Εμφανίζονται 1 - 18 Αποτελέσματα από 18 για την αναζήτηση '"гиперметилирование"', χρόνος αναζήτησης: 0,60δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συνεισφορές: The present study was supported by project No. 075-15-2021-944 of the Ministry of Science and Higher Education of the Russian Federation as a part of ERA-NET Target Identification and Drug Development in Liver Cancer (TAIGA).

    Πηγή: Vavilov Journal of Genetics and Breeding; Том 26, № 8 (2022); 733-742 ; Вавиловский журнал генетики и селекции; Том 26, № 8 (2022); 733-742 ; 2500-3259 ; 10.18699/VJGB-22-86

    Περιγραφή αρχείου: application/pdf

    Relation: https://vavilov.elpub.ru/jour/article/view/3574/1665; Benderska N., Schneider-Stock R. Transcription control of DAPK. Apoptosis. 2014;19(2):298-305. DOI 10.1007/s10495-013-0931-6.; Bragina E.Y., Tiys E.S., Rudko A.A., Ivanisenko V.A., Freidin M.B. Novel tuberculosis susceptibility candidate genes revealed by the reconstruction and analysis of associative networks. Infect. Genet. Evol. 2016;46:118-123. DOI 10.1016/j.meegid.2016.10.030.; Chen J., Li Z., Chen J., Du Y., Song W., Xuan Z., Zhao L., Song G., Song P., Zheng S. Downregulation of MGMT promotes proliferation of intrahepatic cholangiocarcinoma by regulating p21. Clin. Transl. Oncol. 2020;22(3):392-400. DOI 10.1007/s12094-019-02140-9.; Chen M., Gan X., Yoshino K., Kitakawa M., Shoji I., Deng L., Hotta H. Hepatitis C virus NS5A protein interacts with lysine methyltransferase SET and MYND domain-containing 3 and induces activator protein 1 activation. Microbiol. Immunol. 2016;60:407-417. DOI 10.1111/1348-0421.12383.; Chen P., Meng C., Wang Q., Yang X., Huang Z., Xing X., Lin Y., Liu X., Peng J., Lin Y. Death-associated protein kinase 1 suppresses hepatocellular carcinoma cell migration and invasion by upregulation of DEAD-box helicase 20. Cancer Sci. 2020;111(8):2803-2813. DOI 10.1111/cas.14499.; Cheng J., Wei D., Ji Y., Chen L., Yang L., Li G., Wu L., Hou T., Xie L., Ding G., Li H., Li Y. Integrative analysis of DNA methylation and gene expression reveals hepatocellular carcinoma-specific diagnostic biomarkers. Genome Med. 2018;10(1):42. DOI 10.1186/s13073018-0548-z.; Choi J., Southworth L.K., Sarin K.Y., Venteicher A.S., Ma W., Chang W., Cheung P., Jun S., Artandi M.K., Shah N., Kim S.K., Artandi S.E. TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program. PLoS Genet. 2008;4(1):e10. DOI 10.1371/journal.pgen.0040010.; de Chassey B., Navratil V., Tafforeau L., Hiet M.S., Aublin-Gex A., Agaugué S., Meiffren G., Pradezynski F., Faria B.F., Chantier T., Le Breton M., Pellet J., Davoust N., Mangeot P.E., Chaboud A., Penin F., Jacob Y., Vidalain P.O., Vidal M., André P., RabourdinCombe C., Lotteau V. Hepatitis C virus infection protein network. Mol. Syst. Biol. 2008;4:230. DOI 10.1038/msb.2008.66.; Deng Y., Yu B., Cheng Q., Jin J., You H., Ke R., Tang N., Shen Q., Shu H., Yao G., Zhang Z., Qin W. Epigenetic silencing of WIF-1 in hepatocellular carcinomas. J. Cancer Res. Clin. Oncol. 2010; 136(8):1161-1167. DOI 10.1007/s00432-010-0763-5.; D’souza S., Lau K.C., Coffin C.S., Patel T.R. Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma. World J. Gastroenterol. 2020;26(38):5759-5783. DOI 10.3748/wjg.v26.i38.5759.; Feng L., Li J., Yan L.D., Tang J. RASSF1A suppresses proliferation of cervical cancer cells. Asian Pac. J. Cancer Prev. 2014;15(14):59175920. DOI 10.7314/apjcp.2014.15.14.5917.; Fernández-Barrena M.G., Arechederra M., Colyn L., Berasain C., Avila M.A. Epigenetics in hepatocellular carcinoma development and therapy: the tip of the iceberg. JHEP Rep. 2020;2(6):100167. DOI 10.1016/j.jhepr.2020.100167.; Glotov A.S., Tiys E.S., Vashukova E.S., Pakin V.S., Demenkov P.S., Saik O.V., Ivanisenko T.V., Arzhanova O.N., Mozgovaya E.V., Zainu lina M.S., Kolchanov N.A., Baranov V.S., Ivanisenko V.A. Molecular association of pathogenetic contributors to pre-eclampsia (pre-eclampsia associome). BMC Syst. Biol. 2015:9(Suppl.2):S4.; Gui Y., Yeganeh M., Ramanathan S., Leblanc C., Pomerleau V., Ferbeyre G., Saucier C., Ilangumaran S. SOCS1 controls liver regeneration by regulating HGF signaling in hepatocytes. J. Hepatol. 2011;55(6): 1300-1308. DOI 10.1016/j.jhep.2011.03.027.; Guo N., Chen R., Li Z., Liu Y., Cheng D., Zhou Q., Zhou J., Lin Q. Hepatitis C virus core upregulates the methylation status of the RASSF1A promoter through regulation of SMYD3 in hilar cholangiocarcinoma cells. Acta Biochim. Biophys. Sin. (Shanghai). 2011; 43(5):354-361. DOI 10.1093/abbs/gmr021.; Han Y., Niu J., Wang D., Li Y. Hepatitis C virus protein interaction network analysis based on hepatocellular carcinoma. PLoS One. ;11(4):e0153882. DOI 10.1371/journal.pone.0153882.; Hassan M., Ghozlan H., Abdel-Kader O. Activation of c-Jun NH2terminal kinase (JNK) signaling pathway is essential for the stimulation of hepatitis C virus (HCV) non-structural protein 3 (NS3)mediated cell growth. Virology. 2005;333(2):324-336. DOI 10.1016/j.virol.2005.01.008.; Hassan M., Selimovic D., Ghozlan H., Abdel-Kader O. Induction of high-molecular-weight (HMW) tumor necrosis factor (TNF) alpha by hepatitis C virus (HCV) non-structural protein 3 (NS3) in liver cells is AP-1 and NF-κB-dependent activation. Cell. Signal. 2007; 19(2):301-311. DOI 10.1016/j.cellsig.2006.07.002.; He B., Reguart N., You L., Mazieres J., Xu Z., Lee A.Y., Mikami I., McCormick F., Jablons D.M. Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene. 2005;24(18):3054-3058. DOI 10.1038/sj.onc.1208511.; Hernandez-Meza G., von Felden J., Gonzalez-Kozlova E.E., GarciaLezana T., Peix J., Portela A., Craig A.J., Sayols S., Schwartz M., Losic B., Mazzaferro V., Esteller M., Llovet J.M., Villanueva A. DNA methylation profiling of human hepatocarcinogenesis. Hepatology. 2021;74(1):183-199. DOI 10.1002/hep.31659.; Hoshida Y., Villanueva A., Kobayashi M., Peix J., Chiang D.Y., Camargo A., Gupta S., Moore J., Wrobel M.J., Lerner J., Reich M., Chan J.A., Glickman J.N., Ikeda K., Hashimoto M., Watanabe G., Daidone M.G., Roayaie S., Schwartz M., Thung S., Salvesen H.B., Gabriel S., Mazzaferro V., Bruix J., Friedman S.L., Kumada H., Llovet J.M., Golub T.R. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N. Engl. J. Med. 2008;359(19):19952004. DOI 10.1056/NEJMoa0804525.; Huang L., Li M.X., Wang L., Li B.K., Chen G.H., He L.R., Xu L., Yuan Y.F. Prognostic value of Wnt inhibitory factor-1 expression in hepatocellular carcinoma that is independent of gene methylation. Tumour Biol. 2011;32(1):233-240. DOI 10.1007/s13277-010-0117-6.; In der Stroth L., Tharehalli U., Günes C., Lechel A. Telomeres and telomerase in the development of liver cancer. Cancers (Basel). ;12(8):2048. DOI 10.3390/cancers12082048.; Ivanisenko N.V., Seyrek K., Kolchanov N.A., Ivanisenko V.A., Lavrik I.N. The role of death domain proteins in host response upon SARS-CoV-2 infection: modulation of programmed cell death and translational applications. Cell Death Discov. 2020;6:101. DOI 10.1038/s41420-020-00331-w.; Ivanisenko T.V., Saik O.V., Demenkov P.S., Ivanisenko N.V., Savostianov A.N., Ivanisenko V.A. ANDDigest: a new web-based module of ANDSystem for the search of knowledge in the scientific literature. BMC Bioinformatics. 2020;21(Suppl.11):228. DOI 10.1186/s12859020-03557-8.; Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019;20(Suppl.1):34. DOI 10.1186/s12859-018-2567-6.; Ivanisenko V.A., Gaisler E.V., Basov N.V., Rogachev A.D., Cheresiz S.V., Ivanisenko T.V., Demenkov P.S., Mishchenko E.L., Khripko O.P., Khripko Yu.I., Voevoda S.M., Karpenko T.N., Velichko A.J., Voevoda M.I., Kolchanov N.A., Pokrovsky A.G. Plasma metabolomics and gene regulatory networks analysis reveal the role of nonstructural SARS-CoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci. Rep. 2022;12:19977. DOI 10.1038/s41598022-24170-0.; Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Syst. Biol. 2015;9(Suppl.2):S2. DOI 10.1186/17520509-9-S2-S2.; Iwai A., Takegami T., Shiozaki T., Miyazaki T. Hepatitis C virus NS3 protein can activate the Notch-signaling pathway through binding to a transcription factor, SRCAP. PLoS One. 2011;6(6):e20718. DOI 10.1371/journal.pone.0020718.; Jardin F., Ruminy P., Bastard C., Tilly H. The BCL6 proto-oncogene: a leading role during germinal center development and lymphomagenesis. Pathol. Biol. (Paris). 2007;55(1):73-83. DOI 10.1016/j.patbio.2006.04.001.; Jaroszewicz J., Flisiak-Jackiewicz M., Lebensztejn D., Flisiak R. Current drugs in early development for treating hepatitis C virus-related hepatic fibrosis. Expert Opin. Investig. Drugs. 2015;24(9):12291239. DOI 10.1517/13543784.2015.1057568.; Jiang L.H., Hao Y.L., Zhu J.W. Expression and prognostic value of HER-2/neu, STAT3 and SOCS3 in hepatocellular carcinoma. Clin. Res. Hepatol. Gastroenterol. 2019;43(3):282-291. DOI 10.1016/j.clinre.2018.09.011.; Jing W., Peng R., Li X., Lv S., Duan Y., Jiang S. Study on the prognostic values of TTC36 correlated with immune infiltrates and its methylation in hepatocellular carcinoma. J. Immunol. Res. 2022;2022: 7267131. DOI 10.1155/2022/7267131.; Kim B.R., Park S.H., Jeong Y.A., Na Y.J., Kim J.L., Jo M.J., Jeong S., Yun H.K., Oh S.C., Lee D.H. RUNX3 enhances TRAIL-induced apoptosis by upregulating DR5 in colorectal cancer. Oncogene. 2019;38:3903-3918. DOI 10.1038/s41388-019-0693-x.; Kohsaka S., Wang L., Yachi K., Mahabir R., Narita T., Itoh T., Tanino M., Kimura T., Nishihara H., Tanaka S. STAT3 inhibition overcomes temozolomide resistance in glioblastoma by downregulating MGMT expression. Mol. Cancer Ther. 2012;11(6):1289-1299. DOI 10.1158/1535-7163.MCT-11-0801.; Konnikova L., Simeone M.C., Kruger M.M., Kotecki M., Cochran B.H. Signal transducer and activator of transcription 3 (STAT3) regulates human telomerase reverse transcriptase (hTERT) expression in human cancer and primary cells. Cancer Res. 2005;65(15):6516-6520. DOI 10.1158/0008-5472.CAN-05-0924.; Li B., Li X., Li Y., Guo H., Sun S.Y., He Q.Q., Wang Y., Luo J., Wen J.F., Zheng H., Feng D.Y. The effects of hepatitis C virus nonstructural protein 3 on cell growth mediated by extracellular signalrelated kinase cascades in human hepatocytes in vitro. Int. J. Mol. Med. 2010;26(2):273-279. DOI 10.3892/ijmm_00000462.; Lin B., Hong H., Jiang X., Li C., Zhu S., Tang N., Wang X., She F., Chen Y. c-Jun suppresses the expression of WNT inhibitory factor 1 through transcriptional regulation and interaction with DNA methyltransferase 1 in gallbladder cancer. Mol. Med. Rep. 2018;17(6): 8180-8188. DOI 10.3892/mmr.2018.8890.; Liu J., Ma Q., Zhang M., Wang X., Zhang D., Li W., Wang F., Wu E. Alterations of TP53 are associated with a poor out-come for patients with hepatocellular carcinoma: evidence from a systematic review and meta-analysis. Eur. J. Cancer. 2012;48(15):2328-2338. DOI 10.1016/j.ejca.2012.03.001.; Llovet J.M., Zucman-Rossi J., Pikarsky E., Sangro B., Schwartz M., Sherman M., Gores G. Hepatocellular carcinoma. Nat. Rev. Dis. Primers. 2016;2:16018. DOI 10.1038/nrdp.2016.18.; Loeb D.M. WT1 influences apoptosis through transcriptional regulation of Bcl-2 family members. Cell Cycle. 2006;5(12):1249-1253. DOI 10.4161/cc.5.12.2807.; Machida K., Cheng K.T., Lai C.K., Jeng K.S., Sung V.M., Lai M.M. Hepatitis C virus triggers mitochondrial permeability transition with production of reactive oxygen species, leading to DNA damage and STAT3 activation. J. Virol. 2006;80(14):7199-7207. DOI 10.1128/JVI.00321-06.; Machida K., Cheng K.T., Sung V.M., Shimodaira S., Lindsay K.L., Levine A.M., Lai M.Y., Lai M.M. Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulin and protooncogenes. Proc. Natl. Acad. Sci. USA. 2004;101(12):4262-4267. DOI 10.1073/pnas.0303971101.; Mayo M.W., Wang C.Y., Drouin S.S., Madrid L.V., Marshall A.F., Reed J.C., Weissman B.E., Baldwin A.S. WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene. EMBO J. 1999;18(14):3990-4003. DOI 10.1093/emboj/18.14.3990.; McGlynn K.A., Petrick J.L., El-Serag H.B. Epidemiology of hepatocellular carcinoma. Hepatology. 2021;73(Suppl.1):4-13. DOI 10.1002/hep.31288.; Mžik M., Chmelařová M., John S., Laco J., Slabý O., Kiss I., Bohovicová L., Palička V., Nekvindová J. Aberrant methylation of tumour suppressor genes WT1, GATA5 and PAX5 in hepatocellular carcinoma. Clin. Chem. Lab. Med. 2016;54(12):1971-1980. DOI 10.1515/cclm-2015-1198.; Nault J.C., Ningarhari M., Rebouissou S., Zucman-Rossi J. The role of telomeres and telomerase in cirrhosis and liver cancer. Nat. Rev. Gastroenterol. Hepatol. 2019;16(9):544-558. DOI 10.1038/s41575019-0165-3.; Neumann O., Kesselmeier M., Geffers R., Pellegrino R., Radlwimmer B., Hoffmann K., Ehemann V., Schemmer P., Schirmacher P., Lorenzo Bermejo J., Longerich T. Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors. Hepatology. 2012;56(5):1817-1827. DOI 10.1002/hep.25870.; Ni Y., Gu J., Wu J., Xu L., Rui Y. MGMT-mediated neuron apoptosis in injured rat spinal cord. Tissue Cell. 2020;62:101311. DOI 10.1016/j.tice.2019.101311.; Nowyhed H.N., Huynh T.R., Blatchley A., Wu R., Thomas G.D., Hedrick C.C. The nuclear receptor Nr4a1 controls CD8 T cell development through transcriptional suppression of Runx3. Sci. Rep. 2015;5:9059. DOI 10.1038/srep09059.; Oversoe S.K., Clement M.S., Pedersen M.H., Weber B., Aagaard N.K., Villadsen G.E., Grønbæk H., Hamilton-Dutoit S.J., Sorensen B.S., Kelsen J. TERT promoter mutated circulating tumor DNA as a biomarker for prognosis in hepatocellular carcinoma. Scand. J. Gastroenterol. 2020;55(12):1433-1440. DOI 10.1080/00365521.2020.1837928.; Papic N., Maxwell C.I., Delker D.A., Liu S., Heale B.S., Hagedorn C.H. RNA-sequencing analysis of 5′ capped RNAs identifies many new differentially expressed genes in acute hepatitis C virus infection. Viruses. 2012;4:581-612. DOI 10.3390/v4040581.; Phan R.T., Dalla-Favera R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature. 2004;432(7017):635639. DOI 10.1038/nature03147.; Rabaan A.A., Al-Ahmed S.H., Bazzi A.M., Alfouzan W.A., Alsuliman S.A., Aldrazi F.A., Haque S. Overview of hepatitis C infection, molecular biology, and new treatment. J. Infect. Public Health. 2020;13(5):773-783. DOI 10.1016/j.jiph.2019.11.015.; Revill K., Wang T., Lachenmayer A., Kojima K., Harrington A., Li J., Hoshida Y., Llovet J.M., Powers S. Genome-wide methylation analysis and epigenetic unmasking identify tumor suppressor genes; in hepatocellular carcinoma. Gastroenterology. 2013;145(6):14241435.e1-25. DOI 10.1053/j.gastro.2013.08.055.; Saik O.V., Demenkov P.S., Ivanisenko T.V., Bragina E.Y., Freidin M.B., Goncharova I.A., Dosenko V.E., Zolotareva O.I., Hofestaedt R., Lavrik I.N., Rogaev E.I., Ivanisenko V.A. Novel candidate genes important for asthma and hypertension comorbidity revealed from associative gene networks. BMC Med. Genomics. 2018;11(Suppl.1): 15. DOI 10.1186/s12920-018-0331-4.; Saik O.V., Ivanisenko T.V., Demenkov P.S., Ivanisenko V.A. Interactome of the hepatitis C virus: literature mining with ANDSystem. Virus Res. 2016;218:40-48. DOI 10.1016/j.virusres.2015.12.003.; Sarin K.Y., Cheung P., Gilison D., Lee E., Tennen R.I., Wang E., Artandi M.K., Oro A.E., Artandi S.E. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature. 2005; 436(7053):1048-1052. DOI 10.1038/nature03836.; Sawangarun W., Mandasari M., Aida J., Morita K.I., Kayamori K., Ikeda T., Sakamoto K. Loss of Notch1 predisposes oro-esophageal epithelium to tumorigenesis. Exp. Cell Res. 2018;372(2):129-140. DOI 10.1016/j.yexcr.2018.09.019.; Schulze K., Imbeaud S., Letouzé E., Alexandrov L.B., Calderaro J., Rebouissou S., Couchy G., Meiller C., Shinde J., Soysouvanh F., Cala tayud A.L., Pinyol R., Pelletier L., Balabaud C., Laurent A., Blanc J.F., Mazzaferro V., Calvo F., Villanueva A., Nault J.C., Bioulac-Sage P., Stratton M.R., Llovet J.M., Zucman-Rossi J. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 2015;47(5): 505-511. DOI 10.1038/ng.3252.; Sera T., Hiasa Y., Mashiba T., Tokumoto Y., Hirooka M., Konishi I., Matsuura B., Michitaka K., Udaka K., Onji M. Wilms’ tumour 1 gene expression is increased in hepatocellular carcinoma and associated with poor prognosis. Eur. J. Cancer. 2008;44(4):600-608. DOI 10.1016/j.ejca.2008.01.008.; Song Z., Li Z., Han W., Zhu C., Lou N., Li X., Luo G., Peng S., Li G., Zhao Y., Guo Y. Low DAPK1 expression correlates with poor prognosis and sunitinib resistance in clear cell renal cell carcinoma. Aging (Albany NY). 2020;13(2):1842-1858. DOI 10.18632/aging.103638.; Takakura M., Kyo S., Inoue M., Wright W.E., Shay J.W. Function of AP-1 in transcription of the telomerase reverse transcriptase gene (TERT ) in human and mouse cells. Mol. Cell Biol. 2005;25(18): 8037-8043. DOI 10.1128/MCB.25.18.8037-8043.2005.; Tan Y., Li Y. HCV core protein promotes hepatocyte proliferation and chemoresistance by inhibiting NR4A1. Biochem. Biophys. Res. Commun. 2015;466(3):592-598. DOI 10.1016/j.bbrc.2015.09.091.; Tucci F.A., Broering R., Johansson P., Schlaak J.F., Küppers R. B cells in chronically hepatitis C virus-infected individuals lack a virusinduced mutation signature in the TP53, CTNNB1, and BCL6 genes. J. Virol. 2013;87(5):2956-2962. DOI 10.1128/JVI.03081-12.; Xu R.H., Wei W., Krawczyk M., Wang W., Luo H., Flagg K., Yi S., Shi W., Quan Q., Li K., Zheng L., Zhang H., Caughey B.A., Zhao Q., Hou J., Zhang R., Xu Y., Cai H., Li G., Hou R., Zhong Z.; Lin D., Fu X., Zhu J., Duan Y., Yu M., Ying B., Zhang W., Wang J., Zhang E., Zhang C., Li O., Guo R., Carter H., Zhu J.K., Hao X., Zhang K. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater. 2017; 16(11):1155-1161. DOI 10.1038/nmat4997.; Yang C., Zhang Y., Wang J., Li L., Wang L., Hu M., Xu M., Long Y., Rong R., Zhu T. A novel cyclic helix B peptide inhibits dendritic cell maturation during amelioration of acute kidney graft rejection through Jak-2/STAT3/SOCS1. Cell Death Dis. 2015;6(11):e1993. DOI 10.1038/cddis.2015.338.; Ye S., Zhao X.Y., Hu X.G., Li T., Xu Q.R., Yang H.M., Huang D.S., Yang L. TP53 and RET may serve as biomarkers of prognostic evaluat ion and targeted therapy in hepatocellular carcinoma. Oncol. Rep. 2017;37(4):2215-2226. DOI 10.3892/or.2017.5494.; Zhang C., Li J., Huang T., Duan S., Dai D., Jiang D., Sui X., Li D., Chen Y., Ding F., Huang C., Chen G., Wang K. Meta-analysis of DNA methylation biomarkers in hepatocellular carcinoma. Oncotarget. 2016;7(49):81255-81267. DOI 10.18632/oncotarget.13221.; Zhang H., Weng X., Ye J., He L., Zhou D., Liu Y. Promoter hypermethylation of TERT is associated with hepatocellular carcinoma in the Han Chinese population. Clin. Res. Hepatol. Gastroenterol. 2015;39(5):600-609. DOI 10.1016/j.clinre.2015.01.002.; Zhu Z., Tran H., Mathahs M.M., Moninger T.O., Schmidt W.N. HCV induces telomerase reverse transcriptase, increases its catalytic activity, and promotes caspase degradation in infected human hepatocytes. PLoS One. 2017;12(1):e0166853. DOI 10.1371/journal.pone.0166853.; Zhu Z., Wilson A.T., Gopalakrishna K., Brown K.E., Luxon B.A., Schmidt W.N. Hepatitis C virus core protein enhances Telomer ase activity in Huh7 cells. J. Med. Virol. 2010;82(2):239-248. DOI 10.1002/jmv.21644.; Zong C., Qin D., Yu C., Gao P., Chen J., Lu S., Zhang Y., Liu Y., Yang Y., Pu Z., Li X., Fu Y., Guan Q., Wang X. The stress-response molecule NR4A1 resists ROS-induced pancreatic β-cells apoptosis via WT1. Cell Signal. 2017;35:129-139. DOI 10.1016/j.cellsig.2017.03.012.; Zucman-Rossi J., Villanueva A., Nault J.C., Llovet J.M. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology. 2015;149(5):1226-1239.e4. DOI 10.1053/j.gastro.2015.05.061.; https://vavilov.elpub.ru/jour/article/view/3574

  2. 2
  3. 3
    Academic Journal

    Πηγή: Surgery and Oncology; Том 11, № 2 (2021); 11-18 ; Хирургия и онкология; Том 11, № 2 (2021); 11-18 ; 2949-5857

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.onco-surgery.info/jour/article/view/505/364; Состояние онкологической помощи населению России в 2019 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2020. Доступно по: https://glavonco.ru/cancer_register/%D0%9F%D0%BE%D0%BC%D0%BE%D1%89%D1%8C%20 2019.pdf.; Состояние онкологической помощи населению России в 2014 году. Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2015. Доступно по: http://www.oncology.ru/service/statistics/condition/2015.pdf.; Филиппова М.Г., Шендрикова Т.А., Портной С.М., Жорданиа К.И. Мутации генов BRCA1/2 в ранней диагностике рака яичников у больных с синдромом семейного рака молочной железы/рака яичников. Клиническое наблюдение. Онкогинекология 2020;(3):63, 64. Доступно по: https://osors.ru/oncogynecology/JurText/j2020_3/03_20_63.pdf.; Жорданиа К.И., Паяниди Ю.Г., Савостикова М.В. и др. Некоторые нюансы патогенеза рака яичников. Онкогинекология 2016;(1):36–46. Доступно по: https://osors.ru/oncogynecology/JurText/j2016_1/01_16_36.pdf.; Lande-Diner L., Zhang J., Ben-Porath I. et al. Role of DNA methylation in stable gene repression. J Biol Chem 2007;282:12194–200.; Brianese R.C., Nakamura K.D.M., Almeida F. et al. BRCA1 deficiency is a recurrent event in early-onset triplenegative breast cancer: a comprehensive analysis of germline mutations and somatic promoter methylation. Breast Cancer Res Treat 2018;167:803–14. DOI:10.1007/s10549-017-4552-6.; Cai F., Ge I., Wang M. et al. Pyrosequencing analysis of BRCA1 methylation level in breast cancer cells. Tumour Biol 2014;35(4):3839–44. DOI:10.1007/s13277-013-1508-2.; Li L., Zhang Y., Li N. et al. Nidogen-1: a candidate biomarker for ovarian serous cancer. Jpn J Clin Oncol 2015;45(2):176–82.; Жорданиа К.И., Паяниди Ю.Г., Гокадзе Н.Н., Калиничева Е.В. Рак яичников, мутации BRCA и ингибиторы PARP. Онкогинекология 2017;(1):38, 39. Доступно по: https://osors.ru/oncogynecology/JurText/j2017_1/01_17_37.pdf.; Анискина А.С., Паяниди Ю.Г., Артамонова Е.В. и др. Синхронные эндометриоидные аденокарциномы яичников и тела матки: клиническая картина, диагностика, лечение, прогноз (обзор литературы). Онкогинекология 2021;(1):38–49.; Sedic M., Skibinski A., Brown N. et al. Haploinsuffi ciency for BRCA1 leads to cell-type-specific c genomic instability and premature senescence. Nat Commun 2015;6:7505. DOI:10.1038/ncomms8505.; Vaclov T., Gуmez-Lуpez G., Setiqn F. et al. DNA repair capacity is impaired in healthy BRCA1 heterozygous mutation carriers. Breast Cancer Res Treat 2015;152: 271–82. DOI:10.1007/s10549-015-3459-3.; Паяниди Ю.Г., Абрамов П.М., Гокадзе Н.Н. и др. Роль генетических и эпигенетических нарушений функций гена BRCA1 при раке яичников и раке молочной железы. Онкогинекология 2020;(1):44, 45.; Suijkerbuijk K.P.M., Fackler M.J., Sukumar S. et al. Methylation is less abundant in BRCA1-associated compared with sporadic breast cancer. Ann Oncol 2008;19: 1870–4. DOI:10.1093/annonc/mdn409. 15. Tung N., Miron A., Schnitt S.J. et al. Prevalence and predictors of loss of wild type BRCA1 in estrogen receptor positive and negative BRCA1-associated breast cancers. Breast Cancer Res 2010;12(6):R95. DOI:10.1186/bcr2776.; Dworkin A.M., Spearman A.D., Tseng S.Y. et al. Methylation not a frequent “second hit” in tumors with germline BRCA mutations. Fam Cancer 2009;8:339–46. DOI:10.1007/s10689-009-9240-1.

  4. 4
    Academic Journal

    Συνεισφορές: Russian Science Foundation, grant No. 14-50-00069, Российский научный фонд, грант №14-50-00069

    Πηγή: Surgery and Oncology; Том 7, № 4 (2017); 20-30 ; Хирургия и онкология; Том 7, № 4 (2017); 20-30 ; 2949-5857 ; 10.17650/2220-3478-2017-7-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.onco-surgery.info/jour/article/view/231/192; Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66(1):7–30. DOI:10.3322/caac.21332.; Cuyle P.J., Prenen H. Current and future biomarkers in the treatment of colorectal cancer. Acta Clin Belg 2017;72(2):103–15. DOI:10.1080/17843286.2016.1262996.; Tu C., Mojica W., Straubingeret R.M. et al. Quantitative proteomic profiling of paired cancerous and normal colon epithelial cells isolated freshly from colorectal cancer patients. Proteomics Clin Appl 2017;11(5–6). DOI:10.1002/prca.201600155.; Yu J., Feng Q., Wong S.H. et al. Metagenomic analysis of faecal microbiomeas a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017;66(1):70–8. DOI:10.1136/gutjnl-2015-309800.; Mohammadi A., Mansoori B., Baradaran B. The role of microRNA in colorectal. Biomed Pharmacother 2016;84(4):705–13. DOI:10.1016/j.biopha.2016.09.099.; Van Kessel A.G., Venkatachalam R., Kuiper R.P. et al. Colorectal cancer. Genomic and personalized medicine (2nd edn.) 2013;69(5):722–32.; Punt C.J., Koopman M., Vermeulen L. From tumor heterogeneity to advances in precision treatment of colorectal cancer. Nat Rev Clin Oncol 2017;14(4):235–46. DOI:10.1038/nrclinonc.2016.171.; Bigagli E., de Filippo C., Castagnini C. et al. DNA copy number alterations, gene expression changes and disease-free survival in patients with colorectal cancer: a 10 years’ follow-up. Cell Oncol 2016;39(6):545–58. DOI:10.1007/s13402-016-0299-z.; Tariq K., Ghias K. Colorectal cancer carcinogenesis: a review of mechanisms. Cancer Biol Med 2016;13(1):120–35. DOI:10.28092/j.issn.2095-3941.2015.0103.; Müller M.F., Ibrahim A.E., Arends M.J. Molecular pathological classification of colorectal cancer. Virchows Arch 2016;469(2):125–34. DOI:10.1007/s00428-016-1956-3.; Kudryavtseva A.V., Lipatova A.V., Zaretsky A.R. et al. Important molecular genetic markers of colorectal cancer. Oncotarget 2016;7(33):53959–83. DOI:10.18632/oncotarget.9796.; Kozak M.M., von Eyben R., Pai J. et al. Smad inactivation predicts for worse prognosis and response to fluorouracil-based treatment in colorectal cancer. J Clin Pathol 2015;68(5):341–5. DOI:10.1136/jclinpath-2014-202660.; Van Cutsem E., Lenz H.J., Kohne C.H. Fluorouracil, leucovorin and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol 2015;33(7):692–700. DOI:10.1200/JCO.2014.59.4812.; Allegra C.J., Rumble R.B., Schilsky R.L. Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy: American Society of Clinical Oncology Provisional Clinical Opinion Update 2015. J Сlin Oncol Pract 2016;34(2):179–85. DOI:10.1200/JCO.2015.63.9674.; Bokemeyer C., Köhne C.H., Ciardiello F. et al. FOLFOX4 plus cetuximab treatment and RAS mutations in colorectal cancer. Eur J Cancer 2015;51(10):1243–52. DOI:10.1016/j.ejca.2015.04.007.; Van Cutsem E., Cervantes A., Adam R. et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016;27(9):1386–422. DOI:10.1093/annonc/mdw235.; Barras D., Missiaglia E., Wirapati P. et al. BRAF V600E-mutant colorectal cancer subtypes based on gene expression. Clin Cancer Res 2017;23(1):104–15. DOI:10.1158/1078-0432.CCR-16-0140.; Mikhailenko D.S., Efremov G.D., Safronova N.Y. Detection of rare mutations by routine analysis of KRAS, NRAS and BRAF oncogenes. Bull Exp Biol Med 2017;162(3):375–8. DOI:10.1007/s10517-017-3619-z.; Zhu L., Dong C., Cao Y. et al. Prognostic role of BRAF mutation in stage II/III colorectal cancer receiving curative resection and adjuvant chemotherapy: a metaanalysis based on randomized clinical trials. PLoS One 2016;11(5):154–9. DOI:10.1371/journal.pone.0154795.; Moretto R., Cremolini C., Rossini D. Location of primary tumor and benefit from anti-epidermal growth factor receptor monoclonal antibodies in patients with RAS and BRAF wild-type metastatic colorectal cancer. Oncologist 2016;21(8):988–94. DOI:10.1634/theoncologist.2016-0084.; Corcoran R.B., Atreya C.E., Falchook G.S. et al. Combined BRAF and MEK inhibition with dabrafenib and trametinib in BRAF V600 mutant colorectal cancer. J Clin Oncol 2015;33(34):4023–31. DOI:10.1200/JCO.2015.63.2471.; Lech G., Slotwinski R., Slodkowski M. et al. Colorectal cancer tumor markers and biomarkers: recent therapeutic advances. World J Gastroenterol 2016;22(5):1745–55. DOI:10.3748/wjg.v22.i5.1745.; Shen Y., Han X., Wang J. et al. Prognostic impact of mutation profiling in patients with stage II and III colon cancer. Sci Rep 2016;6(2):243–50. DOI:10.1038/srep24310.; Stintzing S., Stremitzer S., Sebio A. et al. Predictive and prognostic markers in the treatment of metastatic colorectal cancer (mКРР). Hematol Oncol Clin North Am 2015;29(1):43–60.; Thorvaldsen T.E., Pedersen N.M., Wenzel E.M. et al. Differential roles of AXIN1 and AXIN2 in tankyrase inhibitorinduced formation of degradasomes and β-catenin degradation. PLoS One 2017;12(1):170–75. DOI:10.1371/journal.pone.0170508.; Gustavsson B., Carlsson G., Machover D.A. A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin Colorectal Cancer 2015;14(1):1–10. DOI:10.1016/j.clcc.2014.11.002.; Dalerba P., Sahoo D., Paik S. CDX2 as a prognostic biomarker in stage II and stage III colon cancer. N Engl J Med 2016;374(3):211–22. DOI:10.1056/NEJMoa1506597.; Kandioler D., Mittlböck M., Kappel S. et al. TP53 mutational status and prediction of benefit from adjuvant 5-fluorouracil in stage III colon cancer patients. EBioMedicine 2015;2(8):825–30. DOI:10.1016/j.ebiom.2015.06.003; Kunicka T., Prochazka P., Krus I. et al. Molecular profile of 5-fluorouracil pathway genes in colorectal carcinoma. BMC Cancer 2016;16(1):795. DOI:10.1186/s12885-016-2826-8.; Phelip J.M., Mineur L., de la Fouchardière C. et al. High resectability rate of initially unresectable colorectal liver metastases after UGT1A1-adapted highdose irinotecan combined with LV5FU2 and cetuximab: a multicenter phase ii study (ERBIFORT). Ann Surg Oncol 2016;23(7):2161–6. DOI:10.1245/s10434-015-5072-4; Sartore-Bianchi A., Trusolino L., Martino C. et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol 2016;17(6):738–46. DOI:10.1016/S1470-2045(16)00150-9.; Schmoll H.J. Targeting HER2: precision oncology for colorectal cancer. Lancet Oncol 2016;17(6):685–6. DOI:10.1016/S1470-2045(16)30039-0.; Graham D.M., Coyle V.M., Kennedy R.D., Wilson R.H. Molecular subtypes and personalized therapy in metastatic colorectal cancer. Curr Colorectal Cancer Rep 2016;12(6):141–50. DOI:10.1007/s11888-016-0312-y.; Boissière-Michot F., Frugier H., Ho-PunCheung H. et al. Immunohistochemical staining for p16 and BRAF V600E is useful to distinguish between sporadic and hereditary (Lynch syndrome-related) microsatellite instable colorectal carcinomas. Virchows Arch 2016;469(2):135–44. DOI:10.1007/s00428-016-1958-1.; Andre T., de Gramont A., Vernerey D. et al. Adjuvant fluorouracil, leucovorin and oxaliplatin in stage II to III colon cancer: updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J Clin Oncol 2015;33(35):4176–87. DOI:10.1200/JCO.2015.63.4238.; Tougeron D., Mouillet G., Trouilloud I. et al. Efficacy of adjuvant chemotherapy in colon cancer with microsatellite instability: a large multicenter AGEO study. J Nat Cancer Inst 2016;108(7):76–81. DOI:10.1093/jnci/djv438.; Caritg O., Navarro A., Moreno I. et al. Identifying high-risk stage II colon cancer patients: a three-microRNA-based score as a prognostic biomarker. Clin Colorectal Cancer 2016;15(4):175–82. DOI:10.1016/j.clcc.2016.04.008.; Okugawa Y., Grady W.M., Goel A. Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology 2015;149(5):1204–25. DOI:10.1053/j.gastro.2015.07.011.; Pelosof L., Yerram S., Armstrong T. et al. GPX3 promoter methylation predicts platinum sensitivity in colorectal cancer. Epigenetics 2017;12(7):540–50. DOI:10.1080/15592294.2016.1265711.; Sazanov A.A., Kiselyova E.V., Zakharenko A.A. et al. Plasma and saliva miR-21 expression in colorectal cancer patients. J Appl Genet 2017;58(2):231–7. DOI:10.1007/s13353-016-0379-9.; Kerimis D., Kontos C.K., Christodoulou S. et al. Elevated expression of miR-24-3p is a potentially adverse prognostic factor in colorectal adenocarcinoma. Clin Biochem 2017;50(6):285–92. DOI:10.1016/j.clinbiochem.2016.; Kingham P.T., Nguyen H.C., Zheng J. et al. MicroRNA-203 predicts human survival after resection of colorectal liver metastasis. Oncotarget 2017;8(12): 18821–31. DOI:10.18632/oncotarget.13816.; Okugawa Y., Toiyama Y., Toden S. et al. Clinical significance of SNORA42 as an oncogene and a prognostic biomarker in colorectal cancer. Gut 2017;66(1):107–17. DOI:10.1136/gutjnl-2015-309359.; Cruz-Correa M., Pérez-Mayoral J., Dutil J. et al. Hereditary cancer syndromes in Latino populations: genetic characterization and surveillance guidelines. Hered Cancer Clin Pract 2017;15(3):3. DOI:10.1186/s13053-017-0063-z.; Nimptsch K., Aleksandrova K., Boeing H. et al. Association of CRP genetic variants with blood concentrations of C-reactive protein and colorectal cancer risk. Int J Cancer 2015;136(5):1181–92. DOI:10.1002/ijc.29086.; Linnekamp J.F., Wang X., Medema J.P., Vermeulen L. Colorectal cancer heterogeneity and targeted therapy: a case for molecular disease subtypes. Cancer Res 2015;75(2):245–9. DOI:10.1158/0008- 5472.CAN-14-2240.

  5. 5
    Academic Journal

    Πηγή: Cancer Urology; Том 13, № 4 (2017); 111-121 ; Онкоурология; Том 13, № 4 (2017); 111-121 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2017-13-4

    Περιγραφή αρχείου: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/776/725; Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015;65(1):5–29. DOI:10.3322/caac.21254. PMID: 25559415.; Torre L.A., Bray F., Siegel R.L. et al. Global cancer statistics, 2012. CA Cancer J Clin 2015;65(2):87–108. DOI:10.3322/caac.21262. PMID: 25651787.; Saad F., Latour M., Lattouf J.B. et al. Biopsy based proteomic assay predicts risk of biochemical recurrence after radical prostatectomy. J Urol 2017;197(4):1034–40. DOI:10.1016/j.juro.2016.09.116. PMID: 27725152.; Zhang Y., Zhang P., Wan X. et al. Downregulation of long non-coding RNA HCG11 predicts a poor prognosis in prostate cancer. Biomed Pharmacother 2016;83:936–41. DOI:10.1016/j.biopha.2016.08.013. PMID: 27522256.; Attard G., Parker C., Eeles R.A. et al. Prostate cancer. Lancet 2016;387(10013):70–82. DOI:10.1016/S0140-6736(14)61947-4. PMID: 26074382.; Hjelmborg J.B., Scheike T., Holst K. et al. The heritability of prostate cancer in the Nordic Twin Study of Cancer. Cancer Epidemiol Biomarkers Prev 2014;23(11): 2303–10. DOI:10.1158/1055-9965.EPI-13-0568. PMID: 24812039.; Al Olama A.A., Kote-Jarai Z., Berndt S.I. et al. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet 2014;46(10):1103–9. DOI:10.1038/ng.3094. PMID: 25217961.; Eeles R., Goh C., Castro E. et al. The genetic epidemiology of prostate cancer and its clinical implications. Nat Rev Urol 2014;11(1):18–31. DOI:10.1038/nrurol.2013.266. PMID: 24296704.; Li L.C., Hsieh A.C., Ruggero D. et al. Molecular basis of prostate cancer. Ch. 38. The molecular basis of cancer. Eds.: J. Mendelsohn, P.M. Howley, M.A. Israel et al. 4th Edn. Philadelphia: Elsevier, 2015. 888 p.; Pritchard C.C., Mateo J., Walsh M.F. et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 2016;375(5):443–53. DOI:10.1056/NEJMoa1603144. PMID: 27433846.; Genetics of Prostate Cancer. PDQ® Cancer Genetics Editorial Board. Bethesda, MD: NCI. Updated November 30, 2016. Available at: https://www.cancer.gov/types/prostate/hp/prostate-geneticspdq/.; Mononen N., Syrjäkoski K., Matikainen M. et al. Two percent of Finnish prostate cancer patients have a germ-line mutation in the hormone-binding domain of the androgen receptor gene. Cancer Res 2000;60(22):6479–81. PMID: 11103816.; Zheng S.L., Sun J., Wiklund F. et al. Cumulative association of five genetic variants with prostate cancer. N Engl J Med 2008;358(9):910–9. DOI:10.1056/NEJMoa075819. PMID: 18953706.; DePaolo J.S., Wang Z., Guo J. et al. Acetylation of androgen receptor by ARD1 promotes dissociation from HSP90 complex and prostate tumorigenesis. Oncotarget 2016;7(44):71417–28. DOI:10.18632/oncotarget.12163. PMID: 27659526.; Wadosky K.M., Koochekpour S. Molecular mechanisms underlying resistance to androgen deprivation therapy in prostate cancer. Oncotarget 2016;7(39):64447–70. DOI:10.18632/oncotarget.10901. PMID: 27487144.; Wong N., Major P., Kapoor A. et al. Amplification of MUC1 in prostate cancer metastasis and CRPC development. Oncotarget 2016;7(50):83115–33. DOI:10.18632/oncotarget.13073. PMID: 27825118.; Kumar A., Coleman I., Morrissey C. et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med 2016;22(4):369–78. DOI:10.1038/nm.4053. PMID: 26928463.; Wadosky K.M., Koochekpour S. Therapeutic rationales, progresses, failures, and future directions for advanced prostate cancer. Int J Biol Sci 2016;12(4):409–26. DOI:10.7150/ijbs.14090. PMID: 27019626.; Azad A.A., Volik S.V., Wyatt A.W. et al. Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castrationresistant prostate cancer. Clin Cancer Res 2015;21(10):2315–24. DOI:10.1158/1078-0432.CCR-14-2666. PMID: 25712683.; Antonarakis E.S., Lu C., Wang H. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014;371(11):1028–38. DOI:10.1056/NEJMoa1315815. PMID: 26964769.; Hornberg E., Ylitalo E.B., Crnalic S. et al. Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS One 2011;6(4):e19059. DOI:10.1371/journal.pone.0019059. PMID: 21552559.; Turner A.R., Feng J., Liu W. et al. Prostate Cancer. Genomic and Personalized Medicine. 2nd Edn. Ch. 63. London: Academic Press, 2012. Pp. 733–741.; Haraldsdottir S., Hampel H., Wei L. et al. Prostate cancer incidence in males with Lynch syndrome. Genet Med 2014;16(7):553–7. DOI:10.1038/gim.2013.193. PMID: 24434690.; Robinson D., van Allen E.M., Wu Y.M. et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015;161(5):1215–28. DOI:10.1016/j.cell.2015.05.001.; Ellingson M.S., Hart S.N., Kalari K.R. et al. Exome sequencing reveals frequent deleterious germline variants in cancer susceptibility genes in women with invasive breast cancer undergoing neoadjuvant chemotherapy. Breast Cancer Res Treat 2015;153(2):435–43. DOI:10.1007/s10549-015-3545-6. PMID: 26296701.; Leongamornlert D., Saunders E., Dadaev T. et al. Frequent germline deleterious variants in DNA repair genes in familial prostate cancer cases are associated with advanced disease. Br J Cancer 2014;110(6):1663–72. DOI:10.1038/bjc.2014.30.; Tarish F.L., Schultz N., Tanoglidi A. et al. Castration radiosensitizes prostate cancer tissue by impairing DNA double-strand break repair. Sci Transl Med 2015;7(312):312re11. DOI:10.1126/scitranslmed.aac5671. PMID: 26537259.; Polkinghorn W.R., Parker J.S., Lee M.X. et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov 2013;3(11):1245–53. DOI:10.1158/2159-8290.CD-13-0172. PMID: 24027196.; Raison N., Elhage O., Dasgupta P. Getting personal with prostate cancer: DNA-repair defects and olaparib in metastatic prostate cancer. BJU Int 2017;119(1):8–9. DOI:10.1111/bju.13522. PMID: 27154575.; Kpetemey M., Dasgupta S., Rajendiran S. et al. MIEN1, a novel interactor of Annexin A2, promotes tumor cell migration by enhancing AnxA2 cell surface expression. Mol Cancer 2015;14:156. DOI:10.1186/s12943-015-0428-8. PMID: 26272794.; Rajendiran S., Gibbs L.D., van Treuren T. et al. MIEN1 is tightly regulated by SINE Alu methylation in its promoter. Oncotarget 2016;7(40):65307–19. DOI:10.18632/oncotarget.11675. PMID: 27589566.; Zhao S., Geybels M.S., Leonardson A. et al. Epigenome wide tumor DNA methylation profiling identifies novel prognostic biomarkers of metastatic-lethal progression in men with clinically localized prostate cancer. Clin Cancer Res 2017;23(1):311–19. DOI:10.1158/1078-0432.CCR-16-0549. PMID: 27358489.; Geybels M.S., Wright J.L., Bibikova M. et al. Epigenetic signature of Gleason score and prostate cancer recurrence after radical prostatectomy. Clin Epigenetics 2016;8:97. DOI:10.1186/s13148-016-0260-z. PMID: 27651837.; Epstein J.I., Zelefsky M.J., Sjoberg D.D. et al. A contemporary prostate cancer grading system: a validated alternative to the Gleason score. Eur Urol 2016;69(3):428–35. DOI:10.1016/j.eururo.2015.06.046. PMID: 26166626.; Singal R., Ramachandran K., Gordian E. et al. Phase I/II study of azacitidine, docetaxel, and prednisone in patients with metastatic castration-resistant prostate cancer previously treated with docetaxelbased therapy. Clin Genitourin Cancer 2015;13(1):22–31. DOI:10.1016/j.clgc.2014.07.008. PMID: 25178642.; Ayub S.G., Kaul D., Ayub T. Microdissecting the role of microRNAs in the pathogenesis of prostate cancer. Cancer Genet 2015;208(6):289–302. DOI:10.1016/j.cancergen.2015.02.010. PMID: 26004033.; Kojima S., Goto Y., Naya Y. The roles of microRNAs in the progression of castration-resistant prostate cancer. J Hum Genet 2017;62(1):25–31. DOI:10.1038/jhg.2016.69. PMID: 27278789.; Faruq O., Vecchione A. MicroRNA: diagnostic perspective. Front Med 2015;2:51. DOI:10.3389/fmed.2015.00051. PMID: 26284247.; Larne O., Östling P., Haflidadóttir B.S. et al. MiR-183 in prostate cancer cells positively regulates synthesis and serum levels of prostate-specific antigen. Eur Urol 2015;68(4):581–8. DOI:10.1016/j.eururo.2014.12.025. PMID: 25556023.; Chiyomaru T., Yamamura S., Fukuhara S. et al. Genistein inhibits prostate cancer cell growth by targeting miR-34a and oncogenic HOTAIR. PLoS One 2013;8(8):e70372. DOI:10.1371/journal.pone.0070372. PMID: 23936419.; Wang J., Shan M., Liu T. et al. Analysis of TRRAP as a potential molecular marker and therapeutic target for breast cancer. J Breast Cancer 2016;19(1):61–7. DOI:10.4048/jbc.2016.19.1.61. PMID: 27066097.; Gang X., Yang Y., Zhong J. et al. P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth. Oncotarget 2016;7(12):15135–49. DOI:10.18632/oncotarget.7715. PMID: 26934656.; Blume-Jensen P., Berman D.M., Rimm D.L. et al. Development and clinical validation of an in situ biopsybased multimarker assay for risk stratification in prostate cancer. Clin Cancer Res 2015;21(11):2591–600. DOI:10.1158/1078-0432.CCR-14-2603. PMID: 25733599.; Shvartsur A., Bonavida B. TROP2 and its overexpression in cancers: regulation and clinical/therapeutic implications. Genes Cancer 2015;6(3–4):84–105. DOI:10.18632/genesandcancer.40. PMID: 26000093.; Trerotola M., Ganguly K.K., Fazli L. et al. Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts. Oncotarget 2015;6(16):14318–28. DOI:10.18632/oncotarget.3960. PMID: 26015409.; Ju X., Jiao X., Ertel A. et al. v-Src oncogene induces TROP2 proteolytic activation via cyclin D1. Cancer Res 2016;76(22);6723–34. DOI:10.1158/0008-5472.CAN-15-3327. PMID: 27634768.; Lin C.J., Nasr Z., Premsrirut P.K. et al. Targeting synthetic lethal interactions between Myc and the EIF-4F complex impedes tumorigenesis. Cell Rep 2012;1(4):325–33. DOI:10.1016/j.celrep.2012.02.010. PMID: 22573234.; Cencic R., Pelletier J. Hippuristanol – a potent steroid inhibitor of eukaryotic initiation factor 4A. Translation (Austin) 2016;4(1):e1137381. DOI:10.1080/21690731.2015.1137381. PMID: 27335721.; Malina A., Mills J.R., Pelletier J. Emerging therapeutics targeting mRNA translation. Cold Spring Harb Perspect Biol 2012;4(4):a012377. DOI:10.1101/cshperspect.a012377. PMID: 22474009.; Morad S.A., Schmid M., Büchele B. et al. A novel semisynthetic inhibitor of the FRB domain of mammalian target of rapamycin blocks proliferation and triggers apoptosis in chemoresistant prostate cancer cells. Mol Pharmacol 2013;83(2):531–41. DOI:10.1124/mol.112.081349. PMID: 23208958.; Nguyen P.L., Shin H., Yousefi K. et al. Impact of a genomic classifier of metastatic risk on postprostatectomy treatment recommendations by radiation oncologists and urologists. Urology 2015;86(1):35–40. DOI:10.1016/j.urology.2015.04.004. PMID: 26142578.; Ross A.E., Johnson M.H., Yousefi K. et al. Tissue-based genomics augments post-prostatectomy risk stratification in a natural history cohort of intermediateand high-risk men. Eur Urol 2016;69(1):157–65. DOI:10.1016/j.eururo.2015.05.04. PMID: 26058959.; https://oncourology.abvpress.ru/oncur/article/view/776

  6. 6
    Academic Journal

    Πηγή: Doklady of the National Academy of Sciences of Belarus; Том 59, № 5 (2015); 73-78 ; Доклады Национальной академии наук Беларуси; Том 59, № 5 (2015); 73-78 ; 2524-2431 ; 1561-8323 ; undefined

    Περιγραφή αρχείου: application/pdf

    Relation: https://doklady.belnauka.by/jour/article/view/146/148; Bladder cancer / F. de Braud [et al.] // Crit. Rev. Oncol. Hematol. – 2002. – Vol. 41, N 1. – P. 89–106.; Мутационный статус гена FGFR3 в проспективной когорте пациентов, страдающих раком мочевого пузыря / М. П. Смаль [и др.] // Докл. НАН Беларуси. – 2013. – Т. 57, № 1. – С. 96–101.; FGFR3 and TP53 mutations in a prospective cohort of Belarusian bladder cancer patients / M. P. Smal [et al.] // Exp. Oncol. – 2014. – Vol. 36, N 4. – P. 246–251.; Kandimalla, R. DNA methylation-based biomarkers in bladder cancer / R. Kandimalla, A. A. van Tilborg, E. C. Zwarthoff // Nat. Rev. Urol. – 2013. – Vol. 10, N 6. – P. 327–335.; RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors / W. J. Kim [et al.] // Cancer Res. – 2005. – Vol. 65, N 20. – P. 9347–9354.; Comprehensive genome methylation analysis in bladder cancer: identification and validation of novel methylated genes and application of these as urinary tumor markers / T. Reinert [et al.] // Clin. Cancer Res. – 2011. – Vol. 17, N 17. – P. 5582–5592.; Kim, Y. K. Epigenetic markers as promising prognosticators for bladder cancer / Y. K. Kim, W. J. Kim // Int. J. Urol. – 2009. – Vol. 16, N 1. – P. 17–22.; Levanon, D. Structure and regulated expression of mammalian RUNX genes / D. Levanon, Y. Groner // Oncogene. – 2004. – Vol. 23, N 24. – P. 4211–4219.; Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma / Y. S. Lee [et al.] // Cancer Cell. – 2013. – Vol. 24, N 5. – P. 603–616.; Methylation of the RUNX3 promoter as a potential prognostic marker for bladder tumor / E. J. Kim [et al.] // J. Urol. – 2008. – Vol. 180, N 3. – P. 1141–1145.; RUNX3 methylation as a predictor for disease progression in patients with non-muscle-invasive bladder cancer / C. Yan [et al.] // J. Surg. Oncol. – 2012. – Vol. 105, N 4. – P. 425–430.; Prognostic significance of methylation profiles in urothelial carcinomas of the bladder / H. J. Park [et al.] // Korean J. Pathol. – 2010. – Vol. 44. – P. 623–630.; DNA methylation-associated inactivation of TGFbeta-related genes DRM/Gremlin, RUNX3, and HPP1 in human cancers / M. Suzuki [et al.] // Br. J. Cancer. – 2005. – Vol. 93, N 9. – P. 1029–1037.; RUNX3 methylation reveals that bladder tumors are older in patients with a history of smoking / E. M. Wolff [et al.] // Cancer Res. – 2008. – Vol. 68, N 15. – P. 6208–6214.; Methylation of tumor suppressor genes in a novel panel predicts clinical outcome in paraffin-embedded bladder tumors / R. García-Baquero [et al.] // Tumour Biol. – 2014. – Vol. 35, N 6. – P. 5777–5786.; https://doklady.belnauka.by/jour/article/view/146; undefined

  7. 7
  8. 8
  9. 9
    Academic Journal

    Πηγή: Cancer Urology; Том 7, № 3 (2011); 47-56 ; Онкоурология; Том 7, № 3 (2011); 47-56 ; 1996-1812 ; 1726-9776 ; 10.17650/1726-9776-2011-7-3

    Περιγραφή αρχείου: application/pdf

    Relation: https://oncourology.abvpress.ru/oncur/article/view/233/250; Михайленко Д.С., Григорьева М.В., Землякова В.В. и др. Молекулярногенетические нарушения в гене VHL и метилирование некоторых генов супрессоров в спорадических светлоклеточных карциномах почки. Онкоурология 2010;(2):32−6.; Bukowski R.M. Natural history and therapy of metastatic renal cell carcinoma. The role of interleukin-2. Cancer 1997;80:1198−220.; Lonser R.R., Glenn G.M., Walther M. et al. Von Hippel-Lindau disease. Lancet 2003;361:2059–67.; Latif F., Tory K., Gnarra J. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 1993;260:1317–20.; Iliopoulos O., Levy A.P., Jiang C. et al. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA 1996;93:10595–9.; Foster K., Prowse A., van den Berg A. et al. Somatic mutations of the von Hippel-Lindau disease tumour suppressor gene in nonfamilial clear cell renal carcinoma. Hum Mol Genet 1994;3:2169–73.; Gnarra J.R., Tory K., Weng Y. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 1994;7:85–90.; Shuin T., Kondo K., Torigoe S. et al. Frequent somatic mutations and loss of heterozygosity of the von Hippel-Lindau tumor suppressor gene in primary human renal cell carcinomas. Cancer Res 1994;54:2852–5.; Kondo K., Yao M., Yoshida M. et al. Comprehensive mutational analysis of the VHL gene in sporadic renal cell carcinoma: relationship to clinicopathological parameters. Genes Chromosomes Cancer 2002;34:58–68.; Nuan X., Rian C., Messing E.et al. Overproduction of vascular endkthelial growth factor related to VHL tumor supressor gene mutations and hypoxia-unducible factor-1a expression in renall cell carcinoma. J Urology 2003;170:588−92.; Yao M., Yoshida M., Kishida T. et al. VHL tumor suppressor gene alterations associated with good prognosis in sporadic clear-cell renal carcinoma. J Natl Cancer Inst 2002;94:1569–75.; Patard J.J., Fergelot P., Karakiewicz P.I. et al. Low CAIX expression and absence of VHL gene mutation are associated with tumor aggressiveness and poor survival of clear cell renal cell carcinoma. Int J Cancer 2008;123:395–400.; Smits K.M., Schouten L.J., van Dijk B.A. et al. Genetic and epigenetic alterations in the von hippel-lindau gene: the infl uence on renal cancer prognosis. Clin Cancer Res 2008;14:782–7.; Schraml P., Struckmann K., Hatz F. et al. VHL mutations and their correlation with tumour cell proliferation, microvessel density, and patient prognosis in clear cell renal cell carcinoma. J Pathol 2002;196:186–93.; Rini B.I., Jaeger E., Weinberg V. et al. Clinical response to therapy targeted at vascular endothelial growth factor in metastatic renal cell carcinoma: impact of patient characteristics and Von HippelLindau gene status. BJU Int 2006;98:756–62.; Choueiri T.K., Vaziri S.A., Jaeger E. et al. Von Hippel-Lindau gene status and response to vascular endothelial growth factor targeted therapy for metastatic clear cell renal cell carcinoma. J Urol 2008;180:860–5; discussion 865–6.; Klatte T., Seligson D.B., Riggs S.B. et al. Hypoxia-inducible factor 1 alpha in clear cell renal cell carcinoma. Clin Cancer Res 2007;13(24):7388–93.; Birner P., Schindl M., Obermair A., Plank C. et al. Overexpression of hypoxiainducible factor 1a is a marker for an unfavourable prognosis in early-stage invasive cervical cancer. Cancer Res 2000;60:4693– 6.; Schindl M., Schoppmann S.F., Samonigg H. et al. Overexpression of hypoxiainducible factor 1a is associated with an unfavourable prognosis in lymph node-positive breast cancer. Clin Cancer Res 2002;8:1831–7.; Miller K., Wang M., Gralow J. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 2007;357:2666–76.; Hurwitz H., Fehrenbacher L., Novotny W. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metasta tic colorectal cancer. N Engl J Med 2004;350:2335–42.; Lovet J.M., Ricci S., Mazzaferro V. et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378–90.; https://oncourology.abvpress.ru/oncur/article/view/233

  10. 10
  11. 11
  12. 12
  13. 13
    Academic Journal
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
    Academic Journal

    Περιγραφή αρχείου: application/pdf