Εμφανίζονται 1 - 3 Αποτελέσματα από 3 για την αναζήτηση '"глюкозотолерантность"', χρόνος αναζήτησης: 0,49δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: The study was supported by the Russian Science Foundation Grant No. 23-14-00179. The resources of the Center for Genetic Resources of Laboratory Animals, which is supported by budgetary projects (AAAA-A17-17072710029-7 and 0259-2019-0004), were used in this work.

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 27, № 4 (2023); 357-365 ; Вавиловский журнал генетики и селекции; Том 27, № 4 (2023); 357-365 ; 2500-3259 ; 10.18699/VJGB-23-35

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3778/1715; Cauldwell M., Patel R.R., Steer P.J., Swan L., Norman­Taylor J., Gatzoulis M., Johnson M.R. Managing subfertility in patients with heart disease: what are the choices? Am. Heart. J. 2017;187:29­36. DOI 10.1016/j.ahj.2017.02.007.; Dongen S.V. Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future. J. Evol. Biol. 2006;19(6):1727­1743. DOI 10.1111/j.1420­9101.2006.01175.x.; Donjacour A., Liu X., Lin W., Simbulan R., Rinaud P.F. In vitro fertilization affects growth and glucose metabolism in a sex­specific manner in an outbred mouse model. Biol. Reprod. 2014;90(4):80. DOI 10.1095/biolreprod.113.113134.; Duranthon V., Chavatte­Palmer P. Long term effects of ART: what do animals tell us? Mol. Rep. Dev. 2018;85(4):348­368. DOI 10.1002/mrd.22970.; Elhakeem A., Taylor A.E., Inskip H.M., Huang J., Tafflet M., Vrijkotte T.G.M., Nelson S.M., Andersen A.­M.N., Magnus M.C., Lawlor D.A. Association of assisted reproductive technology with off-spring growth and adiposity from infancy to early adulthood. JAMA Netw. Open. 2022;5(7):e2222106. DOI 10.1001/jamanetworkopen.2022.22106.; Enes­Marques S., Giusti­Paiva A. Litter size reduction accentuates maternal care and alters behavioral and physiological phenotypes in rat adult offspring. J. Physiol. Sci. 2018;68(6):789­798. DOI 10.1007/s12576­018­0594­8.; Farquhar C.M., Bhattacharya S., Repping S., Mastenbroek S., Kamath M.S., Marjoribanks J., Boivin J. Female subfertility. Nat. Rev. Dis. Primers. 2019;5(1):7. DOI 10.1038/s41572­018­0058­8.; Feuer S.K., Liu X., Donjacour A., Lin W., Simbulan R.K., Giritharan G., Piane L.D., Kolahi K., Ameri K., Maltepe E., Rinaudo H.F. Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis. Endocrinology. 2014;155(5):1956­1969. DOI 10.1210/en.2013­2081.; Gerlinskaya L.A., Evsikov V.I. Influence of genetic dissimilarity of mother and fetus on progesterone concentrations in pregnant mice and adaptive features of offspring. Reproduction. 2001;121(3):409-417. DOI 10.1530/rep.0.1210409.; Gerlinskaya L.A., Litvinova E.A., Kontsevaya G.V., Feofanova N.A., Achasova K.M., Anisimova M.V., Maslennikova S.O., Zolotykh M.A., Moshkin Y.M., Moshkin M.P. Phenotypic variations in transferred progeny due to genotype of surrogate mother. Mol. Hum. Reprod. 2019;25(2):88­99. DOI 10.1093/molehr/gay052.; Gill S., Panda S. A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab. 2015;3:789­798. DOI 10.1016/j.cmet.2015.09.005.; Halliday J., Lewis S., Kennedy J., Burgner D.P., Juonala M., Hammarberg K., Amor D.J., Doyle L.W., Saffery R., Ranganathan S., Welsh L., Cheung M., McBain J., Hearps S.J.C., McLachlan R. Health of adults aged 22 to 35 years conceived by assisted reproductive technology. Fertil. Steril. 2019;112(1):130­139. DOI 10.1016/j.fertnstert.2019.03.001.; Hart R., Norman R.J. The longer­term health outcomes for children born as a result of IVF treatment: Part I – General health outcomes. Hum. Reprod. Update. 2013;19(3):232­243. DOI 10.1093/humupd/dms062.; Heber M.F., Ptak G.V. The effects of assisted reproduction technologies on metabolic health and disease. Biol. Reprod. 2021;104(4):734­744. DOI 10.1093/biolre/ioaa224.; Hyrapetian M., Loucaides E.M., Sutcliffe A.G. Health and disease in children born after assistive reproductive therapies (ART). J. Reprod. Immunol. 2014;106:21­26. DOI 10.1016/j.jri.2014.08.001.; Johnson M.H. A short history of in vitro fertilization (IVF). Int. J. Dev. Biol. 2019;63(3­4­5):83­92. DOI 10.1387/ijdb.180364mj.; Kelley R.L., Gardner D.K. In vitro culture of individual mouse preimplantation embryos: the role of embryo density, microwells, oxygen, timing and conditioned media. Reprod. Biomed. Online. 2017;34(5):441­454. DOI 10.1016/j.rbmo.2017.02.001.; Khosla S., Dean W., Brown D., Reik W., Feil R. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol. Reprod. 2001;64(3):918­926. DOI 10.1095/biolreprod64.3.918.; Kontsevaya G.V., Gerlinskaya L.A., Moshkin Y.M., Anisimova M.V., Stanova A.K., Babochkina T.I., Moshkin M.P. The effects of sperm and seminal fluid of immunized male mice on in vitro fertilization and surrogate mother–embryo interaction. Int. J. Mol. Sci. 2021;22(19):10650. DOI org/10.3390/ijms221910650.; La Rovere M., Franzago M., Stuppia L. Epigenetics and neurological disorders in ART. Int. J. Mol. Sci. 2019;20(17):E4169. DOI 10.3390/ijms20174169.; Liu D., Zhong J., Ruan Y., Zhang Z., Sun J., Chen H. The association between fat­to­muscle ratio and metabolic disorders in type 2 diabetes. Diabetol. Metab. Syndr. 2021;13:129. DOI 10.1186/s13098­021­00748­y.; Maciak S., Sawicka D., Sadowska A., Prokopiuk S., Buczyńska S., Bartoszewicz M., Niklińska G., Konarzewski M., Car H. Low basal metabolic rate as a risk factor for development of insulin resistance and type 2 diabetes. BMJ Open Diab. Res. Care. 2020;8:e001381. DOI 10.1136/bmjdrc­2020­001381.; Marín N., Mecha M., Espejo C., Mestre L., Eixarch H., Montalban X., Álvarez­Cermeño J.C., Guaza C., Villar L.M. Regulatory lymphocytes are key factors in MHC­independent resistance to EAE. J. Immunol. Res. 2014;2014:156380. DOI 10.1155/2014/156380.; Morris M.R., Ludwar B.C., Swingle E., Mamo M.N., Shubrook J.H. A new method to assess asymmetry in fingerprints could be used as an early indicator of type 2 diabetes mellitus. J. Diabetes Sci. Technol. 2016;10(4):864­871. DOI 10.1177/1932296816629984.; Morris M.R., Rios­Cardenas O., Lyons S., Tudor M.S., Bono L. Fluctuating asymmetry indicates optimization of growth rate over developmental stability. Funct. Ecol. 2012;26(3):723­731. DOI 10.1111/j.1365­2435.2012.01983.x.; Narapareddy L., Rhon­Calderon E.A., Vrooman L.A., Baeza J., Nguyen D.K., Mesaros C., Lan Y., Garcia B.A., Schultz R.M., Bartolomei M.S. Sex­specific effects of in vitro fertilization on adult metabolic outcomes and hepatic transcriptome and proteome in mouse. FASEB J. 2021;35(4):e21523. DOI 10.1096/fj.202002744R.; Ng K.Y.B., Mingels R., Morgan H., Macklon N., Cheong Y. In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Hum. Reprod. Update. 2018;24(1):15­34. DOI 10.1093/humupd/dmx028.; Norrman E., Petzold M., Clausen T.D., Henningsen A.­K., Opdahl S., Pinborg A., Rosengren A., Bergh C., Wennerholm U. Type 1 diabetes in children born after assisted reproductive technology: a register­based national cohort study. Hum. Reprod. 2020;35(1):221­231. DOI 10.1093/humrep/dez227.; Panda S. Circadian physiology of metabolism. Science. 2016;354(6315):1008­1015. DOI 10.1126/science.aah4967.; Qin N., Zhou Z., Zhao W., Zou K., Shi W., Yu C., Huang H. Abnormal glucose metabolism in male mice offspring conceived by in vitro fertilization and frozen­thawed embryo transfer. Front. Cell Dev. Biol. 2021;9:637781. DOI 10.3389/fcell.2021.637781.; Rapacz­Leonard A., Dąbrowska M., Janowski T. Major histocompatibility complex I mediates immunological tolerance of the trophoblast during pregnancy and may mediate rejection during parturition. Mediators Inflamm. 2014;214:579279. DOI 10.1155/2014/579279.; Roy M.C., Dupras C., Ravitsky V. The epigenetic effects of assisted reproductive technologies: ethical considerations. J. Dev. Orig. Health. Dis. 2017;8(4):436­442. DOI 10.1017/S2040174417000344.; Rozhkova I.N., Igonina T.N., Ragaeva D.S., Petrova O.M., Brusentsev E.Y., Naprimerov V.A., Amstislavsky S.Y. Long­term effects of maternal exposure to surgical stress at the earliest stage of pregnancy on blood pressure and behavior in offspring of OXYS rats. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(8):937­942. DOI 10.18699/VJ17.316. (in Russian); Russian Association of Human Reproduction. National Register of ART of 2019. https://www.rahr.ru/d_registr_otchet/RegistrART2019.pdf. (in Russian); Scott K.A., Yamazaki Y., Yamamoto M., Lin Y., Melhorn S.J., Krause E.G., Woods S.C., Yanagimachi R., Sakai R.R., Tamashiro K. Glucose parameters are altered in mouse offspring produced by assisted reproductive technologies and somatic cell nuclear transfer. Biol. Reprod. 2010;83(2):220­227. DOI 10.1095/biolreprod.109.082826.; Seo Y.­G., Song H.J., Song Y.R. Fat­to­muscle ratio as a predictor of insulin resistance and metabolic syndrome in Korean adults. J. Cachexia Sarcopenia Muscle. 2020;11(3):710­725. DOI 10.1002/jcsm.12548.; Sjöblom C., Roberts C.T., Wikland M., Robertson S.A. Granulocytemacrophage colony­stimulating factor alleviates adverse consequences of embryo culture on fetal growth trajectory and placental morphogenesis. Endocrinology. 2005;146(5):2142­2153. DOI 10.1210/en.2004­1260.; Sousa S.M., Norman R.J. Metabolic syndrome, diet and exercise. Best Pract. Res. Clin. Obstet. Gynaecol. 2016;37:140­151. DOI 10.1016/j.bpobgyn.2016.01.006.; van Montfoort A.P.A., Hanssen L.L.P., de Sutter P., Viville S., Geraedts J.P.M., de Boer P. Assisted reproduction treatment and epigenetic inheritance. Hum. Reprod. Update. 2012;18(2):171­197. DOI 10.1093/humupd/dmr047.; Wilkinson M.J., Manoogian E.N.C., Zadourian A., Lo H., Fakhouri S., Shoghi A., Wang X., Fleischer J.G., Navlakha S., Panda S., Taub P.R. Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. 2020;31(1):92­104.e5. DOI 10.1016/j.cmet.2019.11.004.; Wyns C., De Geyter C., Calhaz­Jorge C., Kupka M.S., Wyns C., Mocanu E., Motrenko T., Scaravelli G., Smeenk J., Vidakovic S., Goossens V. ART in Europe, 2018: results generated from European registries by ESHRE. Hum. Reprod. Open. 2022;2022(3):hoac022. DOI 10.1093/hropen/hoac022.; Yohannes S., Alebie G., Assefa L. Dermatoglyphics in type 2 diabetes with implications on gene linkage or early developmental noise: past perspectives. Current Trends Future Prospects. 2015;3(1D):297­305.; Zandstra H., Brentjens L.B.P.M., Spauwen B., Touwslager R.N.H., Bons J.A.P., Mulder A.L., Smits L.J.M., van der Hoeven M.A.H.B.M., van Golde R.J.T., Evers J.L.H., Dumoulin J.C.M., van Montfoort A.P.A. Association of culture medium with growth, weight and cardiovascular development of IVF children at the age of 9 years. Hum. Reprod. 2018;33(09):1645­1656. DOI 10.1093/humrep/dey246.; https://vavilov.elpub.ru/jour/article/view/3778

  2. 2
    Academic Journal

    Συνεισφορές: The work was supported by a grant of the Russian Science Foundation (project No. 23-21-00154 “Development of methods for predicting the properties of pharmacological preparations based on their molecular structure using the theory of topological analysis of chemographs”), FRC “Computer Science and Control”, RAS., Работа выполнена при поддержке гранта Российского научного фонда (проект № 23-21-00154 «Разработка методов прогноза свойств фармакологических препаратов по их молекулярной структуре с помощью теории топологического анализа хемографов»), ФИЦ ИУ РАН.

    Πηγή: FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology; Vol 16, No 3 (2023); 466-480 ; ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология; Vol 16, No 3 (2023); 466-480 ; 2070-4933 ; 2070-4909

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.pharmacoeconomics.ru/jour/article/view/891/494; Shindo Y., Witt E., Han D., et al. Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. J Invest Dermatol. 1994; 102 (1): 122–4. https://doi.org/10.1111/1523-1747.ep12371744.; Garrido-Maraver J., Cordero M.D., Oropesa-Avila M., et al. Clinical applications of coenzyme Q10. Front Biosci (Landmark Ed). 2014; 19 (4): 619–33. https://doi.org/10.2741/4231.; Торшин И.Ю., Громова О.А. Альтернативные подходы к коррекции гиперхолестеринемии: эффекты стандартизированных экстрактов красного риса и его синергистов. Лечебное дело. 2021; 1: 89–98. https://doi.org/10.24412/2071-5315-2021-12283.; Белова О.В., Арефьева Т.И., Москвина С.Н. Иммуновоспалительные аспекты болезни Паркинсона. Журнал неврологии и психиатрии им. С.С. Корсакова. 2020; 120 (2): 110–9. https://doi.org/10.17116/jnevro2020120021110.; Ghorbani S., Yong V.W. The extracellular matrix as modifier of neuroinflammation and remyelination in multiple sclerosis. Brain. 2021; 144 (7): 1958–73. https://doi.org/10.1093/brain/awab059.; Torshin I.Yu., Rudakov K.V. On metric spaces arising during formalization of recognition and classification problems. Part 1: Properties of compactness. Pattern Recognit Image Anal. 2016; 26 (2): 274–84. https://doi.org/10.1134/S1054661816020255.; Torshin I.Yu., Rudakov K.V. Combinatorial analysis of the solvability properties of the problems of recognition and completeness of algorithmic models. Part 2: Metric approach within the framework of the theory of classification of feature values. Pattern Recognit Image Anal. 2017; 27 (2): 184–99. https://doi.org/10.1134/S1054661817020110.; Torshin I.Yu., Rudakov K.V. On metric spaces arising during formalization of problems of recognition and classification. Part 2: Density properties. Pattern Recognit Image Anal. 2016; 26 (3): 483–96. https://doi.org/10.1134/S1054661816030202.; Hajiluian G., Heshmati J., Jafari Karegar S., et al. Diabetes, age, and duration of supplementation subgroup analysis for the effect of coenzyme Q10 on oxidative stress: a systematic review and metaanalysis. Complement Med Res. 2021; 28 (6): 557–70. https://doi.org/10.1159/000515249.; Shimizu K., Kon M., Tanimura Y., et al. Coenzyme Q10 supplementation downregulates the increase of monocytes expressing tolllike receptor 4 in response to 6-day intensive training in kendo athletes. Appl Physiol Nutr Metab. 2015; 40 (6): 575–81. https://doi.org/10.1139/apnm-2014-0556.; Aslani Z., Shab-Bidar S., Fatahi S., Djafarian K. Effect of coenzyme Q10 supplementation on serum of high sensitivity c-reactive protein level in patients with cardiovascular diseases: a systematic review and meta-analysis of randomized controlled trials. Int J Prev Med. 2018; 9: 82. https://doi.org/10.4103/ijpvm.IJPVM_263_17.; Farsi F., Heshmati J., Keshtkar A., et al. Can coenzyme Q10 supplementation effectively reduce human tumor necrosis factor-α and interleukin-6 levels in chronic inflammatory diseases? A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2019; 148: 104290. https://doi.org/10.1016/j.phrs.2019.104290.; Fan L., Feng Y., Chen G.C., et al. Effects of coenzyme Q10 supplementation on inflammatory markers: a systematic review and metaanalysis of randomized controlled trials. Pharmacol Res. 2017; 119: 128–36. https://doi.org/10.1016/j.phrs.2017.01.032.; Rasoolzadeh E.A., Shidfar F., Rasoolzadeh R.A., Hezaveh Z.S. The effect of coenzyme Q10 on periodontitis: a systematic review and metaanalysis of clinical trials. J Evid Based Dent Pract. 2022; 22 (2): 101710. https://doi.org/10.1016/j.jebdp.2022.101710.; Liu Z., Tian Z., Zhao D., et al. Effects of coenzyme Q10 supplementation on lipid profiles in adults: a meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2022; 108 (1): 232–49. https://doi.org/10.1210/clinem/dgac585.; Al Saadi T., Assaf Y., Farwati M., et al. Coenzyme Q10 for heart failure. Cochrane Database Syst Rev. 2021; 2 (2): CD008684. https://doi.org/10.1002/14651858.CD008684.pub3.; Qu H., Guo M., Chai H., et al. Effects of coenzyme Q10 on statininduced myopathy: an updated meta-analysis of randomized controlled trials. J Am Heart Assoc. 2018; 7 (19): e009835. https://doi.org/10.1161/JAHA.118.009835.; Sun I.O., Jin L., Jin J., et al. The effects of addition of coenzyme Q10 to metformin on sirolimus-induced diabetes mellitus. Korean J Intern Med. 2019; 34 (2): 365–74. https://doi.org/10.3904/kjim.2017.004.; Moradi M., Haghighatdoost F., Feizi A., et al. Effect of coenzyme Q10 supplementation on diabetes biomarkers: a systematic review and meta-analysis of randomized controlled clinical trials. Arch Iran Med. 2016; 19 (8): 588–96.; Liang Y., Zhao D., Ji Q., et al. Effects of coenzyme Q10 supplementation on glycemic control: a GRADE-assessed systematic review and dose-response meta-analysis of randomized controlled trials. EClinicalMedicine. 2022; 52: 101602. https://doi.org/10.1016/j.eclinm.2022.101602.; Izadi A., Ebrahimi S., Shirazi S., et al. Hormonal and metabolic effects of coenzyme Q10 and/or vitamin E in patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2019; 104 (2): 319–27. https://doi.org/10.1210/jc.2018-01221.; Taghizadeh S., Izadi A., Shirazi S., et al. The effect of coenzyme Q10 supplementation on inflammatory and endothelial dysfunction markers in overweight/obese polycystic ovary syndrome patients. Gynecol Endocrinol. 2021; 37 (1): 26–30. https://doi.org/10.1080/09513590.2020.1779689.; Zhang T., He Q., Xiu H., et al. Efficacy and safety of coenzyme Q10 supplementation in the treatment of polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Sci. 2023; 30 (4): 1033– 48. https://doi.org/10.1007/s43032-022-01038-2.; Chen K., Chen X., Xue H., et al. Coenzyme Q10 attenuates high-fat diet-induced non-alcoholic fatty liver disease through activation of the AMPK pathway. Food Funct. 2019; 10 (2): 814–23. https://doi.org/10.1039/c8fo01236a.; Jiang Y.J., Jin J., Nan Q.Y., et al. Coenzyme Q10 attenuates renal fibrosis by inhibiting RIP1-RIP3-MLKL-mediated necroinflammation via Wnt3α/β-catenin/GSK-3β signaling in unilateral ureteral obstruction. Int Immunopharmacol. 2022; 108: 108868. https://doi.org/10.1016/j.intimp.2022.108868.; Alehagen U., Aaseth J., Alexander J., et al. Selenium and coenzyme Q10 supplementation improves renal function in elderly deficient in selenium: observational results and results from a subgroup analysis of a prospective randomised double-blind placebo-controlled trial. Nutrients. 2020; 12 (12): 3780. https://doi.org/10.3390/nu12123780.; Zahed N.S., Ghassami M., Nikbakht H. Effects of coenzyme Q10 supplementation on C-reactive protein and homocysteine as the inflammatory markers in hemodialysis patients; a randomized clinical trial. J Nephropathol. 2016; 5 (1): 38–43. https://doi.org/10.15171/jnp.2016.07.; Drovandi S., Lipska-Ziętkiewicz B.S., Ozaltin F., et al. Oral Coenzyme Q10 supplementation leads to better preservation of kidney function in steroid-resistant nephrotic syndrome due to primary Coenzyme Q10 deficiency. Kidney Int. 2022; 102 (3): 604–12. https://doi.org/10.1016/j.kint.2022.04.029.; Bakhshayeshkaram M., Lankarani K.B., Mirhosseini N., et al. The effects of coenzyme Q10 supplementation on metabolic profiles of patients with chronic kidney disease: a systematic review and metaanalysis of randomized controlled trials. Curr Pharm Des. 2018; 24 (31): 3710–23. https://doi.org/10.2174/1381612824666181112112857.; Orsucci D., Mancuso M., Ienco E.C., et al. Targeting mitochondrial dysfunction and neurodegeneration by means of coenzyme Q10 and its analogues. Curr Med Chem. 2011; 18 (26): 4053–64. https://doi.org/10.2174/092986711796957257.; Yang X., Zhang Y., Xu H., et al. Neuroprotection of coenzyme Q10 in neurodegenerative diseases. Curr Top Med Chem. 2016; 16 (8): 858–66. https://doi.org/10.2174/1568026615666150827095252.; Shinkai T., Nakashima M., Ohmori O., et al. Coenzyme Q10 improves psychiatric symptoms in adult-onset mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes: a case report. Aust N Z J Psychiatry. 2000; 34 (6): 1034–5. https://doi.org/10.1080/000486700286.; Chang Y., Huang S.K., Wang S.J. Coenzyme Q10 inhibits the release of glutamate in rat cerebrocortical nerve terminals by suppression of voltage-dependent calcium influx and mitogen-activated protein kinase signaling pathway. J Agric Food Chem. 2012; 60 (48): 11909–18. https://doi.org/10.1021/jf302875k.; Lee D., Shim M.S., Kim K.Y., et al. Coenzyme Q10 inhibits glutamate excitotoxicity and oxidative stress-mediated mitochondrial alteration in a mouse model of glaucoma. Invest Ophthalmol Vis Sci. 2014; 55 (2): 993–1005. https://doi.org/10.1167/iovs.13-12564.; Lu C.J., Guo Y.Z., Zhang Y., et al. Coenzyme Q10 ameliorates cerebral ischemia reperfusion injury in hyperglycemic rats. Pathol Res Pract. 2017; 213 (9): 1191–9. https://doi.org/10.1016/j.prp.2017.06.005.; Ibrahim Fouad G. Combination of omega 3 and coenzyme Q10 exerts neuroprotective potential against hypercholesterolemia-induced Alzheimer's-like disease in rats. Neurochem Res. 2020; 45 (5): 1142– 55. https://doi.org/10.1007/s11064-020-02996-2.; Omidi G., Karimi S.A., Shahidi S., et al. Coenzyme Q10 supplementation reverses diabetes-related impairments in long-term potentiation induction in hippocampal dentate gyrus granular cells: an in vivo study. Brain Res. 2020; 1726: 146475. https://doi.org/10.1016/j.brainres.2019.146475.; Shi T.J., Zhang M.D., Zeberg H., et al. Coenzyme Q10 prevents peripheral neuropathy and attenuates neuron loss in the db-/dbmouse, a type 2 diabetes model. Proc Natl Acad Sci U S A. 2013; 110 (2): 690– 5. https://doi.org/10.1073/pnas.1220794110.; Sadeghiyan Galeshkalami N., Abdollahi M., Najafi R., et al. Alphalipoic acid and coenzyme Q10 combination ameliorates experimental diabetic neuropathy by modulating oxidative stress and apoptosis. Life Sci. 2019; 216: 101–10. https://doi.org/10.1016/j.lfs.2018.10.055.; Kandhare A.D., Ghosh P., Ghule A.E., Bodhankar S.L. Elucidation of molecular mechanism involved in neuroprotective effect of coenzyme Q10 in alcohol-induced neuropathic pain. Fundam Clin Pharmacol. 2013; 27 (6): 603–22. https://doi.org/10.1111/fcp.12003.; Jiménez-Jiménez F.J., Alonso-Navarro H., García-Martín E., Agúndez J.A.G. Coenzyme Q10 and Parkinsonian syndromes: a systematic review. J Pers Med. 2022; 12 (6): 975. https://doi.org/10.3390/jpm12060975.; Liu J., Wang L.N., Zhan S.Y., Xia Y. Coenzyme Q10 for Parkinson's disease. Cochrane Database Syst Rev. 2012; 5: CD008150. https://doi.org/10.1002/14651858.CD008150.pub3.; Markley H.G. Coenzyme Q10 and riboflavin: the mitochondrial connection. Headache. 2012; 52 (Suppl. 2): 81–7. https://doi.org/10.1111/j.1526-4610.2012.02233.x.; Sazali S., Badrin S., Norhayati M.N., Idris N.S. Coenzyme Q10 supplementation for prophylaxis in adult patients with migraine-a metaanalysis. BMJ Open. 2021; 11 (1): e039358. https://doi.org/10.1136/bmjopen-2020-039358.; Maguire Á., Hargreaves A., Gill M. Coenzyme Q10 and neuropsychiatric and neurological disorders: relevance for schizophrenia. Nutr Neurosci. 2020; 23 (10): 756–69. https://doi.org/10.1080/1028415X.2018.1556481.; https://www.pharmacoeconomics.ru/jour/article/view/891

  3. 3