Showing 1 - 12 results of 12 for search '"глюкокортикоидный рецептор"', query time: 0.68s Refine Results
  1. 1
  2. 2
  3. 3
    Academic Journal

    Contributors: The work was carried out with the financial support of the Russian Science Foundation (grant No. 21-15-00285)., Работа выполнена при финансовой поддержке Российского научного фонда (грант № 21-15-00285).

    Source: Advances in Molecular Oncology; Vol 10, No 1 (2023); 25-39 ; Успехи молекулярной онкологии; Vol 10, No 1 (2023); 25-39 ; 2413-3787 ; 2313-805X

    File Description: application/pdf

  4. 4
    Academic Journal

    Contributors: Работа выполнена за счет средств субсидии, выделенной в рамках государственной поддержки Казанского (Приволжского) федерального университета в целях повышения его конкурентоспособности среди ведущих мировых научно-образовательных центров

    Source: Medical Immunology (Russia); Том 26, № 3 (2024); 523-532 ; Медицинская иммунология; Том 26, № 3 (2024); 523-532 ; 2313-741X ; 1563-0625

    File Description: application/pdf

    Relation: https://www.mimmun.ru/mimmun/article/view/2908/1867; https://www.mimmun.ru/mimmun/article/view/2908/1937; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2908/12867; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2908/12868; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2908/12869; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2908/12870; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2908/12871; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2908/12872; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2908/12873; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2908/12874; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2908/12875; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2908/12879; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2908/12880; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2908/13189; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2908/13190; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2908/13191; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2908/13194; Abaya R., Jones L., Zorc J.J. Dexamethasone compared to prednisone for the treatment of children with acute asthma exacerbations. Pediatr. Emerg. Care, 2018, Vol. 34, no. 1, pp. 53-58.; Abdulamir A.S., Hafidh R.R., Abubakar F., Abbas K.A. Changing survival, memory cell compartment, and T-helper balance of lymphocytes between severe and mild asthma. BMC Immunol., 2008, Vol. 9, 73. doi:10.1186/1471-2172-9-73.; Abramov S.N., Skibo Y.V., Evtugyn V.G., Vodounon C.A., Abramova Z.I. The role of T-lymphocytes autophagy in severe atopic asthma pathogenesis. BioNanoScience, 2017, Vol. 7, pp. 269-271.; Ali F.R. Does this patient have atopic asthma? Clin. Med., 2011, Vol. 11, no. 4, pp. 376-380.; Boonpiyathad T., Sözener Z.C., Satitsuksanoa P., Akdis C.A. Immunologic mechanisms in asthma. Semin. Immunol., 2019, Vol. 46, 101333. doi:10.1016/j.smim.2019.101333.; Goleva E., Li L.-B., Eves P.T., Strand M.J., Martin R.J., Leung D.Y.M. Increased glucocorticoid receptor beta alters steroid response in glucocorticoid-insensitive asthma. Am. J. Respir. Crit. Care Med., 2006, Vol. 173, no. 6, pp. 607-616.; Gorska M.M. Natural killer cells in asthma. Curr. Opin. Allergy Clin. Immunol., 2017, Vol. 17, no. 1, pp. 50-54.; Gruver-Yates A.L., Cidlowski J.A. Tissue-specific actions of glucocorticoids on apoptosis: a double–edged sword. Cells, 2013, Vol. 2, no. 2, pp. 202-223.; Hamzaoui A., Hamzaoui K., Salah H., Chabbou A. Lymphocytes apoptosis in patients with acute exacerbation of asthma. Mediators Inflamm., 1999, Vol. 8, no. 4-5, pp. 237-243.; Henderson I., Caiazzo E., McSharry C., Guzik T.J., Maffia P. Why do some asthma patients respond poorly to glucocorticoid therapy? Pharmacol. Res., 2020, Vol. 160, 105189. doi:10.1016/j.phrs.2020.105189.; Holtzman M.J., Green J.M., Jayaraman S., Arch R.H. Regulation of T cell apoptosis. Apoptosis, 2000, Vol. 5, no. 5, pp. 459-471.; Lu N.Z., Collins J.B., Grissom S.F., Cidlowski J.A. Selective regulation of bone cell apoptosis by translational isoforms of the glucocorticoid receptor. Mol. Cell. Biol., 2007, Vol. 27, no. 20, pp. 7143-7160.; Lu N.Z., Cidlowski J.A. The origin and functions of multiple human glucocorticoid receptor isoforms. Ann. N. Y. Acad. Sci., 2004, Vol. 1024, pp. 102-123.; Marquez R.T., Xu L. Bcl-2: Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am. J. Cancer Res., 2012, Vol. 2, no. 2, pp. 214-221.; Mizushima N. Autophagy: process and function. Genes Dev., 2007, Vol. 21, no. 22, pp. 2861-2873.; Mohsen H., Moustafa K., Riad N., Shaaban H., El Basha N. The effect of BclI polymorphism of NR3C1 gene on asthma phenotypes in Egyptian children. Egypt. J. Pediatr. Allergy Immunol., 2020, Vol. 18, pp. 71-77.; Murdoch J.R., Lloyd C.M. Chronic inflammation and asthma. Mutation Res., 2010, Vol. 690, no. 1-2, pp. 24-39.; Panek M., Pietras T., Fabijan A., Miłanowski M., Wieteska L., Górski P., Kuna P., Szemraj J. Effect of glucocorticoid receptor gene polymorphisms on asthma phenotypes. Exp. Ther. Med., 2013, Vol. 5, no. 2, pp. 572–580.; Parzych K.R., Klionsky D.J. An overview of autophagy: morphology, mechanism, and regulation. Antioxid. Redox Signal., 2014, Vol. 20, no. 3, pp. 460-473.; Pietras T., Panek M., Tworek D., Oszajca K., Wujcik R., Górski P, Kuna P., Szemraj J. The Bcl I single nucleotide polymorphism of the human glucocorticoid receptor gene h-GR/NR3C1 promoter in patients with bronchial asthma: pilot study. Mol. Biol. Rep., 2011, Vol. 38, no. 6, pp. 3953-3958.; Potapinska O., Demkow U. T lymphocyte apoptosis in asthma. Eur. J. Med. Res., 2009, Vol. 14, Suppl. 4, pp. 192-195.; Ramamoorthy S., Cidlowski J.A. Ligand–induced repression of the glucocorticoid receptor gene is mediated by an NCoR1 repression complex formed by long-range chromatin interactions with intragenic glucocorticoid response elements. Mol. Cell. Biol., 2013, Vol. 33, no. 9, pp. 1711-1722.; Theofani E., Xanthou G. Autophagy: a friend or foe in allergic asthma? Int. J. Mol. Sci., 2021, Vol. 22, no. 12, 6314. doi:10.3390/ijms22126314.; Weigel N.L., Moore N.L. Steroid receptor phosphorylation: a key modulator of multiple receptor functions. Mol. Endocrinol., 2007, Vol. 21, no. 10, pp. 2311-2319.; https://www.mimmun.ru/mimmun/article/view/2908

  5. 5
    Academic Journal

    Source: Siberian journal of oncology; Том 21, № 3 (2022); 50-60 ; Сибирский онкологический журнал; Том 21, № 3 (2022); 50-60 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2022-21-3

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/2163/988; Vandewalle J., Luypaert A., De Bosscher K., Libert C. Therapeutic Mechanisms of Glucocorticoids. Trends Endocrinol Metab. 2018; 29(1): 42–54. doi:10.1016/j.tem.2017.10.010.; Kadmiel M., Cidlowski J.A. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci. 2013; 34(9): 518–30. doi:10.1016/j.tips.2013.07.003.; Oray M., Abu Samra K., Ebrahimiadib N., Meese H., Foster C.S. Long-term side efects of glucocorticoids. Expert Opin Drug Saf. 2016; 15(4): 457–65. doi:10.1517/14740338.2016.1140743.; Noureddine L.M., Trédan O., Hussein N., Badran B., Le Romancer M., Poulard C. Glucocorticoid Receptor: A Multifaceted Actor in Breast Cancer. Int J Mol Sci. 2021; 22(9): 4446. doi:10.3390/ijms22094446.; Baida G., Bhalla P., Kirsanov K., Lesovaya E., Yakubovskaya M., Yuen K., Guo S., Lavker R.M., Readhead B., Dudley J.T., Budunova I. REDD1 functions at the crossroads between the therapeutic and adverse efects of topical glucocorticoids. EMBO Mol Med. 2015; 7(1): 42–58. doi:10.15252/emmm.201404601.; Wang H., Kubica N., Ellisen L.W., Jefferson L.S., Kimball S.R. Dexamethasone represses signaling through the mammalian target of rapamycin in muscle cells by enhancing expression of REDD1. J Biol Chem. 2006; 281(51): 39128–34. doi:10.1074/jbc.M610023200.; Pinto J.A., Rolfo C., Raez L.E, Prado A., Araujo J.M., Bravo L., Fajardo W., Morante Z.D., Aguilar A., Neciosup S.P., Mas L.A., Bretel D., Balko J.M., Gomez H.L. In silico evaluation of DNA Damage Inducible Transcript 4 gene (DDIT4) as prognostic biomarker in several malignancies. Sci Rep. 2017; 7(1): 1526. doi:10.1038/s41598-017-01207-3.; Savukaitytė A., Gudoitytė G., Bartnykaitė A., Ugenskienė R., Juozaitytė E. siRNA Knockdown of REDD1 Facilitates Aspirin-Mediated Dephosphorylation of mTORC1 Target 4E-BP1 in MDA-MB-468 Human Breast Cancer Cell Line. Cancer Manag Res. 2021; 13: 1123–33. doi:10.2147/CMAR.S264414.; Horak P., Crawford A.R., Vadysirisack D.D., Nash Z.M., DeYoung M.P., Sgroi D., Ellisen L.W. Negative feedback control of HIF-1 through REDD1-regulated ROS suppresses tumorigenesis. Proc Natl Acad Sci USA. 2010; 107(10): 4675–80. doi:10.1073/pnas.0907705107.; Koo J.S., Jung W. Alteration of REDD1-mediated mammalian target of rapamycin pathway and hypoxia-inducible factor-1α regulation in human breast cancer. Pathobiology. 2010; 77(6): 289–300. doi:10.1159/000320936.; Lesovaya E., Agarwal S., Readhead B., Vinokour E., Baida G., Bhalla P., Kirsanov K., Yakubovskaya M., Platanias L.C, Dudley J.T., Budunova I. Rapamycin Modulates Glucocorticoid Receptor Function, Blocks Atrophogene REDD1, and Protects Skin from Steroid Atrophy. J Invest Dermatol. 2018; 138(9): 1935–44. doi:10.1016/j.jid.2018.02.045.; Савинкова А.В., Жидкова Е.М., Тилова Л.Р., Лаврова М.Д., Лылова Е.С., Кузин К.А., Портянникова А.Ю., Максимова В.П., Холодова А.В., Власова О.А., Фетисов Т.И., Кирсанов К.И., Белицкий Г.А., Якубовская М.Г., Лесовая Е.А. Варианты и перспективы перепрофилирования лекарственных препаратов для использования в терапии онкологических заболеваний. Сибирский онкологический журнал. 2018; 17(3): 77–87.; Лылова Е.С., Савинкова А.В., Жидкова Е.М., Кирсанов К.И., Якубовская М.Г., Будунова И.В., Лесовая Е.А. Ингибирование экспрессии гена REDD1 для снижения побочных эффектов глюкокортикоидов. Сибирский онкологический журнал. 2020; 19(6): 73–81.; Hostetler G.L., Ralston R.A., Schwartz S.J. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity. Adv Nutr. 2017; 8(3): 423–35. doi:10.3945/an.116.012948.; Montenegro-Landívar M.F., Tapia-Quirós P., Vecino X., Reig M., Valderrama C., Granados M., Cortina J.L., Saurina J. Polyphenols and their potential role to fght viral diseases: An overview. Sci Total Environ. 2021; 801: 149719. doi:10.1016/j.scitotenv.2021.149719.; Yu C., Yang B., Najaf M. Targeting of cancer cell death mechanisms by curcumin: Implications to cancer therapy. Basic Clin Pharmacol Toxicol. 2021; 129(6): 397–415. doi:10.1111/bcpt.13648.; Fu X., Li M., Tang C., Huang Z., Najaf M. Targeting of cancer cell death mechanisms by resveratrol: a review. Apoptosis. 2021; 26(11–12): 561–73. doi:10.1007/s10495-021-01689-7.; Hazafa A., Iqbal M.O., Javaid U., Tareen M.B.K., Amna D., Ramzan A., Piracha S., Naeem M. Inhibitory efect of polyphenols (phenolic acids, lignans, and stilbenes) on cancer by regulating signal transduction pathways: a review. Clin Transl Oncol. 2022; 24(3): 432–45. doi:10.1007/ s12094-021-02709-3.; Nozhat Z., Heydarzadeh S., Memariani Z., Ahmadi A. Chemoprotective and chemosensitizing efects of apigenin on cancer therapy. Cancer Cell Int. 2021; 21(1): 574. doi:10.1186/s12935-021-02282-3.; Javed Z., Sadia H., Iqbal M.J., Shamas S., Malik K., Ahmed R., Raza S., Butnariu M., Cruz-Martins N., Sharif-Rad J. Apigenin role as cell-signaling pathways modulator: implications in cancer prevention and treatment. Cancer Cell Int. 2021; 21(1): 189. doi:10.1186/s12935- 021-01888-x.; Shukla S., Gupta S. Apigenin: a promising molecule for cancer prevention. Pharm Res. 2010; 27(6): 962–78. doi:10.1007/s11095-010- 0089-7.; Aggarwal B.B., Bhardwaj A., Aggarwal R.S., Seeram N.P., Shishodia S., Takada Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res. 2004; 24(5A): 2783–840.; Arena A., Romeo M.A., Benedetti R., Masuelli L., Bei R., Gilardini Montani M.S., Cirone M. New Insights into Curcumin- and ResveratrolMediated Anti-Cancer Efects. Pharmaceuticals (Basel). 2021; 14(11): 1068. doi:10.3390/ph14111068.; Власова О.А., Борунова А.А., Сафина А., Сметанина И.В., Лесовая Е.А., Белицкий Г.А., Заботина Т.Н., Гурова К., Кирсанов К.И., Якубовская М.Г. Активация сигнального пути интерферона-альфа ресвератролом, генистеином и кверцетином. Сибирский онкологический журнал. 2019; 18(1): 50–5.; Miller S.C., Huang R., Sakamuru S., Shukla S.J., Attene-Ramos M.S., Shinn P., Van Leer D., Leister W., Austin C.P., Xia M. Identifcation of known drugs that act as inhibitors of NF-kappaB signaling and their mechanism of action. Biochem Pharmacol. 2010; 79(9): 1272–80. doi:10.1016/j.bcp.2009.12.021.; Sun Q., Yogosawa S., Iizumi Y., Sakai T., Sowa Y. The alkaloid emetine sensitizes ovarian carcinoma cells to cisplatin through downregulation of bcl-xL. Int J Oncol. 2015; 46(1): 389–94. doi:10.3892/ ijo.2014.2703.; Sun Q., Fu Q., Li S., Li J., Liu S., Wang Z., Su Z., Song J., Lu D. Emetine exhibits anticancer activity in breast cancer cells as an antagonist of Wnt/β catenin signaling. Oncol Rep. 2019; 42(5): 1735–44. doi:10.3892/or.2019.7290.; Meyuhas O. Ribosomal Protein S6 Phosphorylation: Four Decades of Research. Int Rev Cell Mol Biol. 2015; 320: 41–73. doi:10.1016/ bs.ircmb.2015.07.006.; Григорьева Д.Д., Жидкова Е.М., Лылова Е.С., Демина Д.В., Кирсанов К.И., Белицкий Г.А., Якубовская М.Г., Лесовая Е.А. Ингибирование глюкокортикоидиндуцированной экспрессии REDD1 рапамицином в клетках рака молочной железы. Успехи молекулярной онкологии. 2022; 9(1): 42–7.; Жидкова Е.М., Кузин К.А., Тилова Л.Р., Савинкова А.В., Борисова О.И., Лаврова М.Д., Максимова В.П., Кирсанов К.И., Якубовская М.Г., Лесовая Е.А. Сравнительный анализ биологических эффектов селективного агониста глюкокортикоидного рецептора cpda на клеточные линии рака молочной железы различных молекулярных подтипов. Сибирский онкологический журнал. 2017; 16(6): 41–46.; Kach J., Conzen S.D., Szmulewitz R.Z. Targeting the glucocorticoid receptor in breast and prostate cancers. Sci Transl Med. 2015; 7(305). doi:10.1126/scitranslmed.aac7531.; Vilasco M., Communal L., Mourra N., Courtin A., Forgez P., Gompel A. Glucocorticoid receptor and breast cancer. Breast Cancer Res Treat. 2011; 130(1): 1–10. doi:10.1007/s10549-011-1689-6.; Zhang C., Wenger T., Mattern J., Ilea S., Frey C., Gutwein P., Altevogt P., Bodenmüller W., Gassler N., Schnabel P.A., Dienemann H., Marmé A., Hohenfellner M., Haferkamp A., Pftzenmaier J., Gröne H.J., Kolb A., Büchler P., Büchler M., Friess H., Rittgen W., Edler L., Debatin K.M., Krammer P.H., Rutz H.P., Herr I. Clinical and mechanistic aspects of glucocorticoid-induced chemotherapy resistance in the majority of solid tumors. Cancer Biol Ther. 2007; 6(2): 278–87. doi:10.4161/ cbt.6.2.3652.; Mikosz C.A., Brickley D.R., Sharkey M.S., Moran T.W., Conzen S.D. Glucocorticoid receptor-mediated protection from apoptosis is associated with induction of the serine/threonine survival kinase gene, sgk-1. J Biol Chem. 2001; 276(20): 16649–54. doi:10.1074/jbc.M010842200.; Obradović M.M.S., Hamelin B., Manevski N., Couto J.P., Sethi A., Coissieux M.M., Münst S., Okamoto R., Kohler H., Schmidt A., BentiresAlj M. Glucocorticoids promote breast cancer metastasis. Nature. 2019; 567(7749): 540–4. doi:10.1038/s41586-019-1019-4.; https://www.siboncoj.ru/jour/article/view/2163

  6. 6
    Academic Journal

    Contributors: This work was supported by the Russian Science Foundation, grant No. 17-75-20124, Работа выполнена при финансовой поддержке РНФ, грант № 17-75-20124

    Source: Siberian journal of oncology; Том 19, № 6 (2020); 73-81 ; Сибирский онкологический журнал; Том 19, № 6 (2020); 73-81 ; 2312-3168 ; 1814-4861 ; 10.21294/1814-4861-2020-19-6

    File Description: application/pdf

    Relation: https://www.siboncoj.ru/jour/article/view/1642/810; Barnes P.J., Adcock I.M. Glucocorticoid resistance in inflammatory diseases. Lancet. 2009 May; 373(9678): 1905–17. doi:10.1016/S0140-6736(09)60326-3.; Baida G., Bhalla P., Kirsanov K., Lesovaya E., Yakubovskaya M., Yuen K., Guo S., Lavker R.M., Readhead B., Dudley J.T., Budunova I. REDD1 functions at the crossroads between the therapeutic and adverse effects of topical glucocorticoids. EMBO Mol Med. 2015 Jan; 7(1): 42–58. doi:10.15252/emmm.201404601.; Miller W.L., Auchus R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011; 32(1): 81–151. doi:10.1210/er.2010-0013.; De Bosscher K., Beck I.M., Haegeman G. Classic glucocorticoids versus non-steroidal glucocorticoid receptor modulators: survival of the fittest regulator of the immune system? Brain Behav Immun. 2010 Oct; 24(7): 1035–42. doi:10.1016/j.bbi.2010.06.010.; Lim H.W., Uhlenhaut N.H., Rauch A., Weiner J., Hübner S., Hübner N., Won K.J., Lazar M.A., Tuckermann J., Steger D.J. Genomic redistribution of GR monomers and dimers mediates transcriptional response to exogenous glucocorticoid in vivo. Genome Res. 2015 Jun; 25(6): 836–44. doi:10.1101/gr.188581.114.; Sofer A., Lei K., Johannessen C.M., Ellisen L.W. Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol Cell Biol. 2005 Jul; 25(14): 5834–45. doi:10.1128/MCB.25.14.5834-5845.2005.; Lesovaya E., Agarwal S., Readhead B., Vinokour E., Baida G., Bhalla P., Kirsanov K., Yakubovskaya M., Platanias L.C., Dudley J.T., Budunova I. Rapamycin Modulates Glucocorticoid Receptor Function, Blocks Atrophogene REDD1, and Protects Skin from Steroid Atrophy. J Invest Dermatol. 2018 Sep; 138(9): 1935–1944. doi:10.1016/j.jid.2018.02.045.; Agarwal S., Mirzoeva S., Readhead B., Dudley J.T., Budunova I. PI3K inhibitors protect against glucocorticoid-induced skin atrophy. EBioMedicine. 2019 Mar; 41: 526– 537. doi:10.1016/j.ebiom.2019.01.055.; Савинкова А.В., Жидкова Е.М., Тилова Л.Р., Лаврова М.Д., Лылова Е.С., Кузин К.А., Портянникова А.Ю., Максимова В.П., Холодова А.В., Власова О.А., Фетисов Т.И., Кирсанов К.И., Белицкий Г.А., Якубовская М.Г., Лесовая Е.А. Варианты и перспективы перепрофилирования лекарственных препаратов для использования в терапии онкологических заболеваний. Сибирский онкологический журнал. 2018; 17(3): 77–87. doi:10.21294/1814-4861-2018-17-3-77-87.; Lamb J., Crawford E.D., Peck D., Modell J.W., Blat I.C., Wrobel M.J., Lerner J., Brunet J.P., Subramanian A., Ross K.N., Reich M., Hieronymus H., Wei G., Armstrong S.A., Haggarty S.J., Clemons P.A., Wei R., Carr S.A., Lander E.S., Golub T.R. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science. 2006 Sep; 313(5795): 1929–35. doi:10.1126/science.1132939.; Akinboye E.S., Rosen M.D., Bakare O., Denmeade S.R. Anticancer activities of emetine prodrugs that are proteolytically activated by the prostate specific antigen (PSA) and evaluation of in vivo toxicity of emetine derivatives. Bioorg Med Chem. 2017 Dec 15; 25(24): 6707–17. doi:10.1016/j.bmc.2017.11.015.; Akinboye E.S., Bakare O. Biological activities of emetine. The Open Nat Prod J. 2011; 4: 8–15. doi:10.2174/1874848101104010008.; Boon-Unge K., Yu Q., Zou T., Zhou A., Govitrapong P., Zhou J. Emetine regulates the alternative splicing of Bcl-x through a protein phosphatase 1-dependent mechanism. Chem Biol. 2007 Dec; 14(12): 1386–92. doi:10.1016/j.chembiol.2007.11.004.; Nomura T., Kutchan T.M. Three new O-methyltransferases are sufficient for all O-methylation reactions of ipecac alkaloid biosynthesis in root culture of Psychotria ipecacuanha. J Biol Chem. 2010 Mar 5; 285(10): 7722–38. doi:10.1074/jbc.M109.086157.; Белицкий Г.А., Кирсанов К.И., Лесовая Е.А., Якубовская М.Г. Механизмы антиканцерогенного действия флавоноидов. Успехи молекулярной онкологии. 2014; 1(1): 56–68. doi:10.17650/2313-805X.2014.1.1.56-68.; Möller M., Herzer K., Wenger T., Herr I., Wink M. The alkaloid emetine as a promising agent for the induction and enhancement of drug-induced apoptosis in leukemia cells. Oncol Rep. 2007 Sep; 18(3): 737–44.; Street E.W. Cyclophosphamide plus emetine in lung cancer. Lancet. 1972 Aug 19; 2(7773): 381–2. doi:10.1016/s0140-6736(72)91771-0.; Meyuhas O. Ribosomal Protein S6 Phosphorylation: Four Decades of Research. Int Rev Cell Mol Biol. 2015; 320: 41–73. doi:10.1016/bs.ircmb.2015.07.006.; https://www.siboncoj.ru/jour/article/view/1642

  7. 7
    Academic Journal

    Contributors: This work was supported by the Russian Science Foundation as Project 16-15-10131.

    Source: Vavilov Journal of Genetics and Breeding; Том 23, № 4 (2019); 456-464 ; Вавиловский журнал генетики и селекции; Том 23, № 4 (2019); 456-464 ; 2500-3259

    File Description: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/2139/1237; Aguilera G., Rabadan-Diehl C. Vasopressinergic regulation of the hypothalamic-pituitary-adrenal axis: implications for stress adaptation. Regul. Pept. 2000;96(1-2):23-29.; Aisa B., Tordera R., Lasheras B., Del Rio J., Ramirez M.J. Cognitive impairment associated to HPA axis hyperactivity after maternal separation in rats. Psychoneuroendocrinology. 2007;32(3):256-266. DOI 10.1016/j.psyneuen.2006.12.013.; Batluk U.I., Burdeeva K.V., Degtyareva A.O., Dolganova O.M., Ershov N.I., Merkulova T.I., Bondar N.P. The long-term consequences of early-life dexamethasone treatment on the cognitive ability of male mice and gene expression in the hippocampus. In: 11th Int. Conf. on Bioinformatics of Genome Regulation and StructureSystems Biology (BGRSSB-2018). Novosibirsk, August 20–25. Novosibirsk, 2018;7.; Berardelli R., Karamouzis I., D’Angelo V., Zichi C., Fussotto B., Giordano R., Ghigo E., Arvat E. Role of mineralocorticoid receptors on the hypothalamus-pituitary-adrenal axis in humans. Endocrine. 2013;43(1):51-58. DOI 10.1007/s12020-012-9750-8.; Bhatt A.J., Feng Y., Wang J., Famuyide M., Hersey K. Dexamethasone induces apoptosis of progenitor cells in the subventricular zone and dentate gyrus of developing rat brain. J. Neurosci. Res. 2013;91(9): 1191-1202. DOI 10.1002/jnr.23232.; Bondar N.P., Lepeshko A.A., Reshetnikov V.V. Effects of early-life stress on social and anxiety-like behaviors in adult mice: sex-specific effects. Behav. Neurol. 2018;2018:1538931. DOI 10.1155 2018/ 1538931.; Chiu H.F., Chan M.W.Y., Cheng C.Y., Chou J.L., Lin J.M., Yang Y.L., Lu K.T. Neonatal dexamethasone treatment suppresses hippocampal estrogen receptor α-expression in adolescent female rats. Mol. Neurobiol. Publ. online 2018. Publ. 2019;56:2224-2233. DOI 10.1007/s12035-018-1214-6.; Claessens S.E., Daskalakis N.P., Oitzl M.S., de Kloet E.R. Early handling modulates outcome of neonatal dexamethasone exposure. Horm. Behav. 2012;62(4):433-441. DOI 10.1016/j.yhbeh.2012.07.011.; De Kloet E.R. Functional profile of the binary brain corticosteroid receptor system: mediating, multitasking, coordinating, integrating. Eur. J. Pharmacol. 2013;719(1-3):53-62. DOI 10.1016/j.ejphar.2013.04.053.; De Kloet E.R., Vreugdenhil E., Oitzl M.S., Joels M. Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 1998;19(3):269301. DOI 10.1210/edrv.19.3.0331.; Drouin J., Sun Y.L., Chamberland M., Gauthier Y., De Lean A., Nemer M., Schmidt T.J. Novel glucocorticoid receptor complex with DNA element of the hormone-repressed POMC gene. EMBO J. 1993;12(1):145-156.; Felszeghy K., Bagdy G., Nyakas C. Blunted pituitary-adrenocortical stress response in adult rats following neonatal dexamethasone treatment. J. Neuroendocrinol. 2000;12(10):1014-1021.; Felszeghy K., Gaspar E., Nyakas C. Long-term selective down-regulation of brain glucocorticoid receptors after neonatal dexamethasone treatment in rats. J. Neuroendocrinol. 1996;8(7):493-499.; Feng Y., Rhodes P.G., Liu H., Bhatt A.J. Dexamethasone induces neurodegeneration but also up-regulates vascular endothelial growth factor A in neonatal rat brains. Neuroscience. 2009;158(2):823-832. DOI 10.1016/j.neuroscience.2008.10.024.; Ferguson S.A., Paule M.G., Holson R.R. Neonatal dexamethasone on day 7 in rats causes behavioral alterations refl of hippocampal, but not cerebellar, defi Neurotoxicol. Teratol. 2001;23(1):57-69.; Flagel S.B., Vazquez D.M., Watson S.J., Jr., Neal C.R., Jr. Effects of tapering neonatal dexamethasone on rat growth, neurodevelopment, and stress response. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002;282(1):R55-63. DOI 10.1152/ajpregu.2002.282.1.R55.; Gjerstad J.K., Lightman S.L., Spiga F. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress. 2018; 21(5):403-416. DOI 10.1080/10253890.2018.1470238.; Harno E., Gali Ramamoorthy T., Coll A.P., White A. POMC: The Physiological Power of Hormone Processing. Physiol. Rev. 2018;98(4): 2381-2430. DOI 10.1152/physrev.00024.2017.; Kamphuis P.J., Croiset G., Bakker J.M., Van Bel F., Van Ree J.M., Wiegant V.M. Neonatal dexamethasone treatment affects social behaviour of rats in later life. Neuropharmacology. 2004;47(3):461-474. DOI 10.1016/j.neuropharm.2004.04.008.; Kamphuis P.J., Gardoni F., Kamal A., Croiset G., Bakker J.M., Cattabeni F., Gispen W.H., van Bel F., Di Luca M., Wiegant V.M. Longlasting effects of neonatal dexamethasone treatment on spatial learning and hippocampal synaptic plasticity: involvement of the NMDA receptor complex. FASEB J. 2003;17(8):911-913. DOI 10.1096/fj.02-0333fje.; Ko M.C., Hung Y.H., Ho P.Y., Yang Y.L., Lu K.T. Neonatal glucocorticoid treatment increased depression-like behaviour in adult rats. Int. J. Neuropsychopharmacol. 2014;17(12):1995-2004. DOI 10.1017/S1461145714000868.; Kreider M.L., Tate C.A., Cousins M.M., Oliver C.A., Seidler F.J., Slotkin T.A. Lasting effects of developmental dexamethasone treatment on neural cell number and size, synaptic activity, and cell signaling: critical periods of vulnerability, dose-effect relationships, regional targets, and sex selectivity. Neuropsychopharmacology. 2006;31(1): 12-35. DOI 10.1038/sj.npp.1300783.; Kulikov A.V., Kulikov V.A., Bazovkina D.V. Digital registration and analysis of visual information in behavioral experiment. Zhurnal Vysshey Nervnoy Deyatel’nosti im. I.P. Pavlova = I.P. Pavlov Journal of Higher Nervous Activity. 2005;55(1):126-132. (in Russian)]; Ladd C.O., Huot R.L., Thrivikraman K.V., Nemeroff C.B., Meaney M.J., Plotsky P.M. Long-term behavioral and neuroendocrine adaptations to adverse early experience. Prog. Brain Res. 2000;122:81-103.; Ladd C.O., Huot R.L., Thrivikraman K.V., Nemeroff C.B., Plotsky P.M. Long-term adaptations in glucocorticoid receptor and mineralocorticoid receptor mRNA and negative feedback on the hypothalamo-pituitary-adrenal axis following neonatal maternal separation. Biol. Psychiatry. 2004;55(4):367-375. DOI 10.1016/j.biopsych.2003.10.007.; Lanshakov D.A., Sukhareva E.V., Kalinina T.S., Dygalo N.N. Dexamethasone-induced acute excitotoxic cell death in the developing brain. Neurobiol. Dis. 2016;91:1-9. DOI 10.1016/j.nbd.2016.02.009. Lehmann J., Feldon J. Long-term biobehavioral effects of maternal separation in the rat: consistent or confusing? Rev. Neurosci. 2000;11(4):383-408.; Leret M.L., Peinado V., Suarez L.M., Tecedor L., Gamallo A., Gonzalez J.C. Role of maternal adrenal glands on the developing serotoninergic and aminoacidergic systems of the postnatal rat brain. Int. J. Dev. Neurosci. 2004;22(2):87-93. DOI 10.1016/j.ijdevneu.2003.12.005.; Levine S. The ontogeny of the hypothalamic-pituitary-adrenal axis. The influence of maternal factors. Ann. N.Y. Acad. Sci. 1994;746:275288; discussion 289-293.; Li S.X., Fujita Y., Zhang J.C., Ren Q., Ishima T., Wu J., Hashimoto K. Role of the NMDA receptor in cognitive deficits, anxiety and depressive-like behavior in juvenile and adult mice after neonatal dexamethasone exposure. Neurobiol. Dis. 2014a;62:124-134. DOI 10.1016/j.nbd.2013.09.004.; Li S.X., Zhang J.C., Wu J., Hashimoto K. Antidepressant effects of ketamine on depression-like behavior in juvenile mice after neonatal dexamethasone exposure. Clin. Psychopharmacol. Neurosci. 2014b; 412(2):124-127. DOI 10.9758/cpn.2014.12.2.124.; Lin H.J., Huang C.C., Hsu K.S. Effects of neonatal dexamethasone treatment on hippocampal synaptic function. Ann. Neurol. 2006; 59(6):939-951. DOI 10.1002/ana.20885.; Machhor N., Balaji T., Raju T.N. Postnatal dexamethasone and long term learning and memory functions in developing rats: effect of postnatal age and gender. Life Sci. 2004;74(15):1925-1935. DOI 10.1016/j.lfs.2003.09.044.; Malkoski S.P., Dorin R.I. Composite glucocorticoid regulation at a functionally defined negative glucocorticoid response element of the human corticotropin-releasing hormone gene. Mol. Endocrinol. 1999;13(10):1629-1644. DOI 10.1210/mend.13.10.0351.; McEwen B.S., Gould E.A., Sakai R.R. The vulnerability of the hippocampus to protective and destructive effects of glucocorticoids in relation to stress. Br. J. Psychiatry. 1992;160(S15):18-23.; Mesquita A.R., Wegerich Y., Patchev A.V., Oliveira M., Leao P., Sousa N., Almeida O.F. Glucocorticoids and neuroand behavioural development. Semin. Fetal Neonatal Med. 2009;14(3):130-135. DOI 10.1016/j.siny.2008.11.002.; Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods. 1984;11(1):47-60.; Murgatroyd C., Patchev A.V., Wu Y., Micale V., Bockmuhl Y., Fischer D., Holsboer F., Wotjak C.T., Almeida O.F., Spengler D. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat. Neurosci. 2009;12(12):1559-1566. DOI 10.1038/nn.2436.; Navailles S., Zimnisky R., Schmauss C. Expression of glucocorticoid receptor and early growth response gene 1 during postnatal development of two inbred strains of mice exposed to early life stress. Dev. Neurosci. 2010;32(2):139-148. DOI 10.1159/000293989.; Neal C.R., Jr., Weidemann G., Kabbaj M., Vazquez D.M. Effect of neonatal dexamethasone exposure on growth and neurological development in the adult rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004;287(2):R375-385. DOI 10.1152/ajpregu.00012.2004.; Paul S., Jeon W.K., Bizon J.L., Han J.S. Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment. Front. Aging Neurosci. 2015;7:43. DOI 10.3389/fnagi.2015.00043.; Pervanidou P., Chrousos G.P. Early-life stress: from neuroendocrine mechanisms to stress-related disorders. Horm. Res. Paediatr. 2018; 89(5):372-379. DOI 10.1159/000488468.; Pryce C.R., Feldon J. Long-term neurobehavioural impact of the postnatal environment in rats: manipulations, effects and mediating mechanisms. Neurosci. Biobehav. Rev. 2003;27(1-2):57-71. DOI 10.1016/S0149-7634(03)00009-5.; Qaheri S.N., Ali A.B., Alalwaan A.A., Ahmed F.A., Ahmed M.M., Kamal A.H. Neonatal dexamethasone exposure in rats resulted in hippocampal learning and memory defects with decreased convulsion threshold later in adult life. Neurosciences (Riyadh). 2013;18(4): 388-390.; Reshetnikov V.V., Lepeshko A.A., Ryabushkina J.A., Studenikina A.A., Merkulova T.I., Bondar N.P. The long-term effects of early postnatal stress on cognitive abilities and expression of genes of the glutamatergic system in mice. Neurochem. J. 2018a;12(2):142-151. DOI 10.1134/S1819712418020095.; Reshetnikov V.V., Studenikina A.A., Ryabushkina J.A., Merkulova T.I., Bondar N.P. The impact of early-life stress on the expression of HPA-associated genes in the adult murine brain. Behaviour. 2018b; 155(2-3):181-203. DOI 10.1163/1568539X-00003482.; Sanchez M.M., Ladd C.O., Plotsky P.M. Early adverse experience as a developmental risk factor for later psychopathology: evidence from rodent and primate models. Dev. Psychopathol. 2001;13(3):419-449. Sapolsky R.M., McEwen B.S., Rainbow T.C. Quantitative autoradiography of [3H]corticosterone receptors in rat brain. Brain Res. 1983; 271(2):331-334.; Schmidt M.V. Molecular mechanisms of early life stress – lessons from mouse models. Neurosci. Biobehav. Rev. 2010;34(6):845-852. DOI 10.1016/j.neubiorev.2009.05.002.; Suri D., Veenit V., Sarkar A., Thiagarajan D., Kumar A., Nestler E.J., Galande S., Vaidya V.A. Early stress evokes age-dependent biphasic changes in hippocampal neurogenesis, BDNF expression, and cognition. Biol. Psychiatry. 2013;73(7):658-666. DOI 10.1016/j.biopsych.2012.10.023.; Swolin-Eide D., Dahlgren J., Nilsson C., Albertsson Wikland K., Holmang A., Ohlsson C. Affected skeletal growth but normal bone mineralization in rat offspring after prenatal dexamethasone exposure. J. Endocrinol. 2002;174(3):411-418.; Teicher M.H., Samson J.A., Anderson C.M., Ohashi K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat. Rev. Neurosci. 2016;17(10):652-666. DOI 10.1038/nrn. 2016.111.; Tijsseling D., Camm E.J., Richter H.G., Herrera E.A., Kane A.D., Niu Y., Cross C.M., de Vries W.B., Derks J.B., Giussani D.A. Statins prevent adverse effects of postnatal glucocorticoid therapy on the developing brain in rats. Pediatr. Res. 2013;74(6):639-645. DOI 10.1038/pr.2013.152.; van Bodegom M., Homberg J.R., Henckens M. Modulation of the hypothalamic-pituitary-adrenal axis by early life stress exposure. Front. Cell. Neurosci. 2017;11:87. DOI 10.3389/fncel.2017.00087.; van Eekelen J.A., Bohn M.C., de Kloet E.R. Postnatal ontogeny of mineralocorticoid and glucocorticoid receptor gene expression in regions of the rat teland diencephalon. Dev. Brain Res. 1991;61(1):33-43.; Vazquez D.M., Neal C.R., Jr., Patel P.D., Kaciroti N., Lopez J.F. Regulation of corticoid and serotonin receptor brain system following early life exposure of glucocorticoids: long term implications for the neurobiology of mood. Psychoneuroendocrinology. 2012;37(3):421437. DOI 10.1016/j.psyneuen.2011.07.012.; Vorhees C.V., Williams M.T. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 2006;1(2):848-858. DOI 10.1038/nprot.2006.116.; Wang Y.C., Huang C.C., Hsu K.S. The role of growth retardation in lasting effects of neonatal dexamethasone treatment on hippocampal synaptic function. PLoS One. 2010;5(9):e12806. DOI 10.1371/journal.pone.0012806.; Weems C.F., Russell J.D., Neill E.L., McCurdy B.H. Annual research review: pediatric posttraumatic stress disorder from a neurodevelopmental network perspective. J. Child Psychol. Psychiatry. First publ. 2018. Publ. 2019;60(4):395-408. DOI 10.1111/jcpp.12996.; Weiler H.A., Wang Z., Atkinson S.A. Whole body lean mass is altered by dexamethasone treatment through reductions in protein and energy utilization in piglets. Biol. Neonate. 1997;71(1):53-59. DOI 10.1159/000244397.; Wong P., Sze Y., Gray L.J., Chang C.C., Cai S., Zhang X. Early life environmental and pharmacological stressors result in persistent dysregulations of the serotonergic system. Front. Behav. Neurosci. 2015;9:94. DOI 10.3389/fnbeh.2015.00094.; Yates N.J., Robertson D., Rodger J., Martin-Iverson M.T. Effects of neonatal dexamethasone exposure on adult neuropsychiatric traits in rats. PLoS One. 2016;11(12):e0167220. DOI 10.1371/journal.pone.0167220.; https://vavilov.elpub.ru/jour/article/view/2139

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12