Εμφανίζονται 1 - 20 Αποτελέσματα από 33 για την αναζήτηση '"гипергидроз"', χρόνος αναζήτησης: 0,67δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Συγγραφείς: Petrova S.Y., Albanova V.I., Guzev K.S.

    Συνεισφορές: Prospecting and analytical work supported by the Joint-stock company Pharmaceutical enterprise “Retinoids”., Рукопись подготовлена и опубликована за счет финансирования АО «Ретиноиды».

    Πηγή: Vestnik dermatologii i venerologii; Vol 100, No 1 (2024); 73-84 ; Вестник дерматологии и венерологии; Vol 100, No 1 (2024); 73-84 ; 2313-6294 ; 0042-4609 ; 10.25208/vdv.1001

    Περιγραφή αρχείου: application/pdf

  2. 2
    Academic Journal
  3. 3
  4. 4
  5. 5
  6. 6
    Academic Journal

    Πηγή: Bukovinian Medical Herald; Vol. 13 No. 2 (50) (2009); 26-28
    Буковинский медицинский вестник; Том 13 № 2 (50) (2009); 26-28
    Буковинський медичний вісник; Том 13 № 2 (50) (2009); 26-28

    Περιγραφή αρχείου: application/pdf

    Σύνδεσμος πρόσβασης: http://e-bmv.bsmu.edu.ua/article/view/252626

  7. 7
    Academic Journal
  8. 8
  9. 9
  10. 10
    Academic Journal

    Πηγή: Neuromuscular Diseases; № 2 (2013); 6-19 ; Нервно-мышечные болезни; № 2 (2013); 6-19 ; 2413-0443 ; 2222-8721 ; 10.17650/2222-8721-2013-0-2

    Περιγραφή αρχείου: application/pdf

    Relation: https://nmb.abvpress.ru/jour/article/view/44/40; Бухарин О.В., Литвин В.Ю. Патогенные бактерии в природных экосистемах. Екатеринбург, 1997. 128 с.; Руководство по инфекционным болезням. Под ред. Ю.В. Лобзина. СПб., 2000. 932 с.; Антонов Н.С. Химическое оружие на рубеже двух столетий. М., 1994. 174 с.; Никифоров В.Н., Никифоров В.В. Ботулизм. Л., 1985. 200 с.; Супотницкий М.В. Микроорганизмы, токсины и эпидемии. М., 2000. 376 с.; Покровский В.И., Авербах М.М., Литвинов В.И. Приобретенный иммунитет и инфекционный процесс. М.: Медицина, 1979. 280 с.; Александров В.Н., Емельянов В.И. Отравляющие вещества. М.: Воениздат, 1990. 271 с.; Chalk C., Benstead T.J., Keezer M. Medical treatment for botulism. Cochrane Database Syst Rev 2011;(3):CD008123. doi:10.1002/14651858. CD008123.pub 2. Review; Dolly J.O., Lawrence G.W., Meng J. et al. Neuro-exocytosis: botulinum toxins as inhibitory probes and versatile therapeutics. Curr Opin Pharmacol 2009;9:326–35.; Montal M. Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem 2010;79:591–617.; Lacy D.B., Tepp W., Cohen A.C. et al. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct Biol 1998;5(10):898–902.; Stenmark P., Dupuy J., Imamura A. et al. Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction. PLoS Pathog 2008;4(8):e1000129.; Arnon S.S., Schechter R., Inglesby T.V. et al. Working Group on Civilian Biodefense. Botulinum toxin as a biological weapon. Medical and public health management. [Consensus statement] JAMA 2001;285(8):1059–70.; Aoki K.R., Smith L.A., Atassi M.Z. Mode of action of botulinum neurotoxins: current vaccination strategies and molecular immune recognition. Crit Rev Immunol 2010;30(2):167–87.; Lobet Y., Cieplak W.Jr., Smith S.G., Keith J.M. Effects of mutations on enzyme activity and immunoreactivity of the S1 subunit of pertussis toxin. Infect Immun 1989;57(11):3660–2.; Dong M., Yeh F., Tepp W.H. et al. SV2 is the protein receptor for botulinum neurotoxin A. Science 2006;312(5773):540–1.; Dong M., Richards D.A., Goodnough M.C. et al. Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 2003;162:1293–303.; Stenmark P., Dong M., Dupuy J. et al. Crystal structure of the botulinum neurotoxin type G binding domain: insight into cell surface binding. J Mol Biol2010;397:1287–97.; Zhang P., Ray R., Singh B.R. et al. An efficient drug delivery vehicle for botulism countermeasure. BMC Pharmacology 2009;9:12.; Sutton R.B., Fasshauer D., Jahn R., Brunger A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 1998;395:347–53.; Dolly J.O., Black J., Williams R.S., Melling J. Acceptors for botulinum neurotoxin reside on motor nerve erminals and mediate its internalization. Nature 1984; 307:457–60.; Meng J., Ovsepian S.V., Wang J. et al. Activation of TRPV1 mediates calcitonin generelated peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci 2009;29:4981–92.; Kumaran D., Eswaramoorthy S., Furey W. et al. Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J Mol Biol 2009;386:233–45.; De Paiva A., Meunier F.A., Molgo J. et al. Functional repair of motor endplates after botulinum neurotoxin type A poisoning. Proc Natl Acad Sci USA 1999;96(6):3200–5.; Aoki K.R., Guyer B. Botulinum toxin type A and other botulinum toxin serotypes: a comparative review of biochemical and pharmacological actions. Eur J Neurol 2001;8(Suppl 5):21–9.; Aoki K.R. Botulinum toxin: a successful therapeutic protein. Curr Med Chem 2004;11:3085–92.; Filippi G.M., Errico P., Santarelli R. et al. Botulinum A toxin effects on rat jaw muscle spindles. Acta Otolaryngol 1993;113:400–4.; Urban P.P., Rolke R. Effects of botulinum toxin type A on vibration induced facilitation of motor evoked potentials in spasmodic torticollis. J Neurol Neurosurg Psychiatry 2004;75:1541–6.; Welch M.J., Purkiss J.R., Foster K.A. Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon 2000; 38:245–58.; Antonucci F., Rossi C., Gianfranceschi L. et al. Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci 2008;28(14):3689–96.; Allam N., Fonte-Boa P.M., Tomaz C.A., Brasil-Neto J.P. Lack of effect of botulinum toxin on cortical excitability in patients with cranial dystonia. Clin Neuropharmacol 2005;28:1–5.; Bockowski L., Okurowska-Zawada B., Sobaniec W. et al. Cortical somatosensory evoked potentials and spasticity assessment after botulinum toxin type A injection in children with cerebral palsy. Adv Med Sci 2007;52(Suppl 1):171–5.; Blood A.J., Tuch D.S., Makris N. et al. White matter abnormalities in dystonia normalize after botulinum toxin treatment. Neuroreport 2006;17:1251–5.; Dressler D., Benecke R. Autonomic side effects of botulinum toxin type B treatment of cervical dystonia and hyperhidrosis. Eur Neurol 2003;49:34–8.; Caleo M., Schiavo G. General effects of tetanus and botulinum neurotoxins. Toxicon 2009;54:593–9.; Moreno-Lopez B., de la Cruz R.R., Pastor A.M., Delgado-Garcia J.M. Botulinum neurotoxin alters the discharge characteristics of abducens motorneurons in the alert cat. J Neurophysiol 1994;72(4):2041–4.; Moreno-Lopez B., de la Cruz R.R., Pastor A.M., Delgado-Garcia J.M. Effects of botulinum neurotoxin type A on abducens motorneurons in the cat: alterations of the discharge pattern. Neuroscience 1997;81(2):437–55.; Restani L., Giribaldi F., Manich M. et al. Botulinum neurotoxins a and e undergo retrograde axonal transport in primary motor neurons. PLoS Pathog 2012;8(12):e1003087.; Akaike N., Shin M.C., Wakita M. et al. Transynaptic inhibition of spinal transmission by A2 botulinum toxin. J Physiol 2013;591(Pt 4):1031–43.; Byrnes M.L., Thickbroom G.W., Wilson S.A. et al. The corticomotor representation of upper limb muscles in writer's cramp and changes following botulinum toxin injection. Brain 1998;12 (Pt 5):977–88.; Gilio F., Curra A., Lorenzano C. et al. Effects of botulinum toxin A on intracortical inhibition in patients with dystonia. Ann Neurol 2000;48:20–6.; Shin M.C., Wakita M., Xie D.J. et al. Inhibition of membrane Na+ channels by A type botulinum toxin at femtomolar concentrations in central and peripheral neurons. J Pharmacol Sci 2012;118(1):33–42.; Marinelli S., Vacca V., Ricordy R. et al. The analgesic effect on neuropathic pain of retrogradely transported botulinum neurotoxin A involves Schwann cells and astrocytes. PLoS One 2012;7(10):e47977.; Dolimbek B.Z., Steward L.E., Aoki K.R., Atassi M.Z. Immune recogntion of botulinum neurotoxin B: antibity-binding regions of the heavy chain of the toxin. Mol Immunol 2008;45:910–24.; Dressler D. Clinical presentation and management of antibody-induced failure of botulinum toxin therapy. Mov Disord 2004;19(Suppl 8):92–100.; Dressler D., Hallett M. Immunological aspects of Botox, Dysport and Myobloc/ NeuroBloc. Eur J Neurol 2006;13(Suppl 1):11–5.; Jankovic J., Vuong K.D., Ashan J. Comparison of efficacy of immunogenicity of original versus current botulinum toxin in cervical dystonia. Neurology 2003;60:1186–8.; Yablon S.A., Brashear A., Gordon M.F. et al. Formation of neutralizing antibodies in patients receiving botulinum toxin type A for treatment of poststroke spasticity: a pooleddata analysis of three clinical trials. Clin Ther 2007;29(4):683–90.; Jankovic J., Hunter C., Dolimbek B.Z. et al. Clinico-immunologic aspects of botulinum toxin type B treatment of cervical dystonia. Neurology 2006;67:2233–5.; Atassi M.Z., Dolimbeck B.Z., Jankovic J. et al. Molecular recognition of botulinum neurotoxin B heavy chain by human antibodies from cervical dystonia patients that develop immunoresistance to toxin treatment. Mol Immunol 2008;45:3878–88.; Brin M.F., Comella C.L., Jankovic J. et al. Long-term treatment with botulinum toxin type A in cervical dystonia has low immunogenicity by mouse protection assay. Mov Disord 2008;23:1353–60.; Wang J., Meng J., Lawrence G.W. et al. Novel chimeras of botulinum neurotoxins A and E unveil contributions from the binding, translocation, and protease domains to their functional characteristics. J Biol Chem 2008;283:16993–7002.; Band P.A., Blair S., Neubert T.A. et al. Recombinant derivatives of botulism neurotoxin A engineered for trafficking studies and neuronal delivery. Protein Expr Purif 2010;71:62–73.; Muraro L., Tosatto S., Motterlini L. et al. The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. Biochem Biophys Res Commun 2009;380:76–80.; Chen S., Barbieri J.T. Engineering botulinum neurotoxin to extend therapeutic intervention. Proc Natl Acad Sci USA 2009;106:9180–4.; Meng J., Wang J., Lawrence G., Dolly J.O. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci 2007;120:2864–74.; Pier C.L., Tepp W.H., Bradshaw M. et al. Recombinant holotoxoid vaccine against botulism. Infect Immun 2008;76(1):437–42.; Lai H., Feng M., Roxas-Duncan V. et al. Quinolinol and peptide inhibitors of zinc protease in botulinum neurotoxin A: effects of zinc ion and peptides on inhibition. Arch Biochem Biophys 2009;491:75–84.; Roxas-Duncan V., Enyedy I., Montgomery V.A. et al. Identification and biochemical characterization of smallmolecule inhibitors of Clostridium botulinum neurotoxin serotype A. Antimicrob Agents Chemother 2009;53:3478–86.; Webb R.P., Smith T.J., Wright P. et al. Production of catalytically inactive BoNT/ A1 holoprotein and comparison with BoNT/ A1 subunit vaccines against toxin subtypes A1, A2, and A3. Vaccine 2009;27:4490–7.; Smith L.A. Botulism and vaccines for its prevention. Vaccine 2009;27(Suppl 4):D33–D39.; Далин М.В., Фиш Н.Г. Токсины микроорганизмов. М., 1977. 104 с.; Езепчук Ю.В. Патогенность как функция биомолекул. М.: Медицина, 1985. 240 с.; Koshy J.C., Sharabi S.E., Feldman E.M. et al. Effect of dietary zinc and phytase supplementation on botulinum toxin treatments. J Drugs Dermatol 2012;11(4):507–12.; https://nmb.abvpress.ru/jour/article/view/44

  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
    Academic Journal
  18. 18
  19. 19
  20. 20