Showing 1 - 20 results of 28 for search '"гиперспектральное изображение"', query time: 0.65s Refine Results
  1. 1
    Academic Journal

    Source: Food systems; Vol 6, No 1 (2023); 46-52 ; Пищевые системы; Vol 6, No 1 (2023); 46-52 ; 2618-7272 ; 2618-9771 ; 10.21323/2618-9771-2023-6-1

    File Description: application/pdf

    Relation: https://www.fsjour.com/jour/article/view/228/216; Hurtado-Fernandez, E., Fernandez-Gutierrez, A., Carrasco-Pancorbo, A. (2018). Avocado fruit — Persea americana. Chapter in a book: Exotic Fruits. Academic Press, 2018. https://doi.org/10.1016/B978–0–12–803138–4.00001–0; Magwaza, L. S., Tesfay, S. Z. (2015). A review of destructive and non-destructive methods for determining avocado fruit maturity. Food and Bioprocess Technology, 8(10), 1995–2011. https://doi.org/10.1007/s11947–015–1568-y; UNECE STANDARD FFV-42. 2019. ‘Concerning the marketing and commercial quality control of Avocados’. Agricultural Quality Standards, Geneva, Switzerland.; Donetti, M., Terry, L. A. (2014). Biochemical markers defining growing area and ripening stage of imported avocado fruit cv. Hass. Journal of Food Composition and Analysis, 34(1), 90–98. https://doi.org/10.1016/j.jfca.2013.11.011; Ochoa-Ascencio, S., Hertog, M. L., Nicolaï, B. M. (2009). Modelling the transient effect of 1-MCP on ‘Hass’ avocado softening: A Mexican comparative study. Postharvest Biology and Technology, 51(1), 62–72. https://doi.org/10.1016/j.postharvbio.2008.06.002; Hussain, A., Pu, H., Sun, D. -W. (2018). Innovative nondestructive imaging techniques for ripening and maturity of fruits — A review of recent applications. Trends in Food Science and Technology, 72, 144–152. https://doi.org/10.1016/j.tifs.2017.12.010; Lohumi, S., Lee, S., Lee, H., Cho, B. -K. (2015). A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends in Food Science and Technology, 46(1), 85–98. https://doi.org/10.1016/j.tifs.2015.08.003; Elmasry, G., Kamruzzaman, M., Sun, D. -W., Allen, P. (2012). Principles and applications of hyperspectral imaging in quality evaluation of agrofood products: A review. Critical Reviews in Food Science and Nutrition, 52(11), 999–1023. https://doi.org/10.1080/10408398.2010.543495; Manley, M. (2014). Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials. Chemical Society Reviews, 43(24), 8200–8214. https://doi.org/10.1039/c4cs00062e; Faltynkova, A., Johnsen, G., Wagner, M. (2021). Hyperspectral imaging as an emerging tool to analyze microplastics: a systematic review and recommendations for future development. Microplastics and Nanoplastics, 1(1), Article 13. https://doi.org/10.1186/s43591–021–00014-y; Rodionova, O. Ye., Pomerantsev, A.L. (2006). Chemometrics: Achievements and prospects. Russian Chemical Reviews, 75(4), 271–287. https://doi.org/10.1070/RC2006v075n04ABEH003599; Granato, D., Putnik, P., Kovačević, D. B., Santos, J. S., Calado, V., Rocha, R. S. et al. (2018). Trends in chemometrics: Food authentication, microbiology, and effects of processing. Comprehensive Reviews in Food Science and Food Safety, 17(3), 663–677. https://doi.org/10.1111/1541–4337.12341; Pinto, J., Rueda-Chacón, H., Arguello, H. (2019). Classification of Hass avocado (persea americana mill) in terms of its ripening via hyperspectral images. TecnoLógicas, 22(45), 111–130. https://doi.org/10.22430/22565337.1232; Vega Diaz, J. J., Sandoval Aldana, A. P., Reina Zuluaga, D. V. (2021). Prediction of dry matter content of recently harvested ‘Hass’ avocado fruits using hyperspectral imaging. Journal of the Science of Food and Agriculture, 101(3), 897–906. https://doi.org/10.1002/jsfa.10697; Behmann, J., Acebron, K., Emin, D., Bennertz, S., Matsubara, S., Thomas, S. et al. (2018). Specim IQ: Evaluation of a new, miniaturized handheld hyperspectral camera and its application for plant phenotyping and disease detection. Sensors (Switzerland), 18(2), Article 441. https://doi.org/10.3390/s18020441; Lyu, Y. (2019). Identify the ripening stage of avocado by multispectral camera using semi-supervised learning on small dataset. Thesis (M. Phil.)-Hong Kong University of Science and Technology, 2019.; Albedo. Hyperspectral data processing software. Retrieved from https://geo.mipt.ru/albedo. Accessed October 20, 2022.; Ashton, O.B.O., Wong, M., McGhie, T. K., Vather, R., Wang, Y., RequejoJackman, C. et al. (2006). Pigments in avocado tissue and oil. Journal of Agricultural and Food Chemistry, 54(26), 10151–10158. https://doi.org/10.1021/jf061809j; Parodi, G., Sanchez, M., Daga, W. (November 12–16, 2007). Correlation of oil content, dry matter and pulp moisture as harvest indicators in Hass avo- cado fruit (Persea americana Mill) grown under two conditions of orchards in Chincha-Peru. Proceedings VI World Avocado Congress (Actas VI Congreso Mundial del Aguacate). Viña Del Mar, Chile, 2007.; Hofman, P. J., Jobin-Décor, M., Giles, J. (2000). Percentage of dry matter and oil content are not reliable indicators of fruit maturity or quality in late-harvested ‘Hass’ avocado. HortScience, 35(4), 694–695. https://doi.org/10.21273/HORTSCI.35.4.694; Posom, J., Klaprachan, J., Rattanasopa, K., Sirisomboon, P., Saengprachatanarug, K., Wongpichet, S. (2020). Predicting marian plum fruit quality without environmental condition impact by handheld visible – near-infrared spectroscopy. ACS Omega, 5(43), 27909–27921. https://doi.org/10.1021/acsomega.0c03203; Jamshidi, B., Minaei, S., Mohajerani, E., Ghassemian, H. (2014). Prediction of soluble solids in oranges using visible/near-infrared spectroscopy: Effect of peel. International Journal of Food Properties, 17(7), 1460–1468. https://doi.org/10.1080/10942912.2012.717332; Cen, H., He, Y. (2007). Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science and Technology, 18(2), 72–83. https://doi.org/10.1016/j.tifs.2006.09.003; Croft, H., Chen, J. M. (2017). Leaf pigment content. Chapter in a book: Comprehensive Remote Sensing. Elsevier, 2017. https://doi.org/10.1016/B978–0–12–409548–9.10547–0; Saha, S., Singh, J., Paul, A., Sarkar, R., Khan, Z., Banerjee, K. (2020). Anthocyanin profiling using UV–VIS spectroscopy and liquid chromatography mass spectrometry. Journal of AOAC International, 103(1), 23–39. https://doi.org/10.5740/jaoacint.19–0201; Cox, K. A., McGhie, T. K., White, A., Woolf, A. B. (2004). Skin colour and pigment changes during ripening of ‘Hass’ avocado fruit. Postharvest Biology and Technology, 31(3), 287–294. https://doi.org/10.1016/j.postharvbio.2003.09.008; Anne Frank Joe, A. Gopal, A. (April 20–21, 2017). Identification of spectral regions of the key components in the near infrared spectrum of wheat grain. Proceedings of IEEE International Conference on Circuit, Power and Computing Technologies, ICCPCT. Kollam, 2017. https://doi.org/10.1109/ICCPCT.2017.8074207; Ollinger, S. V. (2011). Sources of variability in canopy reflectance and the convergent properties of plants. New Phytologist, 189(2), 375–394. https://doi.org/10.1111/j.1469–8137.2010.03536.x; https://www.fsjour.com/jour/article/view/228

  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Conference
  19. 19
  20. 20