Showing 1 - 20 results of 289 for search '"гипергомоцистеинемия"', query time: 1.10s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Source: Eurasian Journal of Academic Research; Vol. 5 No. 11 (2025): Eurasian Journal of Academic Research; 35-42 ; Евразийский журнал академических исследований; Том 5 № 11 (2025): Евразийский журнал академических исследований; 35-42 ; Yevrosiyo ilmiy tadqiqotlar jurnali; Jild 5 Nomeri 11 (2025): Евразийский журнал академических исследований; 35-42 ; 2181-2020

    File Description: application/pdf

  5. 5
  6. 6
  7. 7
  8. 8
    Academic Journal
  9. 9
    Academic Journal

    Source: Obstetrics, Gynecology and Reproduction; Vol 18, No 5 (2024); 658–666 ; Акушерство, Гинекология и Репродукция; Vol 18, No 5 (2024); 658–666 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2227/1257; Seremak-Mrozikiewicz A. Metafolin – alternative for folate deficiency supplementation in pregnant women. Ginekol Pol. 2013;84(7):641–6. https://doi.org/10.17772/gp/1618.; Cochrane K.M., Mayer C., Devlin A.M. et al. Is natural (6S)-5-methyltetrahydrofolic acid as effectiveas synthetic folic acid in increasing serum and red blood cell folate concentrations during pregnancy? A proof-of-concept pilot study. Trials. 2020;21(1):380. https://doi.org/10.1186/s13063-020-04320-3.; Pietrzik K., Bailey L., Shane B. Folic acid and L-5-methyltetrahydrofolate: comparison of clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2010;49(8):535–48. https://doi.org/10.2165/11532990-000000000-00000.; Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet. 1991;338(8760):131–7. https://doi.org/10.1016/0140-6736(91)90133-A.; Czeizel A.E., Dudas I., Paput L., Banhidy F. Prevention of neural-tube defects with periconceptional folic acid, methylfolate, or multivitamins? Ann Nutr Metab. 2011;58(4):263–71. https://doi.org/10.1159/000330776.; U.S. Preventive Services Task Force. Folic acid for the prevention of neural tube defects: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2009;150(9):626–31. https://doi.org/10.7326/0003-4819-150-9-200905050-00009.; Quinn M., Halsey J., Sherliker P. et al. Global heterogeneity in folic acid fortification policies and implications for prevention of neural tube defects and stroke: a systematic review. ЕClinicalMedicine. 2023;67:102366. https://doi.org/10.1016/j.eclinm.2023.102366.; Tang J.S., Cait A., White R.M. et al. MR1-dependence of unmetabolized folic acid side-effects. Front Immunol. 2022;3:946713. https://doi.org/10.3389/fimmu.2022.946713.; Kalmbach R., Paul L., Selhub J. Determination of unmetabolized folic acid in human plasma using affinity HPLC. Am J Clin Nutr. 2011;94(1):343S–347S. https://doi.org/10.3945/ajcn.111.013433.; Chen P., Tang L., Song Y. et al. Association of folic acid dosage with circulating unmetabolized folic acid in Chinese adults with H-type hypertension: a multicenter, double-blind, randomized controlled trial. Front Nutr. 2023;10:1191610. https://doi.org/10.3389/fnut.2023.1191610.; Dai C., Fei Y., Li J. A novel review of homocysteine and pregnancy complications. BioMed Res Int. 2021;2021:6652231. https://doi.org/10.1155/2021/6652231.; Clare C.E., Brassington A.H., Kwong W.Y., Sinclair K.D. One-carbon metabolism: linking nutritional biochemistry to epigenetic programming of long-term development. Annu Rev Anim Biosci. 2019;7:263–87. https://doi.org/10.1146/annurev-animal-020518-115206.; Visentin M., Diop-Bove N., Zhao R., Goldman I.D. The intestinal absorption of folates. Annu Rev Physiol. 2014;76:251–74. https://doi.org/10.1146/annurev-physiol-020911-153251.; Duthie S.J., Narayanan S., Blum S. et al. Folate deficiency in vitro induces uracil misincorporation and DNA hypomethylation and inhibits DNA excision repair in immortalized normal human colon epithelial cells. Nutr Cancer. 2000;37(2):245–51. https://doi.org/10.1207/S15327914NC372_18.; Kelly P., McPartlin J., Goggins M. et al. Unmetabolized folic acid in serum: acute studies in subjects consuming fortified food and supplements. Am J Clin Nutrition. 1997;65(6):1790–5. https://doi.org/10.1093/ajcn/65.6.1790.; Shane B. Folate chemistry and metabolism. In: Folate in health and disease. Ed. L. Bailey. N.Y.: Marcel Dekker, 2017. 1–22.; Matherly L.H., Goldman D.I. Membrane transport of folates. Vitam Horm. 2003;66:403–56. https://doi.org/10.1016/s0083-6729(03)01012-4.; Koury M.J., Ponka P. New insights into erythropoiesis: the roles of folate, vitamin B12, andiron. Annu Rev Nutr. 2004;24:105–31. https://doi.org/10.1146/annurev.nutr.24.012003.132306.; Керкешко Г.О., Арутюнян А.В., Аржанова О.Н., Милютина Ю.П. Оптимизация терапии фолатами при осложнениях беременности. Журнал акушерства и женских болезней. 2013;62(6):25–36.; Hoss G.R.W., Sperb-Ludwig F., Schwartz I.V.D, Blom H.J. Classical homocystinuria: a common inborn error of metabolism? An epidemiological study based on genetic databases. Mol Genet Genomic Med. 2020;8(6):1214. https://doi.org/10.1002/mgg3.1214.; Korokin M.V., Pokrovskiy M.V., Novikov O.O. et al. A model of hyperhomocysteine-induced endothelial dysfunction in rats. Bull Exp Biol Med. 2011;152(2):213–5. https://doi.org/10.1007/s10517-011-1491-9.; Zhuo J.M., Praticò D. Normalization of hyperhomocysteinemia improves cognitive deficits and ameliorates brain amyloidosis of a transgenic mouse model of Alzheimer’s disease. FASEB J. 2010;24(10):3895–902. https://doi.org/10.1096/fj.10-161828.; Милютина Ю.П., Пустыгина А.В., Щербицкая А.Д. и др. Сравнение показателей окислительного стресса в сыворотке крови крыс при различных моделях гипергомоцистеинемии. Acta Biomedica Scientifica. 2016;1(3–2):120–3.; Зильфян В.Н., Кумкумаджян В.А. Новый метод взятия крови у мелких лабораторных животных. Журнал экспериментальной и клинической медицины. 1970:10(4):12–4.; https://www.gynecology.su/jour/article/view/2227

  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
    Academic Journal

    Source: Obstetrics, Gynecology and Reproduction; Vol 17, No 4 (2023); 390-401 ; Акушерство, Гинекология и Репродукция; Vol 17, No 4 (2023); 390-401 ; 2500-3194 ; 2313-7347

    File Description: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/1761/1129; Alcalay A., Wun T., Khatri V. et al. Venous thromboembolism in patients with colorectal cancer: incidence and effect on survival. J Clin Oncol. 2006;24(7):1112–8. https://doi.org/10.1200/JCO.2005.04.2150.; Khorana A.A., Francis C.W., Culakova E. et al. Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer. 2007;110(10):2339–46. https://doi.org/10.1002/cncr.23062.; Sharma G.S., Kumar T., Dar T.A., Singh L.R. Protein N-homocysteinylation: From cellular toxicity to neurodegeneration. Biochim Biophys Acta. 2015;1850:2239–45. https://doi.org/10.1016/j.bbagen.2015.08.013.; Brustolin S., Giugliani R., Felix T.M. Genetics of homocysteine metabolism and associated disorders. Braz J Med Biol Res. 2010;43(1):1–7. https://doi.org/10.1590/s0100-879x2009007500021.; Seshadri S. Elevated plasma homocysteine levels: risk factor or risk marker for the development of dementia and Alzheimer's disease? J Alzheimer's Dis. 2006;9(4):393–8. https://doi.org/10.3233/jad-2006-9404.; Mancardi D., Penna C., Merlino A. et al. Physiological and pharmacological features of the novel gasotransmitter: hydrogen sulfide. Biochim Biophys Acta. 2009;1787(7):864–72. https://doi.org/10.1016/j.bbabio.2009.03.005.; Wu L.L., Wu J.T. Hyperhomocysteinemia is a risk factor for cancer and a new potential tumor marker. Clin Chim Acta. 2002;322(1–2):21–8. https://doi.org/10.1016/s0009-8981(02)00174-2.; Seshadri S., Beiser A., Selhub J. et al. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med. 2002;346(7):476–83. https://doi.org/10.1056/NEJMoa011613.; Selhub J. Homocysteine metabolism. Annu Rev Nutr. 1999;19:217–46. https://doi.org/10.1146/annurev.nutr.19.1.217.; Jacques P.F., Bostom A.G., Williams R.R. et al. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation. 1996;93(1):7–9. https://doi.org/10.1161/01.cir.93.1.7.; Williams K.T., Schalinske K.L. New insights into the regulation of methyl group and homocysteine metabolism. J Nutr. 2007;137(2):311–4. https://doi.org/10.1093/jn/137.2.311.; Locasale J.W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013;13(8):572–83. https://doi.org/10.1038/nrc3557.; Zhang S.M., Willett W.C., Selhub J. et al. Plasma folate, vitamin B6, vitamin B12, homocysteine, and risk of breast cancer. J Natl Cancer Inst. 2003;95(5):373–80. https://doi.org/10.1093/jnci/95.5.373.; Siniscalchi A., Mancuso F., Gallelli L. et al. Increase in plasma homocysteine levels induced by drug treatments in neurologic patients Pharmacol Res. 2005;52(5):367–75. https://doi.org/10.1016/j.phrs.2005.05.013.; Hjelt K., Brynskov J., Hippe E. et al. Oral contraceptives and the cobalamin (vitamin B12) metabolism. Acta Obstet Gynecol Scand. 1985;64(1):59–63. https://doi.org/10.3109/00016348509154689.; Matsuo K., Hamajima N., Hirai T. et al. Methionine synthase reductase gene A66G polymorphism is associated with risk of colorectal cancer. Asian Pac J Cancer Prev. 2002;3(4):353–9.; Obwegeser R., Hohlagschwandtner M., Sinzinger H. Homocysteine – a pathophysiological cornerstone in obstetrical and gynaecological disorders? Hum Reprod Update. 1999;5(1):64–72. https://doi.org/10.1093/humupd/5.1.64.; Montfort W.R., Perry K.M., Fauman E.B. et al. Structure, multiple site binding, and segmental accommodation in thymidylate synthase on binding dUMP and an anti-folate. Biochemistry. 1990;29(30):6964–77. https://doi.org/10.1021/bi00482a004.; Blount B.C., Mack M.M., Wehr C.M. et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci U S A. 1997;94(7):3290–5. https://doi.org/10.1073/pnas.94.7.3290.; Hay R.K., Park J.-G., Gazdar A. Atlas of human tumor cell lines. Academic Press, 2013. 490; Crider K.S., Yang T.P., Berry R.J., Bailey L.B. Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate's role. Adv Nutr. 2012;3(1):21–38. https://doi.org/10.3945/an.111.000992.; Hall L.E., Mitchell S.E, O’Neill R.J. Pericentric and centromeric transcription: a perfect balance required. Chromosome Res. 2012;20(5):535–46. https://doi.org/10.1007/s10577-012-9297-9.; Ehrlich M. DNA hypomethylation, cancer, the immunodeficiency, centromeric region instability, facial anomalies syndrome and chromosomal rearrangements. J Nutr. 2002;132(8 Suppl):2424S–2429S. https://doi.org/10.1093/jn/132.8.2424S.; Zhang D., Wen X., Wu W. et al. Elevated homocysteine level and folate deficiency associated with increased overall risk of carcinogenesis: metaanalysis of 83 case-control studies involving 35,758 individuals. PLoS One. 2015;10(5):e0123423. https://doi.org/10.1371/journal.pone.0123423.; Stathopoulou A., Vlachonikolis I., Mavroudis D. et al. Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: Evaluation of their prognostic significance. J Clin Oncol. 2002;20(16):3404–12. https://doi.org/10.1200/JCO.2002.08.135.; Mcdonald L., Bray C., Field C. et al. Homocystinuria, thrombosis, and the blood-platelets. Lancet. 1964;1(7336):745–6. https://doi.org/10.1016/s0140-6736(64)92852-1.; Tonetti C., Amiel J., Munnich A., Zittoun J. Impact of new mutations in the methylenetetrahydrofolate reductase gene assessed on biochemical phenotypes: a familial study. J Inherit Metab Dis. 2001;24(8):833–42. https://doi.org/10.1023/a:1013988123902.; Sibani S., Christensen B., O'Ferrall E. et al. Characterization of six novel mutations in the methylenetetrahydrofolate reductase (MTHFR) gene in patients with homocystinuria. Hum Mutat. 2000;15(3):280–7. https://doi.org/10.1002/(SICI)1098-1004(200003)15:33.0.CO;2-I.; Kluijtmans L.A., Wendel U., Stevens E. et al. Identification of four novel mutations in severe methylenetetrahydrofolate reductase deficiency. Eur J Hum Genet. 1998;6(3):257–65. https://doi.org/10.1038/sj.ejhg.5200182.; Brezovska-Kavrakova J., Krstevska M., Bosilkova G. et al. Hyperhomocysteinemia and of methylenetetrahydrofolate reductase (C677T) genetic polymorphism in patients with deep vein thrombosis. Mater Sociomed. 2013;25(3):170–4. https://doi.org/10.5455/msm.2013.25.170-174.; van der Put N.M., Steegers-Theunissen R.P., Frosst P. et al. Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet. 1995;346(8982):1070–1. https://doi.org/10.1016/s0140-6736(95)91743-8.; Robien K., Ulrich C.M. 5, 10-Methylenetetrahydrofolate reductase polymorphisms and leukemia risk: a HuGE minireview. Am J Epidemiol. 2003;157(7):571–82. https://doi.org/10.1093/aje/kwg024.; Weisberg I.S., Jacques P.F., Selhub J. et al. The 1298A→ C polymorphism in methylenetetrahydrofolate reductase (MTHFR): in vitro expression and association with homocysteine. Atherosclerosis. 2001;156(2):409–15. https://doi.org/10.1016/s0021-9150(00)00671-7.; Alberg A.J., Selhub J., Shah K.V. et al. The risk of cervical cancer in relation to serum concentrations of folate, vitamin B12, and homocysteine. Cancer Epidemiol Biomarkers Prev. 2000;9(7):761–4.; Powers H.J. Interaction among folate, riboflavin, genotype, and cancer, with reference to colorectal and cervical cancer. J Nutr. 2005;135(12 Suupl):2960S–2966S. https://doi.org/10.1093/jn/135.12.2960S.; Gatt A., Makris A., Cladd H. et al. Hyperhomocysteinemia in women with advanced breast cancer. Int J Lab Hematol. 2007;29(6):421–5. https://doi.org/10.1111/j.1751-553X.2007.00907.x.; Heit J.A., O'Fallon W.M., Petterson T.M. et al. Relative impact of risk factors for deep vein thrombosis and pulmonary embolism: a populationbased study. Arch Intern Med. 2002;162(11):1245–8. https://doi.org/10.1001/archinte.162.11.1245.; Welch G.N., Loscalzo J. Homocysteine and atherothrombosis. N Engl J Med. 1998;338(15):1042–50. https://doi.org/10.1056/NEJM199804093381507.; Sharma G.S., Kumar T., Singh L.R. N-homocysteinylation induces different structural and functional consequences on acidic and basic proteins. PLoS One. 2014;9:e116386. https://doi.org/10.1371/journal.pone.0116386.; Kumar T., Sharma G.S., Singh L.R. Homocystinuria: therapeutic approach. Clin Chim Acta. 2016;458:55–62. https://doi.org/10.1016/j.cca.2016.04.002.; Lentz S.R., Sobey C.G., Piegors D.J. et al. Vascular dysfunction in monkeys with diet-induced hyperhomocyst (e) inemia. J Clin Invest. 1996;98(1):24–9. https://doi.org/10.1172/JCI118771.; FitzGerald G.A. Parsing an enigma: the pharmacodynamics of aspirin resistance. Lancet. 2003;361(9357):542–4. https://doi.org/10.1016/S0140-6736(03)12560-3.; Sibrian-Vazquez M., Escobedo J.O., Lim S. et al. Homocystamides promote free-radical and oxidative damage to proteins. Proc Natl Acad Sci U S A. 2010;107(2):551–4. https://doi.org/10.1073/pnas.0909737107.; Zhang J.-.W, Yan R., Tang Y.-S. et al. Hyperhomocysteinemia-induced autophagy and apoptosis with downregulation of hairy enhancer of split 1/5 in cortical neurons in mice. Int J Immunopathol Pharmacol. 2017;30(4):371–82. https://doi.org/10.1177/0394632017740061.; Škovierová H., Vidomanová E., Mahmood S. et al. The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int J Mol Sci. 2016;17(10):1733. https://doi.org/10.3390/ijms17101733.; Biron F., Rousseau J., Baulin J. et al. Thromboembolic event and metabolic hyperhomocysteinemia: A case report and review of literature. Ann Cardiol Angeiol (Paris). 2021;70(3):177–82. (In French). https://doi.org/10.1016/j.ancard.2021.01.008.; Aday A.W., Duran E.K, Van Denburgh M. et al. Homocysteine is associated with future venous thromboembolism in 2 prospective cohorts of women. Arterioscler Thromb Vasc Biol. 2021;41(7):2215–24. https://doi.org/10.1161/ATVBAHA.121.316397.; https://www.gynecology.su/jour/article/view/1761

  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20