-
1Academic Journal
Πηγή: Клиническая онкогематология, Vol 15, Iss 3 (2022)
Θεματικοί όροι: 03 medical and health sciences, венетоклакс, 0302 clinical medicine, гипометилирующие препараты, острые миелоидные лейкозы, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, эффективность терапии, RC254-282, 3. Good health
Σύνδεσμος πρόσβασης: https://doaj.org/article/8af24de2d8d74f24b5cf3248cff7b015
-
2Academic Journal
Συγγραφείς: D. I. Zhigarev, M. V. Khoreva, L. V. Gankovskaya, Д. И. Жигарев, М. В. Хорева, Л. В. Ганковская
Πηγή: Medical Immunology (Russia); Том 23, № 2 (2021); 223-230 ; Медицинская иммунология; Том 23, № 2 (2021); 223-230 ; 2313-741X ; 1563-0625
Θεματικοί όροι: гипометилирующие препараты, antitumor immunity, acute myeloid leukemia, myelodysplastic syndrome, KIR receptors, hypomethylating drugs, противоопухолевый иммунитет, острый миелоидный лейкоз, миелодиспластический синдром, KIR-рецепторы
Περιγραφή αρχείου: application/pdf
Relation: https://www.mimmun.ru/mimmun/article/view/2145/1366; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7107; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7108; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7109; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7110; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7111; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7112; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7113; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7420; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7431; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2145/7432; Almeida A.M., Ramos F. Acute myeloid leukemia in the older adults. Leuk. Res. Rep., 2016, Vol. 6, pp. 1-7.; Carrillo-Bustamante P., Kesmir C., de Boer R.J. The evolution of natural killer cell receptors. Immunogenetics, 2016, Vol. 68, no. 1, pp 3-18.; Chan H.W., Kurago Z.B., Stewart C.A. et al. DNA methylation maintains allele-specific KIR gene expression in human natural killer cells. J. Exp. Med., 2003, Vol. 197, no. 2, pp. 245-255.; Christman J.K. 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene, 2002, Vol. 21, no. 35, pp. 5483-5495.; Cogle C.R. Incidence and burden of the myelodysplastic syndromes. Curr. Hematol. Malig. Rep., 2015, Vol. 10, no. 3, pp. 272-281.; Dan H., Zhang S., Zhou Y., Guan Q. DNA Methyltransferase inhibitors: catalysts for antitumour immune responses. Onco Targets Ther., 2019, Vol. 12, pp. 10903-10916.; Daneshbod Y., Kohan L., Taghadosi V., Weinberg O.K., Arber D.A. Prognostic significance of complex karyotypes in acute myeloid leukemia. Curr. Treat. Options Oncol., 2019, Vol. 20, no. 2, 15. doi:10.1007/s11864-019-0612-y.; Döhner H., Weisdorf D.J., Bloomfield C.D. Acute myeloid leukemia. N. Engl. J. Med., 2015, Vol. 373, no. 12, pp. 1136-1152.; Estey E.H. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am. J. Hematol., 2018, Vol. 93, no. 10, pp. 1267-1291.; Fenaux P., Mufti G.J., Hellström-Lindberg E. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J. Clin. Oncol., 2010, Vol. 28, no. 4, pp. 562-569.; Gang A.O., Frosig T.M., Brimnes M.K. 5-Azacytidine treatment sensitizes tumor cells to T-cell mediated cytotoxicity and modulates NK cells in patients with myeloid malignancies. Blood Cancer J., 2014, Vol. 4, no. 3, e197. doi:10.1038/bcj.2014.14.; Gao X.N., Lin J., Wang L.L., Yu L. Demethylating treatment suppresses natural killer cell cytolytic activity. Mol Immunol., 2009, Vol. 46, no. 10, pp. 2064-2070.; Gardin C., Dombret H. Hypomethylating agents as a therapy for AML. Curr. Hematol. Malig. Rep., 2017, Vol. 12, no. 1, pp. 1-10.; Gardiner C.M. NK cell metabolism. J. Leukoc. Biol., 2019, Vol. 105, no. 6, pp. 1235-1242.; Hoglund P., Brodin P. Current perspectives of natural killer cell education by MHC class I molecules. Nat. Rev. Immunol., 2010, Vol. 10, no. 10, pp. 724-734.; Horowitz A., Strauss-Albee D.M., Leipold M., Kubo J., Nemat-Gorgani N., Dogan O.C., Dekker C.L., Mackey S., Maecker H., Swan G.E., Davis M.M., Norman P.J., Guethlein L.A., Desai M., Parham P., Blish C.A. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci. Transl. Med., 2013, Vol. 5, no. 208, 208ra145. doi:10.1126/scitranslmed.3006702.; Hourigan C.S., Karp J.E. Development of therapeutic agents for older patients with acute myelogenous leukemia. Curr. Opin. Investig. Drugs, 2010, Vol. 11, no. 6, pp. 669-677.; Jacobs B., Tognarelli S., Poller K., Bader P., Mackensen A., Ullrich E. NK Cell subgroups, phenotype, and functions after autologous stem cell transplantation. Front. Immunol., 2015, Vol. 6, p. 583. doi:10.3389/fimmu.2015.00583.; Kantarjian H.M., Issa J.P. Decitabine dosing schedules. Semin. Hematol., 2005, Vol. 42, no. 3, Suppl. 2, pp. S17-S22.; Kennedy J.A., Ebert B.L. Clinical implications of genetic mutations in myelodysplastic syndrome. J. Clin. Oncol., 2017, Vol. 35, no. 9, pp. 968-974.; Campbell K.S., Hasegawa J. Natural killer cell biology: an update and future directions. J. Allergy Clin. Immunol., 2013 Vol. 132, Iss. 3, pp. 536-544.; Koeffler H.P., Leong G. Preleukemia: one name, many meanings. Leukemia, 2017, Vol. 31, no. 3, pp. 534-542.; Kopp L.M., Ray A., Denman C.J., Senyukov V.S., Somanchi S.S., Zhu S., Lee D.A. Decitabine has a biphasic effect on natural killer cell viability, phenotype, and function under proliferative conditions. Mol. Immunol., 2013, Vol. 54, no. 3-4, pp. 296-301.; Kuykendall A., Duployez N., Boissel N., Lancet J.E., Welch J.S. Acute myeloid leukemia: the good, the bad, and the ugly. Am. Soc. Clin. Oncol. Educ. Book, 2018, Vol. 38 pp. 555-573.; Lindblad K.E., Goswami M., Hourigan C.S., Oetjen K.A. Immunological effects of hypomethylating agents. Expert Rev. Hematol., 2017, Vol. 10, no. 8, pp. 745-752.; Ma Y.Y., Zhao M., Liu Y. et al. Use of decitabine for patients with refractory or relapsed acute myeloid leukemia: a systematic review and meta-analysis. Hematology, 2019, Vol. 24, no. 1, pp. 507-515.; Montalban-Bravo G., Garcia-Manero G. Myelodysplastic syndromes: 2018 update on diagnosis, riskstratification and management. Am. J. Hematol., 2018,, Vol. 93, no. 1, pp. 129-147.; Muntasell A., Ochoa M.C., Cordeiro L. et al. Targeting NK-cell checkpoints for cancer immunotherapy. Curr. Opin. Immunol., 2017, Vol. 45 pp. 73-81.; Raneros A.B., Minguela A., Rodriguez R.M., Colado E., Bernal T., Anguita E., Mogorron A.V., Gil A.C., Vidal-Castiñeira J.R., Márquez-Kisinousky L., Bulnes P.D., Marin A.M., Garay M.C.G., Suarez-Alvarez B., LopezLarrea C. Increasing TIMP3 expression by hypomethylating agents diminishes soluble MICA, MICB and ULBP2 shedding in acute myeloid leukemia, facilitating NK cell-mediated immune recognition. Oncotarget, 2017, Vol. 8, no. 19, pp. 31959-31976.; Rohner A., Langenkamp U., Siegler U., Kalberer C.P., Wodnar-Filipowicz A. Differentiation-promoting drugs up-regulate NKG2D ligand expression and enhance the susceptibility of acute myeloid leukemia cells to natural killer cell-mediated lysis. Leuk. Res., 2007, Vol. 31, no. 10, pp. 1393-1402.; Sato T., Issa J.J., Kropf P. DNA hypomethylating drugs in cancer therapy. Cold Spring Harb. Perspect. Med., 2017, Vol. 7, no. 5, a026948. doi:10.1101/cshperspect.a026948.; Schmiedel B.J., Arelin V., Gruenebach F., Krusch M., Schmidt S.M., Salih H.R. Azacytidine impairs NK cell reactivity while decitabine augments NK cell responsiveness toward stimulation. Int. J. Cancer, 2011, Vol. 128, no. 12, pp. 2911-2922.; Seelan R.S., Mukhopadhyay P., Pisano M.M., Greene R.M. Effects of 5-Aza-2’-deoxycytidine (decitabine) on gene expression. Drug Metab. Rev., 2018, Vol. 50, no. 2, pp. 193-207.; Sohlberg E., Pfefferle A., Andersson S., Baumann B.C., Hellstrom-Lindberg E., Malmberg K.J. Imprint of 5-azacytidine on the natural killer cell repertoire during systemic treatment for high-risk myelodysplastic syndrome. Oncotarget, 2015, Vol. 6, no. 33, pp. 34178-34190.; Strauss-Albee D.M., Fukuyama J., Liang E.C. et al. Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Sci. Transl. Med., 2015, Vol. 7, 297, 297ra115. doi:10.1126/scitranslmed.aac5722.; Vasu S., He S., Cheney C. Decitabine enhances anti-CD33 monoclonal antibody BI 836858-mediated natural killer ADCC against AML blasts. Blood, 2016, Vol. 127, no. 23, pp. 2879-2889.; Verheyden S., Bernier M., Demanet C. Identification of natural killer cell receptor phenotypes associated with leukemia. Leukemia, 2004, Vol. 18, no. 12, pp. 2002-2007.; Verheyden S., Demanet C. Susceptibility to myeloid and lymphoid leukemia is mediated by distinct inhibitory KIR-HLA ligand interactions. Leukemia, 2006, Vol. 20, no. 8, pp. 1437-1438.; Wang E.S. Treating acute myeloid leukemia in older adults. Hematology. Am. Soc. Hematol. Educ. Program, 2014, Vol. 2014, no. 1, pp. 14-20.; Wiencke J.K., Butler R., Hsuang G. et al. The DNA methylation profile of activated human natural killer cells. Epigenetics, Vol. 11, no. 5, pp. 363-380.; Yang H., Bueso-Ramos C., DiNardo C., Estecio M.R., Davanlou M., Geng Q.R., Fang Z., Nguyen M., Pierce S., Wei Y., Parmar S., Cortes J., Kantarjian H., Garcia-Manero G. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia, 2014, Vol. 28, no. 6, pp. 1280-1288.; Yu G., Wu Y., Wang W., Xu J., Lv X., Cao X., Wan T. Low-dose decitabine enhances the effect of PD-1 blockade in colorectal cancer with microsatellite stability by re-modulating the tumor microenvironment. Cell. Mol. Immunol., 2019, Vol. 16, no. 4, pp. 401-409.; Zunke F., Rose-John S. The shedding protease ADAM17: physiology and pathophysiology. Biochim. Biophys. Acta Mol. Cell. Res., 2017, Vol. 1864, no. 11, Pt B, pp. 2059-2070.; https://www.mimmun.ru/mimmun/article/view/2145