-
1Academic Journal
Authors: Laipanova, A.M.
Source: Bulletin of the South Ural State University series "Mathematics. Mechanics. Physics". 13:17-23
Subject Terms: integral equations, 0209 industrial biotechnology, задача Трикоми, УДК 517.9, гиперболо-параболическое уравнение, 02 engineering and technology, 01 natural sciences, hyperbolic-parabolic equation, equation of mixed type, интегральные уравнения, boundary value problem, 0103 physical sciences, краевая задача, 10. No inequality, уравнение смешанного типа, Tricomi problem
File Description: application/pdf
-
2Academic Journal
Authors: Хубиев, К.У.
Source: Vestnik KRAUNC: Fiziko-Matematičeskie Nauki, Vol 2021, Iss 3, Pp 29-39 (2021)
Subject Terms: нагруженное уравнение, уравнение смешанного типа, гиперболо-параболическое уравнение, задача трикоми, loaded equation, equation of mixed type, hyperbolic-parabolic equation, tricomi problem, Science
File Description: electronic resource
-
3Academic Journal
Authors: Hoang Thi Kieu Anh, Хоанг Тхи Киеу Ань
Contributors: The author expresses her sincere gratitude to Professor, Doctor of Physics and Mathematics P.P. Matus (Correspondent Member of the National Academy of Sciences of Belarus) for help, advice, and recommendations received during the preparation of this work., Автор выражает благодарность члену-корреспонденту НАН Беларуси, доктору физико-математических наук, профессору П.П. Матусу за внимание к работе и полезные советы, полученные при ее подготовке.
Source: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series; Том 58, № 4 (2022); 370-380 ; Известия Национальной академии наук Беларуси. Серия физико-математических наук; Том 58, № 4 (2022); 370-380 ; 2524-2415 ; 1561-2430 ; 10.29235/1561-2430-2022-58-4
Subject Terms: сходимость, multidimentional hyperbolic-parabolic equation, priori estimates, stability, convergence, многомерное гиперболо-параболическое уравнение, априорные оценки, устойчивость
File Description: application/pdf
Relation: https://vestifm.belnauka.by/jour/article/view/686/552; Тихонов, А. Н. Уравнения математической физики / А. Н. Тихонов, А. А. Самарский. – М.: Наука, 1966. – 724 с.; Straughan, B. Heat Waves / B. Straughan. – New York: Springer, 2011. – 318 p. https://doi.org/10.1007/978-1-4614-0493-4; Zhukovsky, K. V. Analytical solutions for heat diffusion beyond Fourier law / K. V. Zhukovsky, H. M. Srivastava // Appl. Math. Comput. – 2017. – Vol. 293. – P. 423–437. https://doi.org/10.1016/j.amc.2016.08.038; Yating Huang. The compact finite difference method of two-dimensional Cattaneo model / Yating Huang, Zhe Yin // J. Funct. Spaces. – 2020. – Vol. 1. – P. 1–12. https://doi.org/10.1155/2020/6301757; Самарский, А. А. Разностные схемы с операторными множителями // А. А. Самарский, П. Н. Вабищевич, П. П. Матус. – Минск, 1998. – 442 с.; Золина, Л. А. О краевой задаче для модельного уравнения гиперболо-параболического типа / Л. А. Золина // Журн. вычисл. математики и мат. физики. – 1966. – Т. 6, № 6. – С. 991–1001.; Mittal, R. C. Numerical solution of second order one dimensional hyperbolic telegraph equation by cubic B-spline collocation method / R. C. Mittal, R. Bhatia // Appl. Math. Comput. – 2013. – Vol. 220. – P. 496–506. https://doi.org/10.1016/j.amc.2013.05.081; Самарский, А. А. Схемы повышенного порядка точности для многомерного уравнения теплопроводности / А. А. Самарский // Журн. вычисл. математики и мат. физики. – 1963. – Т. 3, № 5. – С. 812–840.; Валиулин, А. Н. Экономичные разностные схемы повышенного порядка точности для многомерного уравнения колебаний / А. Н. Валиулин, В. И. Паасонен // Численные методы механики сплошной среды. – 1970. – Т. 1, № 1. – С. 17–30.; Толстых, А. И. Компактные разностные схемы и их применение в задачах аэрогидродинамики / А. И. Толстых. – М.: Наука, 1990. – 230 с.; Матус, П. П. Компактные разностные схемы на трехточечном шаблоне для гиперболо-параболических уравнений с постоянными коэффициентами / П. П. Матус, Хоанг Тхи Киеу Ань, Д. Пылак // Дифференц. уравнения. – 2022. – Т. 58, № 9. – С. 1284–1293.; Паасонен, В. И. Компактные схемы для систем уравнений второго порядка с конвективными членами / В. И. Паасонен // Вычисл. технологии. – 1998. – Т. 3, № 1. – С. 55–66.; Ren, J. Efficient and stable numerical methods for the two-dimensional fractional Cattaneo equation / J. Ren, G. Gao // Numer. Algorithms. – 2015. – Vol. 69, № 4. – P. 795–818. https://doi.org/10.1007/s11075-014-9926-9; Самарский, А. А. Теория разностных схем / А. А. Самарский. – М.: Наука, 1989. – 616 с.; Матус, П. П. Компактные разностные схемы для уравнения Клейна–Гордона / П. П. Матус, Хоанг Тхи Киеу Ань // Докл. Нац. акад. наук Беларуси. – 2020. – Т. 64, № 5. – С. 526–533. https://doi.org/10.29235/1561-8323-2020-64-5-526-533; Матус, П. П. Компактные разностные схемы на трехточечном шаблоне для гиперболических уравнений второго порядка / П. П. Матус, Хоанг Тхи Киеу Ань // Дифференц. уравнения. – 2021. – Т. 57, № 7. – С. 963–975. https://doi.org/10.31857/s0374064121070098; Матус, П. П. Компактные разностные схемы для многомерного уравнения Клейна–Гордона / П. П. Матус, Хоанг Тхи Киеу Ань // Дифференц. уравнения. – 2022. – Т. 58, № 1. – С. 120–138. https://doi.org/10.31857/s0374064122010125; Карчевский, М. М. Разностные схемы для нелинейных задач математической физики / М. М. Карчевский, А. Д. Ляшко. – Казань, 1976. – 160 с.; Оганесян, Л. А. Вариационно-разностные методы для решения эллиптических уравнений / Л. А. Оганесян, Л. А. Руховец. – Ереван: Изд-во Акад. наук Армян. ССР, 1979. – 237 с.; https://vestifm.belnauka.by/jour/article/view/686
-
4Academic Journal
Authors: Aldashev S.A., Kanapyanova Z.N.
Source: Vestnik of Samara University. Natural Science Series; Vol 25, No 4 (2019); 7-13 ; Вестник Самарского университета. Естественнонаучная серия; Vol 25, No 4 (2019); 7-13 ; 2712-8954 ; 2541-7525
Subject Terms: корректность, смешанная задача, цилиндрическая область, вырождение, гиперболо-параболическое уравнение, функция Бесселя, correctness, mixed problem, cylindrical domain, degeneracy, hyperbolic-parabolic equation, Bessel function
File Description: application/pdf
Relation: https://journals.ssau.ru/est/article/view/7915/7775; https://journals.ssau.ru/est/article/view/7915