Showing 1 - 3 results of 3 for search '"граничное термическое сопротивление"', query time: 0.41s Refine Results
  1. 1
  2. 2
    Academic Journal

    Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 3 (2023); 190-197 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 3 (2023); 190-197 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2023-3

    File Description: application/pdf

    Relation: https://met.misis.ru/jour/article/view/538/439; Cahill D.G., Ford W.K., Goodson K.E., Mahan G.D., Majumdar A., Maris H.J., Merlin R., Phillpot S.R. Nanoscale thermal transport. Journal of Applied Physics. 2003; 93(2): 793—818. https://doi.org/10.1063/1.1524305; Cahill D.G., Braun P.V., Chen G., Clarke D.R., Fan Sh., Goodson K.E., Keblinski P., King W.P., Mahan G.D., Majumdar A., Maris H.J., Phillpot S.R., Pop E., Shi Li Nanoscale thermal transport. II. 2003–2012. Applied Physics Reviews. 2014; 1(1): 011305. https://doi.org/10.1063/1.4832615; Khvesyuk V.I., Barinov A.A., Liu B., Qiao W. A review to the specific problems of nano thermal physics. Journal of Physics: Conference Series. 2020; 1683(2): 022073. https://doi.org/10.1088/1742-6596/1683/2/022073; Barinov A.A., Khvesyuk V.I. Statistical model of phonon scattering on rough boundaries of nanostructures. Journal of Physics: Conference Series. 2021; 2057: 012111. https://doi.org/10.1088/1742-6596/2057/1/012111; Lim J., Hippalgaonkar K., Andrews S.C., Majumdar A., Yang P. Quantifying surface roughness effects on phonon transport in silicon nanowires. Nano Letters. 2012; 12(5): 2475—2482. https://doi.org/10.1021/nl3005868; Bass F.G., Fuks I.M. Wave scattering from statistically rough surfaces. Vol. 93. International Series in Natural Philosophy. Amsterdam: Elsevier; 2013. 540 p.; Soffer S.B. Statistical model for the size effect in electrical conduction. Journal of Applied Physics. 1967; 38(4): 1710—1715. https://doi.org/10.1063/1.1709746; Maznev A.A. Boundary scattering of phonons: Specularity of a randomly rough surface in the small-perturbation limit. Physical Review B. 2015; 91(13): 134306. https://doi.org/10.1103/PhysRevB.91.134306; Barinov A.A., Liu B., Khvesyuk V.I., Zhang K. Updated model for thermal conductivity calculation of thin films of silicon and germanium. Physics of Atomic Nuclei. 2020; 83(10): 1538—1548. https://doi.org/10.1134/S1063778820100038; Kapitza P.L. The study of heat transfer in helium II. Journal of Physics (USSR). 1941; 4(1-6): 181—210.; Халатников И. М. Теплообмен между твердым телом и гелием II. Журнал экспериментальной и теоретической физики. 1952; 22(6): 687—704.; Liu B., Khvesyuk V.I. Analytical model for thermal boundary conductance based on elastic wave theory. International Journal of Heat and Mass Transfer. 2020; 159: 120117. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120117; Weber W. Adiabatic bond charge model for the phonons in diamond, Si, Ge, and α-Sn. Physical Review B. 1977; 15(10): 4789—4803. https://doi.org/10.1103/PhysRevB.15.4789; Gilat G., Nicklow R.M. Normal vibrations in aluminum and derived thermodynamic properties. Physical Review. 1966; 143(2): 487—494. https://doi.org/10.1103/PhysRev.143.487; Minnich A.J., Johnson J.A., Schmidt A.J., Esfarjani K., Dresselhaus M.S., Nelson K.A., Chen G. Thermal conductivity spectroscopy technique to measure phonon mean free paths. Physical Review Letters. 2011; 107(9): 095901. https://doi.org/10.1103/PhysRevLett.107.095901; Liu B., Khvesyuk V.I., Barinov A.A. The modeling of the Kapitza conductance through rough interfaces between solid bodies. Physics of the Solid State. 2021; 63(7): 1128—1133. https://doi.org/10.1134/S1063783421070155; Tütüncü H.M., Srivastava G.P. Lattice dynamics of solids, surfaces, and nanostructures. Length-Scale Dependent Phonon Interactions. Topics in Applied Physics. Vol. 128. New York: Springer; 2014. 294 p. https://doi.org/10.1007/978-1-4614-8651-0_1; Khvesyuk V.I., Qiao W., Barinov A.A. The effect of phonon diffusion on heat transfer. Journal of Physics: Conference Series. 2019; 1385: 012046. https://doi.org/10.1088/1742-6596/1385/1/012046; Хвесюк В.И., Цяо В., Баринов А.А. Определение теплопроводности кремния с детальным учетом кинетики взаимодействия фононов. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки. 2022; (3(102)): 57—68. https://doi.org/10.18698/1812-3368-2022-3-57-68; Kukita K., Kamakura Y. Monte Carlo simulation of phonon transport in silicon including a realistic dispersion relation. Journal of Applied Physics. 2013; 114(15): 154312. https://doi.org/10.1063/1.4826367; Inyushkin A.V., Taldenkov A.N., Gibin A.M., Gusev A.V., Pohl H.-J. On the isotope effect in thermal conductivity of silicon. Physica Status Solidi (C). 2004; 1(11): 2995—2998. https://doi.org/10.1002/pssc.200405341; https://met.misis.ru/jour/article/view/538

  3. 3