Orkin S.H. Hematopoiesis: how does it happen? Curr Opin Cell Biol 1995;7(6):870–7. doi:10.1016/0955-0674(95)80072-7.; Bennett C.L., Smith T.J., Weeks J.C., Bredt A.B., Feinglass J., Fetting J.H., Hillner B.E., Somerfi eld M.R., Winn R.J. Use of hematopoietic colony stimulating factors: the American society of clinical oncology survey. J Clin Oncol 1996;14(9):2511–20. doi:10.1200/JCO.1996.14.9.2511.; Kiel M.J., Yilmaz O.H., Iwashita T., Yilmaz O.H., Terhorst C., Morrison S.J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005;121(7):1109–21. doi:10.1016/j.cell.2005.05.026.; Barrett D., Fish J.D., Grupp S.A. Autologous and allogeneic cellular therapies for high-risk pediatric solid tumors. Pediatr Clin North Am 2010;57(1):47–66. doi:10.1016/j.pcl.2010.01.001.; Civriz Bozdag S., Tekgunduz E., Altuntas F. The current status in hematopoietic stem cell mobilization. J Clin Apher 2015;30(5):273–80. doi:10.1002/jca.21374.; Dreger P., Kloss M., Petersen B., Haferlach T., Loffl er H., Schmitz N. Autologous progenitor cell transplantation: prior exposure to stem cell-toxic drugs determines yield and engraftment of peripheral blood progenitor cell but not of bone marrow grafts. Blood 1995;86(10):3970–8. PMID: 7579368.; Sugrue M.W., Williams K., Pollock B.H., Khan S., Peracha S., Wingard J.R., Moreb J.S. Characterization and outcome of ‘hard to mobilize’ lymphoma patients undergoing autologous stem cell transplantation. Leuk Lymphoma 2000;39(5–6):509–19. doi:10.3109/10428190009113381.; Schmitz N., Linch D.C., Dreger P., Goldstone A.H., Boogaerts M.A., Ferrant A., Demuynck H.M., Link H., Zander A., Barge A. Randomised trial of fi lgrastim- mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet 1996;347(8998):353–7. doi:10.1016/s0140-6736(96)90536-x.; Copland M., Alcorn M., Patton D., Doig A., Farrell E., Currie C., Sinclair J.E., Parker A., Douglas K.W. Signifi cantly lower cryopreservation volumes for PBSC collections using Spectra Optia(R) version 5 software compared with the MNC setting on COBE(R) Spectra, particularly when using plerixafor for mobilization. Blood 2010;116(21):825. doi:10.1182/blood.V116.21.825.825.; Mendez-Ferrer S., Lucas D., Battista M., Frenette P.S. Haematopoietic stem cell release is regulated by circadian ascillatins. Nature 2008;452(7186):442–7. doi:10.1038/nature06685.; Katayama Y., Battista M., Kao W.M., Hidalgo A., Peired J.A., Thomas S.A., Frennete P.S. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006;124(2):407–21. doi:10.1016/j.cell.2005.10.041.; Sugiyama T., Kohara H., Noda M., Takashi N. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006;25(6):977–88. doi:10.1016/j.immuni.2006.10.016.; Ulyanova T., Scott L.M., Priestley G.V., Jiang Y, Nakamoto B., Koni P.A., Papayannopoulou T. VCAM-1 expression in adult hematopoietic and nonhematopoietic cells is controlled by tissueinductive signals and refl ects their developmental origin. Blood 2015;106(1):86–94. doi:10.1182/blood-2004-09-3417.; Winkler I.G., Sims N.A., Pettit A.R., Barbier V., Nowlan B., Helwani F., Poulton I.J., van Rooijen N., Alexander K.A., Raggatt L.J., Levesque J.P. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 2010;116(23):4815–28. doi:10.1182/blood-2009-11-253534.; Haas R., Mohle R., Fruhauf S., Goldschmidt H., Witt B., Flentje M., Wannenmacher M., Hunstein W. Patient characteristics associated with successful mobilizing and autografting of peripheral blood progenitor cells in malignant lymphoma. Blood 1994;83(12):3787–94. PMID: 751521.; Dingli D., Nowakowski G.S., Dispenzieri A., Lacy M.Q., Hayman S., Litzow M.R., Gastineau D.A., Gertz M.A. Cyclophosphamide mobilization does not improve outcome in patients receiving stem cell trans- plantation for multiple myeloma. Clin Lymphoma Myeloma 2006;6(5):384–8. doi:10.3816/CLM.2006.n.014.; Desikan K.R., Barlogie B., Jagannath S., Vesole D.H., Siegel D., Fassas A., Munshi N., Singhal S., Mehta J., Tindle S., Nelson J., Bracy D., Mattox S., Tricot G. Comparable engraftment kinetics following peripheral-blood stem-cell infusion mobilized with granulocyte colony-stimulating factor with or without cyclophosphamide in multiple myeloma. J Clin Oncol 1998;16(4):1547–53. doi:10.1200/JCO.1998.16.4.1547.; Truong T.H., Prokopishyn N.L., Luu H., Guilcher GM.T., Lewis V.A. Predictive factors for successful peripheral blood stem cell mobilization and collection in children. J Clin Apher 2019;34(5):598–606. doi:10.1002/jca.21738.; De Clercq E. Mozobil® (Plerixafor, AMD3100), 10 years after its approval by the US Food and Drug Administration. Antivir Chem Chemother 2019;27:2040206619829382. doi:10.1177/2040206619829382.; Lee H.M., Wu W., Wysoczynski M., Liu R., Zuba-Surma E.K., Kucia M., Ratajczak J., Ratajczak M.Z. Impaired mobilization of hematopoietic stem/progenitor cells in C5-defi cient mice supports the pivotal involvement of innate immunity in this process and reveals novel promobilization eff ects of granulocytes. Leukemia 2009;23(11):2052–62. doi:10.1038/leu.2009.158.; Levesque J.P., Liu F., Simmons P.J., Betsuyaku T., Senior R.M., Pham C., Link D.C. Characterization of hematopoietic progenitor mobilization in protease-defi cient mice. Blood 2014;104(1):65–72. doi:10.1182/blood-2003-05-1589.; Dar A., Schajnovitz A., Lapid K., Kalinkovich A., Itkin T., Ludin A., Kao W.M., Battista M., Tesio M., Kollet O., Cohen N.N., Margalit R., Buss E.C., Baleux F., Oishi S., Fujii N., Larochelle A., Dunbar C.E., Broxmeyer H.E., Frenette P.S., Lapidot T. Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-depen- dent SDF-1 release from bone marrow stromal cells. Leukemia 2011;25(8):1286–96. doi:10.1038/leu.2011.62.; Christopher M.J., Liu F., Hilton M.J., Long F., Link D.C. Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood 2009;114(7):1331–9. doi:10.1182/blood-2008-10-184754.; Calandra G., McCarty J., McGuirk J., Tricot G., Crocker S.A., Badel K., Grove B., Dye A., Bridger G. AMD3100 plus G-CSF can successfully mobilize CD34+ cells from non-Hodgkin’s lymphoma, Hodgkin’s disease and multiple myeloma patients previously failing mobilization with chemotherapy and/or cytokine treatment: compassionate use data. Bone Marrow Transplant 2008;41(4):331–8. doi:10.1038/sj.bmt.1705908.; Lie A.K., To L.B. Peripheral blood stem cells: transplantation and beyond. Oncologist 1997;2(1):40–9. PMID: 10388028. 27. Maschan A.A., Balashov D.N., Kurnikova E.E., Trakhtman P.E., Boyakova E.V., Skorobogatova E.V., Novichkova G.A., Maschan M.A. Effi cacy of plerixafor in children with malignant tumors failing to mobilize a suffi cient number of hematopoietic progenitors with G-CSF. Bone Marrow Transplant 2015;50(8):1089–91. doi:10.1038/bmt.2015.71.; Modak S., Cheung I.Y., Kushner B.H., Kramer K., Reich L., Cheung N.K. Plerixafor plus granulocyte colony stimulating factor for autologous hematopoietic stem cell mobilization in patients with metastatic neuroblastoma. Pediatr Blood Cancer 2012;58(3):469–71. doi: https:10.1002/pbc.23132.; Morland B., Kepak T., Dallorso S., Sevilla J., Murphy D., Luksch R., Yaniv I., Bader P., Rößler J., Bisogno G., Maecker-Kolhoff B., Lang P., Zwaan C.M., Sumerauer D., Kriván G., Bernard J., Liu Q., Doyle E., Locatelli F. Plerixafor combined with standard regimens for hematopoietic stem cell mobilization in pediatric patients with solid tumors eligible for autologous transplants: two-arm phase I/II study (MOZAIC). Bone Marrow Transplant 2020. [Epub ahead of print]. doi:10.1038/s41409-020-0836-2.; Kawano Y., Takaue Y., Watanabe T., Abe T., Okamoto Y., Iwai A., Iwai T., Watanabe A., Ito E., Makimoto A., Nakagawa R., Watanabe H., Sato J., Suenaga K., Suzuya H., Ohnishi T., Kanamaru S., Kaneko M., Kuroda Y. Effi cacy of the mobilization of peripheral blood stem cells by granulocyte colony-stimulating factor in pediatric donors. Cancer Res 1999;59:3321–4. PMID: 10416586.; Fu P., Bagai R.K., Meyerson H., Kane D., Fox R.M., Creger R.J., Cooper B.W., Gerson S.L., Laughlin M.J., Koc O.N., Lazarus H.M. Pre-mobilization therapy blood CD34+ cell count predicts the likelihood of successful hematopoietic stem cell mobilization. Bone Marrow Transplant 2006;38(3):189–96. doi:10.1038/sj.bmt.1705431.; Empringham B., Chiang K.Y., Krueger J. Collection of hematopoietic stem cells and immune eff ector cells in small children. Transfus Apher Sci 2018;57(5):614–8. doi:10.1016/j.transci.2018.10.004.; Курникова Е.Е., Кумукова И.Б., Гуз И.В., Хисматуллина Р.Д., Шаманская Т.В., Фадеева М.С., Глушкова С.Ю., Бриллиантова В.В., Варфоломеева С.Р., Трахтман П.Е. Результаты мобилизации, афереза и аутореинфузии гемопоэтических стволовых клеток у детей с нейробластомой: роль мониторинга количества CD34+ клеток в периферической крови. Вопросы гематологии/онкологии и иммунопатологии в педиатрии 2017;16(1):28–39. doi:10.24286/1726-1708. [Kurnikova E.E., Kumukova I.B., Guz I.V., Chismatullina R.D., Shamanskaya T.V., Fadeeva M.S., Glushkova S.Yu., Brilliantova V.V., Varfolomeyeva S.R., Trakhtman P.E. Results of mobilization, apheresis and autoreinfusion of hematopoietic stem cells in children with neuroblastoma: role of monitoring the count of CD34+ cells in peripheral blood. Voprosy gematologii/onkologii i immunopatologii v pediatrii = Pediatric Hematology/Oncology and Immunopathology 2017;16(1):28–39. (In Russ.)].; Xie Y., Yin T., Wiegraebe W., He X.C., Miller D., Stark D., Perko K., Alexander R., Schwartz J., Grindley J.C., Park J., Haug J.S., Wunderlich J.P., Li H., Zhang S., Johnson T., Feldman R.A. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 2009;457(7225):97–101. doi:10.1038/nature07639.; Grupp S.A., Cohn S.L., Wall D., Reynolds P.C.; Hematopoietic Stem Cell Transplant Discipline and the Neuroblastoma Disease Committee, Children’s Oncology Group. Collection, storage, and infusion of stem cells in children with high-risk neuroblastoma: saving for a rainy day. Pediatr Blood Cancer 2006;46(7):719–22. PMID: 16429413.; Koc O.N., Gerson S.L., Cooper B.W., Laughlin M., Meyerson H., Kutteh L., Fox R.M., Szekely E.M., Tainer N., Lazarus H.M. Randomized cross-over trial of progenitor-cell mobilization: high-dose cyclophosphamide plus granulocyte colony-stimulating factor (G-CSF) versus granulocytemacrophage colony-stimulating factor plus G-CSF. J Clin Oncol 2000;18(9):1824–30. doi:10.1200/JCO.2000.18.9.1824.; Flomenberg N., Devine S.M., Dipersio J.F., Liesveld J.L., Rowley S.D., Vesole D.H., Badel K., Calandra G. The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood 2005;106(5):1867–74. doi:10.1182/blood-2005-02-0468.; Miano M., Labopin M., Hartmann O., Angelucci E., Cornish J., Gluckman E., Locatelli F., Fischer A., Egeler R.M., Or R., Peters C., Ortega J., Veys P., Bordigoni P., Iori A.P., Niethammer D., Rocha V., Dini G.; Paediatric Diseases Working Party of the European Group for Blood and Marrow Transplantation. Haematopoietic stem cell transplantation trends in children over the last three decades: a survey by the paediatric diseases working party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 2007;39(2):89–99. doi:10.1038/bmt.; https://journal.nodgo.org/jour/article/view/606

  13. 13
    Academic Journal

    Source: Clinical and experimental pathology; Vol. 18 No. 4 (2019) ; Клиническая и экспериментальная патология; Том 18 № 4 (2019) ; Клінічна та експериментальна патологія; Том 18 № 4 (2019) ; 2521-1153 ; 1727-4338

    File Description: application/pdf

  14. 14
    Academic Journal

    Contributors: The study reported in this publication was carried out as part of a publicly funded research project No. 056-00003-20-00 and was supported by the Scientific Centre for Expert Evaluation of Medicinal Products (R&D public accounting No. АААА-А18-118021590049-0)., Работа выполнена в рамках государственного задания ФГБУ «НЦЭСМП» Минздрава России № 056-00003-20-00 на проведение прикладных научных исследований (номер государственного учета НИР АААА-А18-118021590049-0).

    Source: Biological Products. Prevention, Diagnosis, Treatment; Том 20, № 3 (2020); 193-201 ; БИОпрепараты. Профилактика, диагностика, лечение; Том 20, № 3 (2020); 193-201 ; 2619-1156 ; 2221-996X ; 10.30895/2221-996X-2020-20-3

    File Description: application/pdf

    Relation: https://www.biopreparations.ru/jour/article/view/290/348; Аникина ЛВ, Пухов СА, Дубровская ЕС, Афанасьева СВ, Клочков СГ. Сравнительное определение жизнеспособности клеток с помощью МТТ и ресазурина. Фундаментальные исследования. 2014;(12-7):1423–7.; Лягоскин ИВ, Берестовой МА, Потеряев ДА, Зейналова ЭС, Вишневский АЮ, Казаров АА. Валидация XTT-теста для оценки антипролиферативной активности препаратов на основе моноклональных антител. БИОпрепараты. Профилактика, диагностика, лечение. 2015;(1):45–50.; Präbst K, Engelhardt H, Ringgeler S, Hübner H. Basic colorimetric proliferation assays: MTT, WST, and resazurin. In: Gilbert FD, Friedrich O. Cell Viability Assays (Methods and Protocols). Methods in Molecular Biology. Vol. 1601. New York: Humana Press; 2017. P. 1–17. https://doi.org/10.1007/978-1-4939-6960-9_1; Stoddart JM. Cell viability assays: Introduction. In: Stoddart JM, eds. Mammalian Cell Viability (Methods and Protocols).Methods in Molecular Biology. Vol. 740. New York: Humana Press; 2011. P. 1–6. https://doi.org/10.1007/978-1-61779-108-6_1; Stockert JC, Horobin RW, Colombo LL, Blázquez-Castro A. Tetrazolium salts and formazan products in Cell Biology: viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem. 2018;120(3):159–67. https://doi.org/10.1016/j.acthis.2018.02.005; Мотузова ЕВ, Алпатова НА, Гайдерова ЛА, Рунова ОБ, Волкова РА, Мыца ЕД и др. Разработка и аттестация отраслевого стандартного образца активности филграстима. БИОпрепараты. Профилактика, диагностика, лечение. 2016;16(3):172–8.; Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc. 2018;2018:095505. https://doi.org/10.1101/pdb.prot095505; Bopp SK, Lettieri T. Comparison of four different colorimetric and fluorometric cytotoxicity assays in a zebrafish liver cell line. BMC Pharmacol. 2008;8:8. https://doi.org/10.1186/1471-2210-8-8; van Tonder A, Joubert AM, Cromarty D. Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res Notes. 2015;8:47. https://doi.org/10.1186/s13104-015-1000-8; Berridge MV, Herst PM, Tan An S. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev. 2005;11:127–52. https://doi.org/10.1016/S1387-2656(05)11004-7; Tiwari K, Wavdhane M, Haque S, Govender T, Kruger GH, Mishra M, et al. A sensitive WST-8-based bioassay for PEGylated granulocyte colony stimulating factor using the NFS-60 cell line. Pharm Biol. 2015;53(6):849–54. https://doi.org/10.3109/13880209.2014.943248; Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the alamarBlue assay. Cold Spring Harb Protoc. 2018;2018:095489. https://doi.org/10.1101/pdb.prot095489; Lall N, Henley-Smith CJ, De Canha MN, Oosthuizen CB, Berrington D. Viability reagent, PrestoBlue, in comparison with other available reagents, utilized in cytotoxicity and antimicrobial assays. Int J Microbiol. 2013;2013:420601. https://doi.org/10.1155/2013/420601; https://www.biopreparations.ru/jour/article/view/290

  15. 15
    Academic Journal

    Source: Bulletin of Scientific Research; No 1 (2017) ; Вестник научных исследований; № 1 (2017) ; Вісник наукових досліджень; № 1 (2017) ; 2415-8798 ; 1681-276X ; 10.11603/2415-8798.2017.1

    File Description: application/pdf

  16. 16
    Academic Journal

    Source: Clinical and experimental pathology; Vol. 18 No. 2 (2019) ; Клиническая и экспериментальная патология; Том 18 № 2 (2019) ; Клінічна та експериментальна патологія; Том 18 № 2 (2019) ; 2521-1153 ; 1727-4338

    File Description: application/pdf

  17. 17
  18. 18
    Academic Journal

    Source: Current Pediatrics; Том 15, № 3 (2016); 273-278 ; Вопросы современной педиатрии; Том 15, № 3 (2016); 273-278 ; 1682-5535 ; 1682-5527

    File Description: application/pdf

    Relation: https://vsp.spr-journal.ru/jour/article/view/1640/617; Дегтярёва М.В., Бирюкова Т.В., Володин Н.Н., и др. Клинико-лабораторные особенности раннего неонатального сепсиса у детей различного гестационного возраста и оценка эффективности иммунозаместительной терапии Пентаглобином // Педиатрия. Журнал им. Г.Н. Сперанского. — 2008. — Т. 87. — № 1 — С. 32–40. [Degtyareva MV, Biryukova TV, Volodin NN, et al. Clinical and laboratory peculiarities of early neonatal sepsis in children with different gestation age and estimation of efficacy of immunosubstitutive therapy by Pentaglobin. Pediatriia. 2008;87(1):32–40. (In Russ).]; Mussi-Pinhata MM, Rego MA. Immunological peculiarities of extremely preterm infants: a challenge for the prevention of nosocomial sepsis. J Pediatr (Rio J). 2005;81(1 Suppl):59–68. doi:10.2223/jped.1301.; Adams-Chapman I, Stoll BJ. Neonatal infection and long-term neurodevelopmental outcome in the preterm infant. Curr Opin Infect Dis. 2006;19(3):290–297. doi:10.1097/01.qco.0000224825. 57976.87.; Wilson-Costello D, Friedman H, Minich N, et al. Improved neurodevelopmental outcomes for extremely low birth weight infants in 2000–2002. Pediatrics. 2007;119(1):37–45. doi:10.1542/ peds.2006-1416.; Kallman J, Schollin J, Schalen C, et al. Impaired phagocytosis and opsonisation towards group B streptococci in preterm neonates. Arch Dis Child Fetal Neonatal Ed. 1998;78(1):F46–F50. doi:10.1136/fn.78.1.f46.; Wolach B, Dolfin T, Regev R, et al. The development of the complement system after 28 weeks' gestation. Acta Paediatr. 1997;86(5):523–527. doi:10.1111/j.1651-2227.1997.tb08924.x.; Cates KL, Goetz C, Rosenberg N, et al. Longitudinal development of specific and functional antibody in very low birth weight premature infants. Pediatr Res. 1988;23(1):14– 22. doi:10.1203/ 00006450-198801000-00005.; Negi VS, Elluru S, Siberil S, et al. Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J Clin Immunol. 2007;27(3):233–245. doi:10.1007/s10875-007-9088-9.; Maeda M, van Schie RC, Yuksel B, et al. Differential expression of Fc receptors for IgG by monocytes and granulocytes from neonates and adults. Clin Exp Immunol. 1996;103(2):343–347.doi:10.1046/j.1365-2249.1996.d01-615.x.; Nagelkerke S, Kuijpers T. Immunomodulation by IVIg and the role of Fc gamma receptors: classic mechanisms of action after all? Front Immunol. 2015;5:00674. doi:10.3389/fimmu.2014.00674.; Haridan U, Mokhtar U, Machado L. A comparison of assays for accurate copy number measurement of the low-affinity Fc gamma receptor genes FCGR3A and FCGR3B. PLoS One. 2015; 10(1):e0116791. doi:10.1371/journal.pone.0116791.; Fanaroff AA, Korones SB, Wright LL, et al. A controlled trial of intravenous immune globulin to reduce nosocomial infections in very-low-birth-weight infants. N Engl J Med. 1994;330(16):1107– 1113. doi:10.1056/nejm199404213301602.; Christensen RD, Hardman T, Thornton J, Hill HR. A randomized, double-blind, placebo- controlled investigation of the safety of intravenous immune globulin administration to preterm neonates. J Perinatol. 1989;9(2):126–130.; Kliegman R, Clapp D, Berger M. Targeted immunoglobulin therapy for the prevention of neonatal infections. Clin Infect Dis. 1990;12(Suppl 4):443–456. doi:10.1093/clinids/ 12.supplement_4.s443.; Hoffmann J. Neutrophil CD64: a diagnostic marker for infection and sepsis. Clin Chem Lab Med. 2009;47(8):903–916. doi:10.1515/cclm.2009.224.; Pitrak D. Effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on the bactericidal functions of neutrophils. Curr Opin Hematol. 1997;4(3):183–190. doi:10.1097/00062752-199704030-00005.

  19. 19
    Academic Journal

    Source: Fine Chemical Technologies; Vol 9, No 2 (2014); 3-31 ; Тонкие химические технологии; Vol 9, No 2 (2014); 3-31 ; 2686-7575 ; 2410-6593

    File Description: application/pdf

    Relation: https://www.finechem-mirea.ru/jour/article/view/478/524; Freyer G., Ligneau B., Trillet-Lenoir V. Colony-stimulating factors in the prevention of solid tumors induced by chemotherapy in patients with febrile neutropenia // Int. J. Antimicrob. Agents. 1998. V. 10. P. 3-9.; Morstyn G., Burgess A.W. Hemopoietic growth factors: A review // Cancer Res. 1988. V. 48. P. 5624-5637.; Molineux G. Granulocyte colony-stimulating factors // Cancer Treatment & Res. 2011. V. 157. P. 33-53.; Asano S. Human granulocyte colony-stimulating factor: Its basic aspects and clinical applications // Am. J. Pediatr. Hematol. Oncol. 1991. V. 13. P. 400-413.; Herman A.C., Boone T.C., Lu H.S. Characterization, formulation, and stability of Neupogen (Filgrastim), a recombinant human granulocyte-colony stimulating factor // Pharm. Biotechnol. 1996. V. 9. P. 303-328.; Khalilzadeh R., Mohammadian-Mosaabadi J., Bahrami A., Nazak-Tabbar A., Nasiri-Khalili M.A., Amouheidari A. Process development for production of human granulocyte-colony stimulating factor by high cell density cultivation of recombinant Escherichia coli // J. Ind. Microbiol. Biotechnol. 2008. V. 35. P. 1643-1650.; Molineux G. Granulocyte colony-stimulating factor / In: Hematopoietic Growth Factors in Oncology: Basic Science and Clinical Therapeutics / Ed. G. Morstyn, M. Foote, G. J. Lieschke. N.Y., Totowa: Humana Press Inc., 2004. P. 83-97.; Vanz A.L., Renard G., Palma M.S., Chies J.M., Dalmora S.L., Basso L.A., Santos D.S. Human granulocyte colony stimulating factor (hG-CSF): Cloning, overexpression, purification and characterization // Microb. Cell Fact. 2008. V. 7. P. 1-12.; Gervais V., Zerial A., Oschkinat H. NMR investigations of the role of the sugar moiety in glycosylated recombinant human granulocyte-colony-stimulating factor // Eur. J. Biochem. 1997. V. 247. P. 386-395.; Wingfield P., Benedict R., Turcatti G., Allet B., Mermod J.-J., DeLamarter J., Simona M.G., Rose K. Characterization of recombinant-derived granulocyte-colony stimulating factor (G-CSF) // Biochem. J. 1988. V. 256. P. 213-218.; Hill C.P., Osslund T.D., Eisenberg D. The structure of granulocyte-colony-stimulating factor and its relationship to other growth factors // Proc. Natl. Acad. Sci. USA. 1993. V. 90. P. 5167-5171.; Molineux G. The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta) // Curr. Pharm. Des. 2004. V. 10. P. 1235-1244.; Wadhwa M., Thorpe R. Haematopoietic growth factors and their therapeutic use // Thromb. Haemost. 2008. V. 99. P. 863-873.; Heuser M., Ganser A. Colony-stimulating factors in the management of neutropenia and its complications // Ann. Hematol. 2005. V. 84. P. 697-708.; van de Geijn G.J.M., Aarts L.H.J., Erkeland S.J., Prasher J.M., Touw I.P. Granulocyte colony-stimulating factor and its receptor in normal hematopoietic cell development and myeloid disease // Rev. Physiol. Biochem. Pharmacol. 2003. V. 149. P. 53-71.; Zalipsky S. Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates // Bioconjug. Chem. 1995. V. 6. P. 150-165.; Veronese F.M., Caliceti P., Schiavon O. Branched and linear poly(ethylene glycol): Influence of the polymer structure on enzymological, pharmacokinetic, and immunological properties of protein conjugates // J. Bioact. Compat. Polym. 1997. V. 12. P. 196-207.; Herman S., Hooftman G., Schacht E. Poly(ethylene glycol) with reactive endgroups: I. Modification of proteins // J. Bioact. Compat. Polym. 1995. V. 10. P. 145-186.; Knop K., Hoogenboom R., Fischer D., Schubert U.S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives // Angew. Chem. Int. Ed. Engl. 2010. V. 49. P. 6288-6308.; Morpurgo M., Veronese F.M. Conjugates of peptides and proteins to polyethylene glycols / In: Methods in Molecular Biology: Bioconjugation Protocols: Strategies and Methods / Ed. C.M. Niemeyer. N.Y, Totowa: Humana Press Inc., 2004. V. 283. P. 45-70.; Kang J.S., Deluca P.P., Lee K.C. Emerging PEGylated drugs // Expert Opin. Emerg. Drugs. 2009. V. 14. P. 363-380.; Jevsevar S., Kunstelj M., Porekar V.G. PEGylation of therapeutic proteins // Biotechnol. J. 2010. V. 5. P. 113-128.; Milla P., Dosio F., Cattel L. PEGylation of proteins and liposomes: A powerful and flexible strategy to improve the drug delivery // Curr. Drug Metab. 2012. V. 13. P. 105-119.; Scholz M., Engel C., Apt D., Sankar S.L., Goldstein E., Loeffler M. Pharmacokinetic and pharmacodynamic modelling of the novel human granulocyte colony-stimulating factor derivative Maxy-G34 and pegfilgrastim in rats // Cell Prolif. 2009. V. 42. P. 823-837.; Ljung R., Karim F.A., Saxena K., Suzuki T. [et al.]. 40K glycoPEGylated, recombinant FVIIa: 3-month, double-blind, randomized trial of safety, pharmacokinetics, and preliminary efficacy in hemophilia patients with inhibitors // J. Thromb. Haemost. 2013. V. 11. P. 1260-1268.; Tiede A., Brand B., Fischer R., Kavakli K. [et al.]. Enhancing the pharmacokinetic properties of recombinant factor VIII: first-in-human trial of glycoPEGylated recombinant factor VIII in patients with hemophilia A // J. Thromb. Haemost. 2013. V. 11. P. 670-678.; Collins P.W., Møss J., Knobe K., Groth A., Colberg T., Watson E. Population pharmacokinetic modeling for dose setting of nonacog beta pegol (N9-GP), a glycoPEGylated recombinant factor IX // J. Thromb. Haemost. 2012. V. 10. P. 2305-2312.; Sarkissian C.N., Kang T.S., Gámez A., Scriver C.R., Stevens R.C. Evaluation of orally administered PEGylated phenylalanine ammonia lyase in mice for the treatment of phenylketonuria // Mol. Genet. Metab. 2011. V. 104. P. 249-254.; Jacobetz M.A., Chan D.S., Neesse A., Bapiro T.E., Cook N., Frese K.K., Feig C., Nakagawa T. [et al.]. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer // Gut. 2013. V. 62. P. 112-120.; Skerra A. Engineered protein scaffolds for molecular recognition // J. Mol. Recognit. 2000. V. 13. P. 167-187.; Gebauer M., Skerra A. Engineered protein scaffolds as next-generation antibody therapeutics // Curr. Opin. Chem. Biol. 2009. V. 13. P. 245-255.; Ackermann M., Morse B.A., Delventhal V., Carvajal I.M., Konerding M.A. Anti-VEGFR2 and anti-IGF-1R-Adnectins inhibit Ewing's sarcoma A673-xenograft growth and normalize tumor vascular architecture // Angiogenesis. 2012. V. 15. P. 685-695.; Cong Y., Pawlisz E., Bryant P., Balan S., Laurine E., Tommasi R. [et al.]. Site-specific PEGylation at histidine tags // Bioconjug. Chem. 2012. V. 23. P. 248-263.; Schoonooghe S., Laoui D., Van Ginderachter J.A., Devoogdt N., Lahoutte T., De Baetselier P., Raes G. Novel applications of nanobodies for in vivo bio-imaging of inflamed tissues in inflammatory diseases and cancer // Immunobiology. 2012. V. 217. P. 1266-1272.; Huang L., Muyldermans S., Saerens D. Nanobodies®: Proficient tools in diagnostics // Expert Rev. Mol. Diagn. 2010. V. 10. P. 777-785.; Sadeqzadeh E., Rahbarizadeh F., Ahmadvand D., Rasaee M.J. [et al.]. Combined MUC1-specific nanobody-tagged PEG-polyethylenimine polyplex targeting and transcriptional targeting of tBid transgene for directed killing of MUC1 over-expressing tumour cells // J. Control. Release. 2011. V. 156. P. 85-91.; Vugmeyster Y., Entrican C.A., Joyce A.P., Lawrence-Henderson R.F. [et al.]. Pharmacokinetic, biodistribution, and biophysical profiles of TNF nanobodies conjugated to linear or branched poly(ethylene glycol) // Bioconjug. Chem. 2012. V. 23. P. 1452-1462.; Sabar M.F., Kausar S., Zafar A.U. PEG-interferon conjugates: Effects of length and structure of linker // Pak. J. Pharm. Sci. 2013. V. 26. P. 425-430.; Onoue S., Matsui T., Kato M., Mizumoto T., Liu B., Liu L. [et al.]. Chemical synthesis and formulation design of a PEGylated vasoactive intestinal peptide derivative with improved metabolic stability // Eur. J. Pharm. Sci. 2013. V. 49. P. 382-389.; Mezo A.R., Low S.C., Hoehn T., Palmieri H. PEGylation enhances the therapeutic potential of peptide antagonists of the neonatal Fc receptor, FcRn // Bioorg. Med. Chem. Lett. 2011. V. 21. P. 6332-6335.; Kunstelj M., Fidler K., Skrajnar S., Kenig M. [et al]. Cysteine-specific PEGylation of rhG-CSF via selenylsulfide bond // Bioconjug. Chem. 2013. V. 24. P. 889-896.; da Silva Freitas D., Mero A., Pasut G. Chemical and enzymatic site specific PEGylation of hGH // Bioconjug. Chem. 2013. V. 24. P. 456-463.; Mattos A., de Jager-Krikken A., de Haan M., Beljaars L., Poelstra K. PEGylation of interleukin-10 improves the pharmacokinetic profile and enhances the antifibrotic effectivity in CCl₄-induced fibrogenesis in mice // J. Control. Release. 2012. V. 162. P. 84-91.; Tsiourvas D., Sideratou Z., Sterioti N., Papadopoulos A., Nounesis G., Paleos C.M. Insulin complexes with PEGylated basic oligopeptides // J. Colloid. Interface Sci. 2012. V. 384. P. 61-72.; Lee L.S., Conover C., Shi C., Whitlow M., Filpula D. Prolonged circulating lives of single-chain Fv proteins conjugated with polyethylene glycol: A comparison of conjugation chemistries and compounds // Bioconjug. Chem. 1999. V. 10. P. 973-981.; Mohs A.M., Zong Y., Guo J., Parker D.L., Lu Z.R. PEG-g-poly(GdDTPA-co-L-cystine): Effect of PEG chain length on in vivo contrast enhancement in MRI // Biomacromolecules. 2005. V. 6. P. 2305-2311.; Kaminskas L.M., Boyd B.J., Karellas P., Krippner G.Y., Lessene R., Kelly B., Porter C.J. The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of PEGylated poly L-lysine dendrimers // Mol. Pharm. 2008. V. 5. P. 449-463.; Pasut G., Veronese F.M. PEG conjugates in clinical development or use as anticancer agents: An overview // Adv. Drug Deliv. Rev. 2009. V. 61. P. 1177-1188.; Caliceti P., Veronese F.M. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates // Adv. Drug Deliv. Rev. 2003. V. 55. P. 1261-1277.; Noureddin M., Ghany M.G. Pharmacokinetics and pharmacodynamics of peginterferon and ribavirin: Implications for clinical efficacy in the treatment of chronic hepatitis C // Gastroenterol. Clin. North Am. 2010. V. 39. P. 649-658.; Harris J.M., Martin N.E., Modi M. Pegylation: A novel process for modifying pharmacokinetics // Clin. Pharmacokinet. 2001. V. 40. P. 539-551.; González-Valdez J., Rito-Palomares M., Benavides J. Advances and trends in the design, analysis, and characterization of polymer-protein conjugates for "PEGylaided" bioprocesses // Anal. Bioanal. Chem. 2012. V. 403. P. 2225-2235.; Nojima Y., Suzuki Y., Yoshida K., Abe F., Shiga T., Takeuchi T. [et al]. Lactoferrin conjugated with 40-kDa branched poly(ethylene glycol) has an improved circulating half-life // Pharm. Res. 2009. V. 26. P. 2125-2132.; Veronese F.M., Mero A. The impact of PEGylation on biological therapies // BioDrugs. 2008. V. 22. P. 315-329.; Fee C.J. Size comparison between proteins PEGylated with branched and linear poly(ethylene glycol) molecules // Biotechnol. Bioeng. 2007. V. 98. P. 725-731.; Hamidi M., Azadi A., Rafiei P. Pharmacokinetic consequences of pegylation // Drug Deliv. 2006. V. 13. P. 399-409.; Gokarn Y.R., McLean M., Laue T.M. Effect of PEGylation on protein hydrodynamics // Mol. Pharm. 2012. V. 9. P. 762-773.; Gaberc-Porekar V., Zore I., Podobnik B., Menart V. Obstacles and pitfalls in the PEGylation of therapeutic proteins // Curr. Opin. Drug Discov. Devel. 2008. V. 11. P. 242-250.; Bailon P., Won C.Y. PEG-modified biopharmaceuticals // Expert Opin. Drug Deliv. 2009. V. 6. P. 1-16.; Fee C.J., Van Alstine J.M. PEG-proteins: Reaction engineering and separation issues // Chem. Eng. Sci. 2006. V. 61. P. 924-939.; Roberts M.J., Harris J.M. Attachment of degradable poly(ethylene glycol) to proteins has the potential to increase therapeutic efficacy // J. Pharm. Sci. 1998. V. 87. P. 1440-1445.; Fishburn C.S. The pharmacology of PEGylation: Balancing PD with PK to generate novel therapeutics // J. Pharm. Sci. 2008. V. 97. P. 4167-4183.; Pasut G., Veronese F.M. PEGylation for improving the effectiveness of therapeutic biomolecules // Drugs Today (Barc.). 2009. V. 45. P. 687-695.; Harris J.M., Chess R.B. Effect of pegylation on pharmaceuticals // Nat. Rev. Drug Discov. 2003. V. 2. P. 214-221.; Bailon P., Berthold W. Polyethylene glycol-conjugated pharmaceutical proteins // Pharm. Sci. Technol. Today. 1998. V. 1. P. 352-356.; Zhang C., Yang X.L., Yuan Y.H., Pu J., Liao F. Site-specific PEGylation of therapeutic proteins via optimization of both accessible reactive amino acid residues and PEG derivatives // BioDrugs. 2012. V. 26. P. 209-215.; Larson R.S., Menard V., Jacobs H., Kim S.W. Physicochemical characterization of poly(ethylene glycol)-modified anti-GAD antibodies // Bioconjug. Chem. 2001. V. 12. P. 861-869.; Bonora G.M., Drioli S. Reactive PEGs for protein conjugation // In: PEGylated Protein Drugs: Basic Science and Clinical Applications / Ed. F.M. Veronese. Switzeland: Birkhäuser Verlag, 2009. P. 33-45.; Hooftman G., Herman S., Schacht E. Poly(ethylene glycol)s with reactive endgroups. II. Practical consideration for the preparation of protein-PEG conjugates // J. Bioact. Compat. Polym. 1996. V. 11. P. 135-159.; Fee C.J., Van Alstine J.M. Purification of pegylated proteins // Methods Biochem. Anal. 2011. V. 54. P. 339-362.; Hershfield M.S., Chaffee S., Koro-Johnson L., Mary A., Smith A.A., Short S.A. Use of site-directed mutagenesis to enhance the epitope-shielding effect of covalent modification of proteins with polyethylene glycol // Proc. Natl. Acad. Sci. USA. 1991. V. 88. P. 7185-7189.; Wylie D.C., Voloch M., Lee S., Liu Y.H., Cannon-Carlson S., Cutler C. [et al.]. Carboxy-alkylated histidine is a pH-dependent product of pegylation with SC-PEG // Pharm. Res. 2001. V. 18. P. 1354-1360.; Lee J.I., Eisenberg S.P., Rosendahl M.S., Chlipala E.A., Brown J.D. [et al.]. Site-specific PEGylation enhances the pharmacokinetic properties and antitumor activity of interferon Beta-1b // J. Interferon Cytokine Res. 2013. V. 33. P. 769-777.; Pasut G., Veronese F.M. State of the art in PEGylation: The great versatility achieved after forty years of research // J. Control. Release. 2012. V. 161. P. 461-472.; Bell S.J., Fam C.M., Chlipala E.A., Carlson S.J., Lee J.I. [et al.]. Enhanced circulating half-life and antitumor activity of a site-specific pegylated interferon-alpha protein therapeutic // Bioconjug. Chem. 2008. V. 19. P. 299-305.; Gaertner H.F., Offord R.E. Site-specific attachment of functionalized poly(ethylene glycol) to the amino terminus of proteins // Bioconjug. Chem. 1996. V. 7. P. 38-44.; Wu H., Li J., Zhang Q., Yan X., Guo L. [et al]. A novel small Odorranalectin-bearing cubosomes: Preparation, brain delivery and pharmacodynamic study on amyloid-β₂₅₋₃₅-treated rats following intranasal administration // Eur. J. Pharm. Biopharm. 2012. V. 80. P. 368-378.; Goodson R.J., Katre N.V. Site-directed pegylation of recombinant interleukin-2 at its glycosylation site // Biotechnology. 1990. V. 8. P. 343-346.; Woghiren C., Sharma B., Stein S. Protected thiol-polyethylene glycol: A new activated polymer for reversible protein modification // Bioconjug. Chem. 1993. V. 4. P. 314-318.; Pepinsky R.B., Shapiro R.I., Wang S., Chakraborty A. Long-acting forms of Sonic hedgehog with improved pharmacokinetic and pharmacodynamic properties are efficacious in a nerve injury model // J. Pharm. Sci. 2002. V. 91. P. 371-387.; Morpurgo M., Veronese F.M., Kachensky D., Harris J.M. Preparation and characterization of poly(ethylene glycol) vinyl sulfone // Bioconjug. Chem. 1996. V. 7. P. 363-368.; Balan S., Choi J.W., Godwin A., Teo I. [et al]. Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge // Bioconjug. Chem. 2007. V. 18. P. 61-76.; Brocchini S., Godwin A., Balan S. [et al.]. Disulfide bridge based PEGylation of proteins // Adv. Drug Deliv. Rev. 2008. V. 60. P. 3-12.; Scaramuzza S., Tonon G., Olianas A., Messana I., Schrepfer R. [et al.]. A new site-specific monoPEGylated filgrastim derivative prepared by enzymatic conjugation: Production and physicochemical characterization // J. Control. Release. 2012. V. 164. P. 355-363.; Zhao X., Shaw A.C., Wang J., Chang C.C., Deng J., Su J. A novel high-throughput screening method for microbial transglutaminases with high specificity toward Gln141 of human growth hormone // J. Biomol. Screen. 2010. V. 15. P. 206-212.; Sato H., Yamamoto K., Hayashi E., Takahara Y. Transglutaminase-mediated dual and site-specific incorporation of poly(ethylene glycol) derivatives into a chimeric interleukin-2 // Bioconjug. Chem. 2000. V. 11. P. 502-509.; Wang Y.J., Liu Y.D., Chen J., Hao S.J., Hu T. et al. Efficient preparation and PEGylation of recombinant human non-glycosylated erythropoietin expressed as inclusion body in E. coli // Int. J. Pharm. 2010. V. 386. P. 156-164.; Orsatti L., Veronese F.M. An unusual coupling of poly(ethylene glycol) to tyrosine residues in epidermal growth factor // Journal Bioact. Compat. Polym. 1999. V. 14. P. 429-436.; Wang Y.S., Youngster S., Bausch J., Zhang R., McNemar C., Wyss D.F. Identification of the major positional isomer of pegylated interferon alpha-2b // Biochemistry. 2000. V. 39. P. 10634-10640.; Riordan J.F., Vallee B.L. O-Acetyl tyrosine // Methods of Enzymology. 1972. 1972. P. 500-506.; Zalipsky S. Menon-Rudolph S. Hydrazide derivatives of polyethylene glycols and their bio-conjugates / In: Poly(ethylene glycol) Chemistry and Biological Applications / Ed. J.M. Harris, S. Zalipsky. Washington: ACS, 1997. V. 680. P. 318-341.; Francis G.E., Fisher D., Delgado C., Malik F., Gardiner A., Neale D. PEGylation of cytokines and other therapeutic proteins and peptides: The importance of biological optimisation of coupling techniques // Int. J. Hematol. 1998. V. 68. P. 1-18.; Sakane T., Pardridge W.M. Carboxyl-directed pegylation of brain-derived neurotrophic factor markedly reduces systemic clearance with minimal loss of biologic activity // Pharm. Res. 1997. V. 14. P. 1085-1091.; Wysocka M., Lesner A., Popow J., Legowska M., Rolka K. Pegylated fluorescent peptides as substrates of proteolytic enzymes // Protein Pept. Lett. 2012. V. 19. P. 1237-1244.; Veronese F.M. Peptide and protein PEGylation: A review of problems and solutions // Biomaterials. 2001. V. 22. P. 405-417.; Youn Y.S., Lee K.C. Site-specific PEGylation for high-yield preparation of Lys(21)-amine PEGylated growth hormone-releasing factor (GRF) (1-29) using a GRF(1-29) derivative FMOC-protected at Tyr(1) and Lys(12) // Bioconjug. Chem. 2007. V. 18. P. 500-506.; Herold D.A., Keil K., Bruns D.E. Oxidation of polyethylene glycols by alcohol dehydrogenase // Biochem. Pharmacol. 1989. V. 38. P. 73-76.; Kawai F. Microbial degradation of polyethers // Appl. Microbiol. Biotechnol. 2002. V. 58. P. 30-38.; Eliason J.F. Pegylated cytokines: Potential application in immunotherapy of cancer // BioDrugs. 2001. V. 15. P. 705-711.; Veronese F.M., Morpurgo M. Bioconjugation in pharmaceutical chemistry // Il Farmaco. 1999. V. 54. P. 497-516.; Giorgi M.E., Ratier L., Agusti R., Frasch A.C., de Lederkremer R.M. Improved bioavailability of inhibitors of Trypanosoma cruzi trans-sialidase: PEGylation of lactose analogs with multiarm polyethyleneglycol // Glycobiology. 2012. V. 22. P. 1363-1373.; Miyaji Y., Kasuya Y., Furuta Y., Kurihara A., Takahashi M. [et al.]. Novel comb-shaped PEG modification enhances the osteoclastic inhibitory effect and bone delivery of osteoprotegerin after intravenous administration in ovariectomized rats // Pharm. Res. 2012. V. 29. P. 3143-3155.; Ouchi M., Terashima T., Sawamoto M. Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis // Chem. Rev. 2009. V. 109. P. 4963-5050.; Filpula D., Zhao H. Releasable PEGylation of proteins with customized linkers // Adv. Drug Deliv. Rev. 2008. V. 60. P. 29-49.; Zhao H., Yang K., Martinez A. [et al.]. Linear and branched bicin linkers for releasable PEGylation of macromolecules: Controlled release in vivo and in vitro from mono- and multi-PEGylated proteins // Bioconjug. Chem. 2006. V. 17. P. 341-351.; Lee S., Greenwald R.B., McGuire J., Yang K., Shi C. Drug delivery systems employing 1,6-elimination: Releasable poly(ethylene glycol) conjugates of proteins // Bioconjug. Chem. 2001. V. 12. P. 163-169.; Filpula D., Yang K., Basu A., Hassan R., Xiang L. [et al.]. Releasable PEGylation of mesothelin targeted immunotoxin SS1P achieves single dosage complete regression of a human carcinoma in mice // Bioconjug. Chem. 2007. V. 18. P. 773-784.; Zalipsky S., Qazen M., Walker J.A. 2nd, Mullah N. [et al.]. New detachable poly(ethylene glycol) conjugates: Cysteine-cleavable lipopolymers regenerating natural phospholipid, diacyl phos-phatidylethanolamine // Bioconjug. Chem. 1999. V. 10. P. 703-707.; Greenwald R.B., Yang K., Zhao H., Conover C.D., Lee S., Filpula D. Controlled release of proteins from their poly(ethylene glycol) conjugates: Drug delivery systems employing 1,6-elimination // Bioconjug. Chem. 2003. V. 14. P. 395-403.; Greenwald R.B., Zhao H., Yang K., Reddy P., Martinez A. A new aliphatic amino prodrug system for the delivery of small molecules and proteins utilizing novel PEG derivatives // J. Med. Chem. 2004. V. 47. P. 726-734.; Falchi A., Taddei M. PEG-dichlorotriazine (PEG-DCT): A new soluble polymer-supported scavenger for alcohols, thiols, phosphines, and phosphine oxides // Org. Lett. 2000. V. 2. P. 3429-3431.; Srichana T., Suwandecha T. Polyethylene glycol in glinical application and PEGylated drugs / In: Biodegradable Polymers in Clinical Use and Clinical Development / Ed. A.J. Domb, N. Kumar, A. Ezra. John Wiley & Sons, Inc., 2011. P. 451-493.; Ross E.A., Branham M.L., Tebbett I.R. High mass clearance of autoantibodies from a murine model of lupus nephritis by immunoadsorption using star-configured polyethylene glycols // J. Biomed. Mater. Res. 2001. V. 55. P. 114-120.; Hsu C.W., Olabisi R.M., Olmsted-Davis E.A., Davis A.R., West J.L. Cathepsin K-sensitive poly(ethylene glycol) hydrogels for degradation in response to bone resorption // J. Biomed. Mater. Res. A. 2011. V. 98. P. 53-62.; Zalipsky S., Seltzer R., Menon-Rudolph S. Evaluation of a new reagent for covalent attachment of polyethylene glycol to proteins // Biotechnol. Appl. Biochem. 1992. V. 15. P. 100-114.; Zhang G., Wang X., Wang Z., Zhang J., Suggs L. A PEGylated fibrin patch for mesenchymal stem cell delivery // Tissue Eng. 2006. V. 12. P. 9-19.; Woodward C.A., Kaufman E.N. Enzymatic catalysis in organic solvents: Polyethylene glycol modified hydrogenase retains sulfhydrogenase activity in toluene // Biotechnol. Bioeng. 1996. V. 52. P. 423-428.; Vasudev S.S., Ahmad S., Parveen R., Ahmad F.J. [et al]. Formulation of PEG-ylated L-asparaginase loaded poly (lactide-co-glycolide) nanoparticles: Influence of pegylation on enzyme loading, activity and in vitro release // Pharmazie. 2011. V. 66. P. 956-960.; Abuchowski A.,Vanes T., Palczuk N.C., Davis F.F. Alteration of immunological properties of bovine serum-albumin by covalent attachment of polyethylene-glycol // J. Biol. Chem. 1977. V. 252. P. 3578-3581.; Abuchowski A., McCoy J.R., Palczuk N.C., van Es T., Davis F.F. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase // J. Biol. Chem. 1977. V. 252. P. 3582-3586.; Roberts M.J., Bentley M.D., Harris J.M. Chemistry for peptide and protein PEGylation // Adv. Drug Deliv. Rev. 2002. V. 54. P. 459-476.; Kaul G., Amiji M. Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery // Pharm. Res. 2002. V. 19. P. 1061-1067.; Bergström K., Holmberg K., Safranj A., Hoffman A.S. [et al.]. Reduction of fibrinogen adsorption on PEG-coated polystyrene surfaces // J. Biomed. Mater. Res. 1992. V. 26. P. 779-790.; Chen A., Kozak D., Battersby B.J., Forrest R.M. [et al.]. Antifouling surface layers for improved signal-to-noise of particle-based immunoassays // Langmuir. 2009. V. 25. P. 13510-13515.; Chamow S.M., Kogan T.P., Venuti M., Gadek T. Modification of CD4 immunoadhesin with mono-methoxypoly(ethylene glycol) aldehyde via reductive alkylation // Bioconjug. Chem. 1994. V. 5. P. 133-140.; Kinstler O.B., Brems D.N., Lauren S.L., Paige A.G., Hamburger J.B., Treuheit M.J. Characterization and stability of N-terminally PEGylated rhG-CSF // Pharm. Res. 1996. V. 13. P. 996-1002.; Abello N., Kerstjens H.A., Postma D.S., Bischoff R. Selective acylation of primary amines in peptides and proteins // J. Proteome Res. 2007. V. 6. P. 4770-4776.; Abuchowski A., Kazo G.M., Verhoest C.R.Jr.,Van Es T. [et al.]. Cancer therapy with chemically modified enzymes. I. Antitumor properties of polyethylene glycol-asparaginase conjugates // Cancer Biochem. Biophys. 1984. V. 7. P. 175-186.; Santos L.F., Iglesias A.H., Gozzo F.C. Fragmentation features of intermolecular cross-linked peptides using N-hydroxy- succinimide esters by MALDI- and ESI-MS/MS for use in structural proteomics // J. Mass Spectrom. 2011. V. 46. P. 742-750.; Zimmermann J.L., Nicolaus T., Neuert G., Blank K. Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments // Nat. Protoc. 2010. V. 5. P. 975-985.; Schlapak R., Pammer P., Armitage D., Zhu R. [et al.]. Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays // Langmuir. 2006. V. 22. P. 277-285.; Nathan A., Zalipsky S., Ertel S.I., Agathos S.N. [et al]. Copolymers of lysine and polyethylene glycol: a new family of functionalized drug carriers // Bioconjug. Chem. 1993. V. 4. P. 54-62.; Ikegawa S., Kinoshita J., Shimizu M., Tohma M. Radioimmunological characterization of anti lithocholic acid antisera elicited by [C-6] carboxylic acid N-succinimidyl esters as haptenic derivatives // Yakugaku Zasshi: J. Pharmaceut. Soc. Japan. 1989. V. 109. P. 306-311.; Kinstler O., Molineux G., Treuheit M., Ladd D. [et al]. Mono-N-terminal poly(ethylene glycol)-protein conjugates // Adv. Drug Deliv. Rev. 2002. V. 54. P. 477-485.; Xu H., Kaar J.L., Russell A.J., Wagner W.R. Characterizing the modification of surface proteins with poly(ethylene glycol) to interrupt platelet adhesion // Biomaterials. 2006. V. 27. P. 3125-3135.; Harris J.M., Kozlowski A. Polyethylene glycol and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications : US Patent. 1997. 5672662 A (http://www.google.es/patents/US5672662).; Sartore L., Caliceti P., Schiavon O., Veronese F.M. Enzyme modification by MPEG with an amino acid or peptide as spacer arms // Appl. Biochem. & Biotechnol. 1991. V. 27. P. 45-54.; Veronese F.M., Sacca B., De Laureto P.P., Sergi M., Caliceti P., Schiavon O. [et al.]. New PEGs for peptide and protein modification, suitable for identification of the PEGylation site // Bioconjug. Chem. 2001. V. 12. P. 62-70.; Veronese F.M., Pasut G. PEGylation, successful approach to drug delivery // Drug Discov. Today. 2005. V. 10. P. 1451-1458.; Bentley M.D., Roberts M.J., Harris J.M. Reductive amination using poly(ethylene glycol) acetaldehyde hydrate generated in situ: Applications to chitosan and lysozyme // J. Pharm. Sci. 1998. V. 87. P. 1446-1449.; Bentley M.D., Harris J.M., Kozlowski A. Heterobifunctional poly(ethylene glycol) derivatives and methods for their preparation :1999. US Patent. US 6448369 B1. PCT US99/23536. (http://www.google.com/patents/US6448369).; Ryan S.M., Mantovani G., Wang X., Haddleton D.M. [et al.]. Advances in PEGylation of important biotech molecules: Delivery aspects // Expert Opin. Drug Deliv. 2008. V. 5. P. 371-383.; Veronese F.M., Mero A., Caboi F., Sergi M. [et al.]. Site-specific pegylation of G-CSF by reversible denaturation // Bioconjug. Chem. 2007. V. 18. P. 1824-1830.; Doherty D.H., Rosendahl M.S., Smith D.J., Hughes J.M. [et al.]. Site-specific PEGylation of engineered cysteine analogues of recombinant human granulocyte-macrophage colony-stimulating factor // Bioconjug. Chem. 2005. V. 16. P. 1291-1298.; Rosendahl M.S., Doherty D.H., Smith D.J., Carlson S.J. [et al]. A long-acting, highly potent interferon alpha-2 conjugate created using site-specific PEGylation // Bioconjug. Chem. 2005. V. 16. P. 200-207.; Pasut G., Guiotto A., Veronese F.M. Protein, peptide and non-peptide drug PEGylation for therapeutic application // Expert Opin. Ther. Pat. 2004. V. 14. P. 859-894.; Shaunak S., Godwin A., Choi J.W., Balan S. [et al.]. Site-specific PEGylation of native disulfide bonds in therapeutic proteins // Nat. Chem. Biol. 2006. V. 2. P. 312-313.; Li X.Q., Lei J.D., Su Z.G. [et al]. Comparison of bioactivities of monopegylated rhG-CSF with branched and linear mPEG // Proc. Biochem. 2007. V. 42. P. 1625-1631.; Monfardini C., Schiavon O., Caliceti P., Morpurgo M., Harris J.M., Veronese F.M. A branched monomethoxypoly(ethylene glycol) for protein modification // Bioconjug. Chem. 1995. V. 6. P. 62-69.; Kamigaito M., Ando T., Sawamoto M. Metal-catalyzed living radical polymerization // Chem. Rev. 2001. V. 101. P. 3689-3746.; Lecolley F., Tao L., Mantovani G., Durkin I. A new approach to bioconjugates for proteins and peptides («pegylation») utilising living radical polymerization // Chem. Commun. (Camb.). 2004. V. 18. P. 2026-2027.; Jones M.W., Strickland R.A., Schumacher F.F., Caddick S. [et al.]. Polymeric dibromo-maleimides as extremely efficient disulfide bridging bioconjugation and pegylation agents // J. Am. Chem. Soc. 2012. V. 134. P. 1847-1852.; Fan X., Lin L., Messersmith P.B. Cell fouling resistance of polymer brushes grafted from ti substrates by surface-initiated polymerization: Effect of ethylene glycol side chain length // Biomacro-molecules. 2006. V. 7. P. 2443-2448.; Mantovani G., Lecolley F., Tao L. [et al.]. Design and synthesis of N-maleimido-functionalized hydrophilic polymers via copper-mediated living radical polymerization: A suitable alternative to PEGylation chemistry // J. Am. Chem. Soc. 2005. V. 127. P. 2966-2973.; Asayama S., Nogawa M., Takei Y., Akaike T., Maruyama A. Synthesis of novel polyampholyte comb-type copolymers consisting of a poly(L-lysine) backbone and hyaluronic acid side chains for a DNA carrier // Bioconjug. Chem. 1998. V. 9. P. 476-481.; Miyaji Y., Kasuya Y., Furuta Y., Kurihara A. Novel comb-shaped PEG modification enhances the osteoclastic inhibitory effect and bone delivery of osteoprotegerin after intravenous administration in ovariectomized rats // Pharm. Res. 2012. V. 29. P. 3143-3155.; Ryan S.M., Wang X., Mantovani G., Sayers C.T. Conjugation of salmon calcitonin to a combed-shaped end functionalized poly(poly(ethylene glycol) methyl ether methacrylate) yields a bioactive stable conjugate // J. Control. Release. 2009. V. 135. P. 51-59.; Da Pieve C., Blackshaw E., Missailidis S., Perkins A.C. PEGylation and biodistribution of an anti-MUC1 aptamer in MCF-7 tumor-bearing mice // Bioconjug. Chem. 2012. V. 23. P. 1377-1381.; Boomer R.M., Lewis S.D., Healy J.M., Kurz M. Conjugation to polyethylene glycol polymer promotes aptamer biodistribution to healthy and inflamed tissues // Oligonucleotides. 2005. V. 15. P. 183-195.; Setijadi E., Tao L., Liu J., Jia Z. Biodegradable star polymers functionalized with beta-cyclo-dextrin inclusion complexes // Biomacromolecules. 2009. V. 10. P. 2699-2707.; Santi D.V., Schneider E.L., Reid R., Robinson L., Ashley G.W. Predictable and tunable half-life extension of therapeutic agents by controlled chemical release from macromolecular conjugates // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 6211-6216.; Asayama S., Maruyama A., Cho C.S., Akaike T. Design of comb-type polyamine copolymers for a novel pH-sensitive DNA carrier // Bioconjug. Chem. 1997. V. 8. P. 833-838.; Srividhya M., Preethi S., Gnanamani A., Reddy B.S. Sustained release of protein from poly(ethylene glycol) incorporated amphiphilic comb like polymers // Int. J. Pharm. 2006. V. 326. P. 119-127.; Heredia K.L., Bontempo D., Ly T., Byers J.T. [et al.]. In situ preparation of protein-«smart» polymer conjugates with retention of bioactivity // J. Am. Chem. Soc. 2005. V. 127. P. 16955-16960.; Bontempo D., Maynard H.D. Streptavidin as a macroinitiator for polymerization: In situ protein-polymer conjugate formation // J. Am. Chem. Soc. 2005. V. 127. P. 6508-6509.; Le Droumaguet B., Mantovani G., Haddleton D.M., Velonia K. Formation of giant amphiphiles by post-functionalization of hydrophilic protein-polymer conjugates // J. Mater. Chem. 2007. V. 17. P. 1916-1922.; Booth C., Gaspar H.B. Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID) // Biologics. 2009. V. 3. P. 349-358.; Dinndorf P.A., Gootenberg J., Cohen M.H., Keegan P., Pazdur R. FDA drug approval summary: Pegaspargase (oncaspar) for the first-line treatment of children with acute lymphoblastic leukemia (ALL) // Oncologist. 2007. V. 12. P. 991-998.; Foster G.R. Pegylated interferons: Chemical and clinical differences (Review article) // Aliment. Pharmacol. Ther. 2004. V. 20. P. 825-830.; Foser S., Schacher A., Weyer K.A., Brugger D. Isolation, structural characterization, and anti-viral activity of positional isomers of monopegylated interferon alpha-2a (PEGASYS) // Protein Expr. Purif. 2003. V. 30. P. 78-87.; Thankamony G.N., Dunger D.B., Acerini C.L. Pegvisomant: Current and potential novel therapeutic applications // Expert Opin. Biol. Ther. 2009. V. 9. P. 1553-1563.; McGahan L. Continuous erythropoietin receptor activator (Mircera) for renal anemia // Issues Emerg. Health Technol. 2008. V. 113. P. 1-6.; Jevševar S., Kusterle M., Kenig M. PEGylation of antibody fragments for half-life extension // Methods Mol. Biol. 2012. V. 901. P. 233-246.; Khalili H., Godwin A., Choi J.W., Lever R., Brocchini S. Comparative binding of disulfide-bridged PEG-Fabs // Bioconjug. Chem. 2012. V. 23. P. 2262-2277.; Deeks E.D. Certolizumab pegol: A review of its use in the management of rheumatoid arthritis // Drugs. 2013. V. 73. P. 75-97.; Humphreys D.P., Heywood S.P., Henry A., Ait-Lhadj L. [et al.]. Alternative antibody Fab’ fragment PEGylation strategies: Combination of strong reducing agents, disruption of the interchain disulphide bond and disulphide engineering // Protein Eng. Des. Sel. 2007. V. 20. P. 227-234.; Top A., Roberts C.J., Kiick K.L. Conformational and aggregation properties of a PEGylated alanine-rich polypeptide // Biomacromolecules. 2011. V. 12. P. 2184-2192.; Terpe K. Overview of tag protein fusions: From molecular and biochemical fundamentals to commercial systems // Appl. Microbiol. Biotechnol. 2003. V. 60. P. 523-533.; Deiters A., Cropp T.A., Summerer D., Mukherji M., Schultz P.G. Site-specific PEGylation of proteins containing unnatural amino acids // Bioorg. Med. Chem. Lett. 2004. V. 14. P. 5743-5745.; Nestor J.J. Jr. The medicinal chemistry of peptides // Curr. Med. Chem. 2009. V. 16. P. 4399-4418.; Deiters A., Schultz P.G. In vivo incorporation of an alkyne into proteins in Escherichia coli // Bioorg. Med. Chem. Lett. 2005. V. 15. P. 1521-1524.; Cho H., Daniel T., Buechler Y.J., Litzinger D.C., Maio Z. Optimized clinical performance of growth hormone with an expanded genetic code // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. 9060-9065.; Fares F., Guy R., Bar-Ilan A., Felikman Y., Fima E. Designing a long-acting human growth hormone (hGH) by fusing the carboxyl-terminal peptide of human chorionic gonadotropin beta-subunit to the coding sequence of hGH // Endocrinology. 2010. V. 151. P. 4410-4417.; Sato H. Enzymatic procedure for site-specific pegylation of proteins // Adv. Drug Deliv. Rev. 2002. V. 54. P. 487-504.; Fontana A., Spolaore B., Mero A.,Veronese F.M. Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase // Adv. Drug Deliv. Rev. 2008. V. 60. P. 13-28.; DeFrees S., Wang Z.G., Xing R., Scott A.E., Wang J. GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli // Glycobiology. 2006. V. 16. P. 833-843.; Schjoldager K.T., Clausen H. Site-specific protein O-glycosylation modulates proprotein processing - deciphering specific functions of the large polypeptide GalNAc-transferase gene family // Biochim. Biophys. Acta. 2012. V. 1820. P. 2079-2094.; Yu C.C., Kuo Y.Y., Liang C.F., Chien W.T., Wu H.T. Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis // Bioconjug. Chem. 2012. V. 23. P. 714-724.; Пучков И.А., Кононова Н.В., Бобрускин А.И., Баирамашвили Д.И., Мартьянов В.А., Шустер А.М. Рекомбинантный гранулоцитарный колониестимулирующий фактор (Филграстим): Оптимизация условий конъюгирования с полиэтиленгликолем // Биоорган. химия. 2012. № 5. С. 545-554.; Yoshimoto N., Yamamoto S. PEGylated protein separations: Challenges and opportunities // Biotechnol. J. 2012. V. 7. P. 592-593.; Payne R.W., Murphy B.M., Manning M.C. Product development issues for PEGylated proteins // Pharm. Dev. Technol. 2011. V. 16. P. 423-440.; Busby T.F., Ingham K.C. Separation of macromolecules by ultrafiltration: Removal of poly(ethylene glycol) from human albumin // J. Biochem. Biophys. Methods. 1980. V. 2. P. 191-206.; Seely J.E., Richey C.W. Use of ion-exchange chromatography and hydrophobic interaction chromatography in the preparation and recovery of polyethylene glycol-linked proteins // J. Chromatogr. A. 2001. V. 908. P. 235-241.; Пучков И.А., Баирамашвили Д.И., Мягких И.В., Швец В.И. Пэгилированный рекомбинант-ный гранулоцитарный колониестимулирующий фактор пролонгированного действия: новая схема получения активной фармацевтической субстанции // Биотехнология. 2014. № 2. C. 31-62.; Morstyn G., Dexter T.M., Foote M. Filgrastim (r-metHuGCSF) In Clinical Practice. Second Edition. N.Y., Basel, Hong Kong: Marcel Dekker, 1998. 696 p.; Tanaka H., Satake-Ishikawa R., Ishikawa M., Matsuki S., Asano K. Pharmacokinetics of recombinant human granulocyte colony-stimulating factor conjugated to polyethylene glycol in rats // Cancer Res. 1991. V. 51. P. 3710-3714.; Allen R.C. Ex vivo half-life of neutrophils from healthy human subjects pre and post treatment with daily filgrastim or single-dose pegfilgrastim // Blood. 2002. V. 100. P. 243.; Molineux G., Kinstler O., Briddell B., Hartley C. [et al.]. A new form of Filgrastim with sustained duration in vivo and enhanced ability to mobilize PBPC in both mice and humans // Exp. Hematol. 1999. V. 27. P. 1724-1734.; Johnston E., Crawford J., Blackwell S., Bjurstrom T., Lockbaum P., Roskos L. [et al.]. Randomized, dose-escalation study of SD/01 compared with daily filgrastim in patients receiving chemotherapy // J. Clin. Oncol. 2000. V. 18. P. 2522-2528.; Holmes F.A., O'Shaughnessy J.A., Vukelja S., Jones S.E. [et al]. Blinded, randomized, multicenter study to evaluate single administration pegfilgrastim once per cycle versus daily filgrastim as an adjunct to chemotherapy in patients with high-risk stage II or stage III/IV breast cancer // J. Clin. Oncol. 2002. V. 20. P. 727-731.; Green M., Koelbl H., Baselga J., Galid A. [et al]. A randomized, double blind, phase 3 study evaluating fixeddose, once-per-cycle pegylated filgrastim (SD/01) vs. daily filgrastim to support chemotherapy for breast cancer // Ann. Oncol. 2003. V. 14. P. 29-35.; Lyman G.H., Kuderer N., Greene J., Balducci L. The economics of febrile neutropenia: Implications for the use of colony-stimulating factors // Eur. J. Cancer. 1998. V. 34. P. 1857-1864.; Vose J.M., Crump M., Lazarus H., Emmanouilides C., Schenkein D., Moore J. [et al]. Single dose pegfilgrastim (SD/01) is as effective as daily filgrastim following ESHAP chemotherapy for subjects with non-Hodgkin’s lymphoma of Hodgkin’s disease: Results of a randomized, open-label study // Blood. 2001. V. 98. P. 799.; Morstyn G., Foote M., Walker T., Molineux G. Filgrastim (rmetHuG-CSF) in the 21st century: SD/01 // Acta Haematol. 2001. V. 105. P. 151-155.

  20. 20