Εμφανίζονται 1 - 2 Αποτελέσματα από 2 για την αναζήτηση '"гинекологические опухоли"', χρόνος αναζήτησης: 0,46δλ Περιορισμός αποτελεσμάτων
  1. 1
    Academic Journal

    Πηγή: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2514/1357; Жилина Н.И., Шрамко С.В. Злокачественные новообразования женских репродуктивных органов в динамике 2011–2020 на примере Новокузнецка. Социальные аспекты здоровья населения. 2022;68(3):11. https://doi.org/10.21045/2071-5021-2022-68-3-11.; Zhu B., Gu H., Mao Z. et al. Global burden of gynaecological cancers in 2022 and projections to 2050. J Glob Health. 2024;14:04155. https://doi.org/10.7189/jogh.14.04155.; Кононова Г.А., Жуйкова Л.Д., Ананина О.А. и др. Рак репродуктивной системы у женщин Республики Тыва. Эпидемиологические особенности. Сибирский онкологический журнал. 2024;23(3):5–14. https://doi.org/10.21294/1814-4861-2024-23-3-5-14.; Чернобровкина А.Е. Заболеваемость злокачественными новообразованиями женской половой сферы населения Санкт-Петербурга. Здоровье населения и среда обитания – ЗНиСО. 2022;1(1):29–35. https://doi.org/10.35627/2219-5238/2022-30-1-29-35.; Александрова Л.М., Грецова О.П., Петрова Г.В. и др. Выявление злокачественных новообразований молочной железы и органов женской репродуктивной системы при диспансеризации определенных групп взрослого населения. Профилактическая медицина. 2016;19(3):4–11. https://doi.org/10.17116/profmed20161934-11.; Краевая Е.Е., Силачев Д.Н., Безнощенко О.С. и др. Влияние внеклеточных везикул фолликулярной жидкости на коагуляционный гемостаз яичника. Проблемы репродукции. 2020;26(2):18–26. https://doi.org/10.17116/repro20202602118.; Rafieezadeh D., Rafieezadeh A. Extracellular vesicles and their therapeutic applications: a review article (part1). Int J Physiol Pathophysiol Pharmacol. 2024;16(1):1–9. https://doi.org/10.62347/QPAG5693.; Zeng Y., Qiu Y., Jiang W. et al. Biological features of extracellular vesicles and challenges. Front Cell Dev Biol. 2022;10:816698. https://doi.org/10.3389/fcell.2022.816698.; Fusco C., De Rosa G., Spatocco I. et al. Extracellular vesicles as human therapeutics: a scoping review of the literature. J Extracell Vesicles. 2024;13(5):e12433. https://doi.org/10.1002/jev2.12433.; Zheng M., Hou L., Ma Y. et al. Exosomal let-7d-3p and miR-30d-5p as diagnostic biomarkers for non-invasive screening of cervical cancer and its precursors. Mol Cancer. 2019;18(1):76. https://doi.org/10.1186/s12943-019-0999-x.; Jiang L., Huang Q., Chang J. et al. MicroRNA HSA-miR-125a-5p induces apoptosis by activating p53 in lung cancer cells. Exp Lung Res. 2011;37(7):387–98. https://doi.org/10.3109/01902148.2010.492068.; Bi Q., Tang S., Xia L. et al. Ectopic expression of MiR-125a inhibits the proliferation and metastasis of hepatocellular carcinoma by targeting MMP11 and VEGF. PLoS One. 2012;7(6):e40169. https://doi.org/10.1371/journal.pone.0040169.; Lv A., Tu Z., Huang Y. et al. Circulating exosomal miR-125a-5p as a novel biomarker for cervical cancer. Oncol Lett. 2021;21(1):54. https://doi.org/10.3892/ol.2020.12316.; Wang X., Tang S., Le S.Y. et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One. 2008;3(7):e2557. https://doi.org/10.1371/journal.pone.0002557.; Yao Q., Xu H., Zhang Q.Q. et al. MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells. Biochem Biophys Res Commun. 2009;388(3):539–42. https://doi.org/10.1016/j.bbrc.2009.08.044.; Liu J., Sun H., Wang X. et al. Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Int J Mol Sci. 2014;15(1):758–73. https://doi.org/10.3390/ijms15010758.; Zhang J., Liu S.C., Luo X.H. et al. Exosomal long noncoding RNAs are differentially expressed in the cervicovaginal lavage samples of cervical cancer patients. J Clin Lab Anal. 2016;30(6):1116–21. https://doi.org/10.1002/jcla.21990.; Yang L., Bai H.-S., Deng Y., Fan L. High MALAT1 expression predicts a poor prognosis of cervical cancer and promotes cancer cell growth and invasion. Eur Rev Med Pharmacol Sci. 2015;19(17):3187–93.; Kim H.J., Lee D.W., Yim G.W. et al. Long non-coding RNA HOTAIR is associated with human cervical cancer progression. Int J Oncol. 2015;46(2):521–30. https://doi.org/10.3892/ijo.2014.2758.; Zhang J., Yao T., Wang Y. et al. Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol Ther. 2016;17(1):104–13. https://doi.org/10.1080/15384047.2015.1108496.; Liang L.J., Yang Y., Wei W.F. et al. Tumor-secreted exosomal Wnt2B activates fibroblasts to promote cervical cancer progression. Oncogenesis. 2021;10(3):30. https://doi.org/10.1038/s41389-021-00319-w.; Someya M., Hasegawa T., Tsuchiya T. et al. Predictive value of an exosomal microRNA-based signature for tumor immunity in cervical cancer patients treated with chemoradiotherapy. Med Mol Morphol. 2023;56(1):38–45. https://doi.org/10.1007/s00795-022-00338-5.; Zhou C.F., Ma J., Huang L. et al. Correction to: cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene. 2022;41(8):1231–33. https://doi.org/10.1038/s41388-021-02165-x.; Zhou C., Wei W., Ma J. et al. Cancer-secreted exosomal miR-1468-5p promotes tumor immune escape via the immunosuppressive reprogramming of lymphatic vessels. Mol Ther. 2021;29(4):1512–28. https://doi.org/10.1016/j.ymthe.2020.12.034.; Zhou C., Zhang Y., Yan R. et al. Exosome-derived miR-142-5p remodels lymphatic vessels and induces IDO to promote immune privilege in the tumour microenvironment. Cell Death Differ. 2021;28(2):715–29. https://doi.org/10.1038/s41418-020-00618-6.; Ding X.Z., Zhang S.Q., Deng X.L., Qiang J.H. Serum exosomal lncRNA DLX6-AS1 is a promising biomarker for prognosis prediction of cervical cancer. Technol Cancer Res Treat. 2021;20:1533033821990060. https://doi.org/10.1177/1533033821990060.; Guo Y., Wang X., Wang K., He Y. Appraising the value of serum and serum-derived exosomal LncRNA-EXOC7 as a promising biomarker in cervical cancer. Clin Lab. 2020;66(7). https://doi.org/10.7754/Clin.Lab.2019.191203.; Qiu J.J., Sun S.G., Tang X.Y. et al. Extracellular vesicular Wnt7b mediates HPV E6-induced cervical cancer angiogenesis by activating the β-catenin signaling pathway. J Exp Clin Cancer Res. 2020;39(1):260. https://doi.org/10.1186/s13046-020-01745-1.; Shi Y, Wang W, Yang B, Tian H. ATF1 and RAS in exosomes are potential clinical diagnostic markers for cervical cancer. Cell Biochem Funct. 2017;35(7):477–83. https://doi.org/10.1002/cbf.3307.; Zhang L., Li H., Yuan M. et al. Cervical cancer cells-secreted exosomal microRNA-221-3p promotes invasion, migration and angiogenesis of microvascular endothelial cells in cervical cancer by down-regulating MAPK10 expression. Cancer Manag Res. 2019;11:10307–19. https://doi.org/10.2147/CMAR.S221527.; Wang W., Wu L., Tian J. et al. Cervical cancer cells-derived extracellular vesicles containing microRNA-146a-5p affect actin dynamics to promote cervical cancer metastasis by activating the Hippo-YAP signaling pathway via WWC2. J Oncol. 2022;2022:4499876. https://doi.org/10.1155/2022/4499876.; Yan X., Zhang S., Jia J. et al. Exosomal MiR-423-3p inhibits macrophage M2 polarization to suppress the malignant progression of cervical cancer. Pathol Res Pract. 2022;235:153882. https://doi.org/10.1016/j.prp.2022.153882.; Jiang L., Hong L., Yang W. et al. Co-expression network analysis of the lncRNAs and mRNAs associated with cervical cancer progression. Arch Med Sci. 2019;15(3):754–64. https://doi.org/10.5114/aoms.2019.84740.; Huang X., Liu X., Du B. et al. LncRNA LINC01305 promotes cervical cancer progression through KHSRP and exosome-mediated transfer. Aging (Albany NY). 2021;13(15):19230–42. https://doi.org/10.18632/aging.202565.; Hu Y., Sun X., Mao C. et al. Upregulation of long noncoding RNA TUG1 promotes cervical cancer cell proliferation and migration. Cancer Med. 2017;6(2):471–82. https://doi.org/10.1002/cam4.994.; Lei L., Mou Q. Exosomal taurine up-regulated 1 promotes angiogenesis and endothelial cell proliferation in cervical cancer. Cancer Biol Ther. 2020;21(8):717–25. https://doi.org/10.1080/15384047.2020.1764318.; Mo Y., Liang Z., Lan L. et al. Extracellular vesicles derived from cervical cancer cells carrying MCM3AP-AS1 promote angiogenesis and tumor growth in cervical cancer via the miR-93/p21 axis. Exp Cell Res. 2023;428(2):113621. https://doi.org/10.1016/j.yexcr.2023.113621.; Bhat A., Yadav J., Thakur K. et al. Transcriptome analysis of cervical cancer exosomes and detection of HPVE6*I transcripts in exosomal RNA. BMC Cancer. 2022;22(1):164. https://doi.org/10.1186/s12885-022-09262-4.; Acevedo-Sánchez V., Martínez-Ruiz R.S., Aguilar-Ruíz S.R. et al. Quantitative proteomics for the identification of differentially expressed proteins in the extracellular vesicles of cervical cancer cells. Viruses. 2023;15(3):702. https://doi.org/10.3390/v15030702.; Zhou L., Wang W., Wang F. et al. Plasma-derived exosomal miR-15a-5p as a promising diagnostic biomarker for early detection of endometrial carcinoma. Mol Cancer. 2021;20(1):57. https://doi.org/10.1186/s12943-021-01352-4.; Fan X., Cao M., Liu C. et al. Three plasma-based microRNAs as potent diagnostic biomarkers for endometrial cancer. Cancer Biomark. 2021;31(2):127–38. https://doi.org/10.3233/CBM-200972.; Daugaard I., Sanders K.J., Idica A. et al. miR-151a induces partial EMT by regulating E-cadherin in NSCLC cells. Oncogenesis. 2017;6(7):e366. https://doi.org/10.1038/oncsis.2017.66.; Hu H., Jiang L., Kang X. et al. Extracellular vesicles derived from lung cancer cells promote the progression of lung cancer by delivering miR-151a-5p. Exp Cell Res. 2023;425(1):113526. https://doi.org/10.1016/j.yexcr.2023.113526.; Fan X., Zou X., Liu C. et al. MicroRNA expression profile in serum reveals novel diagnostic biomarkers for endometrial cancer. Biosci Rep. 2021;41(6):BSR20210111. https://doi.org/10.1042/BSR20210111.; Jing L., Hua X., Yuanna D. et al. Exosomal miR-499a-5p inhibits endometrial cancer growth and metastasis via targeting VAV3. Cancer Manag Res. 2020;12:13541–52. https://doi.org/10.2147/CMAR.S283747.; Zhang N., Wang Y., Liu H., Shen W. Extracellular vesicle encapsulated microRNA-320a inhibits endometrial cancer by suppression of the HIF1α/VEGFA axis. Exp Cell Res. 2020;394(2):112113. https://doi.org/10.1016/j.yexcr.2020.112113.; Fan J.T., Zhou Z.Y., Luo Y.L. et al. Exosomal lncRNA NEAT1 from cancer-associated fibroblasts facilitates endometrial cancer progression via miR-26a/b-5p-mediated STAT3/YKL-40 signaling pathway. Neoplasia. 2021;23(7):692–703. https://doi.org/10.1016/j.neo.2021.05.004.; Seagle B.L., Alexander A.L., Lantsman T., Shahabi S. Prognosis and treatment of positive peritoneal cytology in early endometrial cancer: matched cohort analyses from the National Cancer Database. Am J Obstet Gynecol. 2018;218(3):329.e1–329.e15. https://doi.org/10.1016/j.ajog.2017.11.601.; Roman-Canal B., Moiola C.P., Gatius S. et al. EV-associated miRNAs from peritoneal lavage are a source of biomarkers in endometrial cancer. Cancers (Basel). 2019;11(6):839. https://doi.org/10.3390/cancers11060839.; Xu H., Gong Z., Shen Y. et al. Circular RNA expression in extracellular vesicles isolated from serum of patients with endometrial cancer. Epigenomics. 2018;10(2):187–97. https://doi.org/10.2217/epi-2017-0109.; Wakabayashi I., Marumo M., Ekawa K., Daimon T. Differences in serum and plasma levels of microRNAs and their time-course changes after blood collection. Pract Lab Med. 2024;39:e00376. https://doi.org/10.1016/j.plabm.2024.e00376.; Cheng L., Sun X., Scicluna B.J. et al. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int. 2014;86(2):433–44. https://doi.org/10.1038/ki.2013.502.; Whitehouse J.S., Weigelt J.A. Diagnostic peritoneal lavage: a review of indications, technique, and interpretation. Scand J Trauma Resusc Emerg Med. 2009;17:13. https://doi.org/10.1186/1757-7241-17-13.; Mariscal J., Fernandez-Puente P., Calamia V. et al. Proteomic characterization of epithelial-like extracellular vesicles in advanced endometrial cancer. J Proteome Res. 2019;18(3):1043–53. https://doi.org/10.1021/acs.jproteome.8b00750.; Herrero C., de la Fuente A., Casas-Arozamena C. et al. Extracellular vesicles-based biomarkers represent a promising liquid biopsy in endometrial cancer. Cancers (Basel). 2019;11(12):2000. https://doi.org/10.3390/cancers11122000.; Li B.L., Lu W., Qu J.J. et al. Loss of exosomal miR-148b from cancer-associated fibroblasts promotes endometrial cancer cell invasion and cancer metastasis. J Cell Physiol. 2019;234(3):2943–53. https://doi.org/10.1002/jcp.27111.; Srivastava A., Moxley K., Ruskin R. et al. A non-invasive liquid biopsy screening of urine-derived exosomes for miRNAs as biomarkers in endometrial cancer patients. AAPS J. 2018;20(5):82. https://doi.org/10.1208/s12248-018-0220-y.; Li F., Liang A., Lv Y. et al. MicroRNA-200c inhibits epithelial-mesenchymal transition by targeting the BMI-1 gene through the phospho-AKT pathway in endometrial carcinoma cells in vitro. Med Sci Monit. 2017;23:5139–49. https://doi.org/10.12659/msm.907207.; Liu Y., Sánchez-Tilló E., Lu X. et al. The ZEB1 transcription factor acts in a negative feedback loop with miR200 downstream of Ras and Rb1 to regulate Bmi1 expression. J Biol Chem. 2014;289(7):4116–25. https://doi.org/10.1074/jbc.M113.533505.; Song Y., Wang M., Tong H. et al. Plasma exosomes from endometrial cancer patients contain LGALS3BP to promote endometrial cancer progression. Oncogene. 2021;40(3):633–46. https://doi.org/10.1038/s41388-020-01555-x.; Sommella E., Capaci V., Aloisio M. et al. A label-free proteomic approach for the identification of biomarkers in the exosome of endometrial cancer serum. Cancers (Basel). 2022;14(24):6262. https://doi.org/10.3390/cancers14246262.; Wang J., Gong X., Yang L. et al. Loss of exosomal miR-26a-5p contributes to endometrial cancer lymphangiogenesis and lymphatic metastasis. Clin Transl Med. 2022;12(5):e846. https://doi.org/10.1002/ctm2.846.; Maida Y., Takakura M., Nishiuchi T. et al. Exosomal transfer of functional small RNAs mediates cancer-stroma communication in human endometrium. Cancer Med. 2016;5(2):304–14. https://doi.org/10.1002/cam4.545.; Gu X., Shi Y., Dong M. еt al. Exosomal transfer of tumor-associated macrophage-derived hsa_circ_0001610 reduces radiosensitivity in endometrial cancer. Cell Death Dis. 2021;12(9):818. https://doi.org/10.1038/s41419-021-04087-8.; Ding D.C., Chen W., Wang J.H., Lin S.Z. Association between polycystic ovarian syndrome and endometrial, ovarian, and breast cancer: a population-based cohort study in Taiwan. Medicine (Baltimore). 2018;97(39):e12608. https://doi.org/10.1097/MD.0000000000012608.; Che X., Jian F., Chen C. et al. PCOS serum-derived exosomal miR-27a-5p stimulates endometrial cancer cells migration and invasion. J Mol Endocrinol. 2020;64(1):1–12. https://doi.org/10.1530/JME-19-0159.; Zhao M., Mishra L., Deng C.X. The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci. 2018;14(2):111–23. https://doi.org/10.7150/ijbs.23230.; Xiao L., He Y., Peng F. et al. Endometrial cancer cells promote M2-like macrophage polarization by delivering exosomal miRNA-21 under hypoxia condition. J Immunol Res. 2020;2020:9731049. https://doi.org/10.1155/2020/9731049.; Peres L.C., Cushing-Haugen K.L., Köbel M. et al. Invasive epithelial ovarian cancer survival by histotype and disease stage. J Natl Cancer Inst. 2019;111(1):60–8. https://doi.org/10.1093/jnci/djy071.; McAlarnen L.A., Gupta P., Singh R. et al. Extracellular vesicle contents as non-invasive biomarkers in ovarian malignancies. Mol Ther Oncolytics. 2022;26:347–59. https://doi.org/10.1016/j.omto.2022.08.005.; Li L., Zhang F., Zhang J. et al. Identifying serum small extracellular vesicle microRNA as a noninvasive diagnostic and prognostic biomarker for ovarian cancer. ACS Nano. 2023;17(19):19197–210. https://doi.org/10.1021/acsnano.3c05694.; Wang W., Jo H., Park S. et al. Integrated analysis of ascites and plasma extracellular vesicles identifies a miRNA-based diagnostic signature in ovarian cancer. Cancer Lett. 2022;542:215735. https://doi.org/10.1016/j.canlet.2022.215735.; Meng X., Müller V., Milde-Langosch K. et al. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer. Oncotarget. 2016;7(13):16923–35. https://doi.org/10.18632/oncotarget.7850.; Kim S., Choi M.C., Jeong J.Y. et al. Serum exosomal miRNA-145 and miRNA-200c as promising biomarkers for preoperative diagnosis of ovarian carcinomas. J Cancer. 2019;10(9):1958–67. https://doi.org/10.7150/jca.30231.; Su Y.Y., Sun L., Guo Z.R. et al. Upregulated expression of serum exosomal miR-375 and miR-1307 enhance the diagnostic power of CA125 for ovarian cancer. J Ovarian Res. 2019;12(1):6. https://doi.org/10.1186/s13048-018-0477-x.; Pan C., Stevic I., Müller V. et al. Exosomal microRNAs as tumor markers in epithelial ovarian cancer. Mol Oncol. 2018;12(11):1935–48. https://doi.org/10.1002/1878-0261.12371.; Xiong J., He X., Xu Y. et al. MiR-200b is upregulated in plasma-derived exosomes and functions as an oncogene by promoting macrophage M2 polarization in ovarian cancer. J Ovarian Res. 2021;14(1):74. https://doi.org/10.1186/s13048-021-00826-9.; Cappellesso R., Tinazzi A., Giurici T. et al. Programmed cell death 4 and microRNA 21 inverse expression is maintained in cells and exosomes from ovarian serous carcinoma effusions. Cancer Cytopathol. 2014;122(9):685–93. https://doi.org/10.1002/cncy.21442.; Cao J., Zhang Y., Mu J. et al. Exosomal miR-21-5p contributes to ovarian cancer progression by regulating CDK6. Hum Cell. 2021;34(4):1185–96. https://doi.org/10.1007/s13577-021-00522-2.; Mitra A., Yoshida-Court K., Solley T.N. et al. Extracellular vesicles derived from ascitic fluid enhance growth and migration of ovarian cancer cells. Sci Rep. 2021;11(1):9149. https://doi.org/10.1038/s41598-021-88163-1.; Zhou J., Gong G., Tan H. et al. Urinary microRNA-30a-5p is a potential biomarker for ovarian serous adenocarcinoma. Oncol Rep. 2015;33(6):2915–23. https://doi.org/10.3892/or.2015.3937.; Ying X., Wu Q., Wu X. et al. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget. 2016;7(28):43076–87. https://doi.org/10.18632/oncotarget.9246.; Yunusova N., Dzhugashvili E., Yalovaya A. et al. Comparative analysis of tumor-associated microRNAs and tetraspanines from exosomes of plasma and ascitic fluids of ovarian cancer patients. Int J Mol Sci. 2022;24(1):464. https://doi.org/10.3390/ijms24010464.; Xu Y., Xu L., Zheng J. et al. MiR-101 inhibits ovarian carcinogenesis by repressing the expression of brain-derived neurotrophic factor. FEBS Open Bio. 2017;7(9):1258–66. https://doi.org/10.1002/2211-5463.12257.; Lai Y., Dong L., Jin H. et al. Exosome long non-coding RNA SOX2-OT contributes to ovarian cancer malignant progression by miR-181b-5p/SCD1 signaling. Aging (Albany NY). 2021;13(20):23726–38. https://doi.org/10.18632/aging.203645.; Ma R., Ye X., Cheng H. et al. Tumor-derived exosomal circRNA051239 promotes proliferation and migration of epithelial ovarian cancer. Am J Transl Res. 2021;13(3):1125–39.; Yamamoto C.M., Oakes M.L., Murakami T. et al. Comparison of benign peritoneal fluid- and ovarian cancer ascites-derived extracellular vesicle RNA biomarkers. J Ovarian Res. 2018;11(1):20. https://doi.org/10.1186/s13048-018-0391-2.; Keserű J.S., Soltész B., Lukács J. et al. Detection of cell-free, exosomal and whole blood mitochondrial DNA copy number in plasma or whole blood of patients with serous epithelial ovarian cancer. J Biotechnol. 2019;298:76–81. https://doi.org/10.1016/j.jbiotec.2019.04.015.; Szajnik M., Derbis M., Lach M. et al. Exosomes in plasma of patients with ovarian carcinoma: potential biomarkers of tumor progression and response to therapy. Gynecol Obstet (Sunnyvale). 2013;Suppl 4:3. https://doi.org/10.4172/2161-0932.S4-003.; Czystowska-Kuzmicz M., Sosnowska A., Nowis D. et al. Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat Commun. 2019;10(1):3000. https://doi.org/10.1038/s41467-019-10979-3.; Lai H., Guo Y., Tian L. et al. Protein panel of serum-derived small extracellular vesicles for the screening and diagnosis of epithelial ovarian cancer. Cancers (Basel). 2022;14(15):3719. https://doi.org/10.3390/cancers14153719.; Trinidad C.V., Pathak H.B., Cheng S. et al. Lineage specific extracellular vesicle-associated protein biomarkers for the early detection of high grade serous ovarian cancer. Sci Rep. 2023;13(1):18341. https://doi.org/10.1038/s41598-023-44050-5.; Yokoi A., Ukai M., Yasui T. et al. Identifying high-grade serous ovarian carcinoma-specific extracellular vesicles by polyketone-coated nanowires. Sci Adv. 2023;9(27):eade6958. https://doi.org/10.1126/sciadv.ade6958.; Zhang P., Zhou X., He M. et al. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat Biomed Eng. 2019;3(6):438–51. https://doi.org/10.1038/s41551-019-0356-9.; Kong L., Xu F., Yao Y. et al. Ascites-derived CDCP1+ extracellular vesicles subcluster as a novel biomarker and therapeutic target for ovarian cancer. Front Oncol. 2023;13:1142755. https://doi.org/10.3389/fonc.2023.1142755.; Gupta P., Kadamberi I.P., Mittal S. et al. Tumor derived extracellular vesicles drive T cell exhaustion in tumor microenvironment through sphingosine mediated signaling and impacting immunotherapy outcomes in ovarian cancer. Adv Sci (Weinh). 2022;9(14):e2104452. https://doi.org/10.1002/advs.202104452.; Li N., Lin G., Zhang Y. et al. Exosome-related protein CRABP2 is upregulated in ovarian carcinoma and enhances cell proliferation. Discov Oncol. 2022;13(1):33. https://doi.org/10.1007/s12672-022-00492-3.; Dorayappan K.D.P, Gardner M.L., Hisey C.L. et al. A microfluidic chip enables isolation of exosomes and establishment of their protein profiles and associated signaling pathways in ovarian cancer. Cancer Res. 2019;79(13):3503–13. https://doi.org/10.1158/0008-5472.CAN-18-3538.; Vaksman O., Tropé C., Davidson B., Reich R. Exosome-derived miRNAs and ovarian carcinoma progression. Carcinogenesis. 2014;35(9):2113–20. https://doi.org/10.1093/carcin/bgu130.; Filippov-Levy N., Cohen-Schussheim H., Tropé C.G. et al. Expression and clinical role of long non-coding RNA in high-grade serous carcinoma. Gynecol Oncol. 2018;148(3):559–66. https://doi.org/10.1016/j.ygyno.2018.01.004.; Qiu J.J., Lin X.J., Tang X.Y. et al. Exosomal metastasis-associated lung adenocarcinoma transcript 1 promotes angiogenesis and predicts poor prognosis in epithelial ovarian cancer. Int J Biol Sci. 2018;14(14):1960–73. https://doi.org/10.7150/ijbs.28048.; Asare-Werehene M., Hunter R.A., Gerber E. et al. The application of an extracellular vesicle-based biosensor in early diagnosis and prediction of chemoresponsiveness in ovarian cancer. Cancers (Basel). 2023;15(9):2566. https://doi.org/10.3390/cancers15092566.; Gerber E., Asare-Werehene M., Reunov A. et al. Predicting chemoresponsiveness in epithelial ovarian cancer patients using circulating small extracellular vesicle-derived plasma gelsolin. J Ovarian Res. 2023;16(1):14. https://doi.org/10.1186/s13048-022-01086-x.; Li W., Lu Y., Yu X. et al. Detection of exosomal tyrosine receptor kinase B as a potential biomarker in ovarian cancer. J Cell Biochem. 2019;120(4):6361–9. https://doi.org/10.1002/jcb.27923.; Yokoi A., Yoshioka Y., Hirakawa A. et al. A combination of circulating miRNAs for the early detection of ovarian cancer. Oncotarget. 2017;8(52):89811–23. https://doi.org/10.18632/oncotarget.20688.; Jo A., Green A., Medina J.E. et al. High-throughput profiling of extracellular vesicles for earlier ovarian cancer detection. Adv Sci (Weinh). 2023;10(27):e2301930. https://doi.org/10.1002/advs.202301930.; Yoshimura A., Sawada K., Nakamura K. et al. Exosomal miR-99a-5p is elevated in sera of ovarian cancer patients and promotes cancer cell invasion by increasing fibronectin and vitronectin expression in neighboring peritoneal mesothelial cells. BMC Cancer. 2018;18(1):1065. https://doi.org/10.1186/s12885-018-4974-5.; Kobayashi M., Sawada K., Nakamura K. et al. Exosomal miR-1290 is a potential biomarker of high-grade serous ovarian carcinoma and can discriminate patients from those with malignancies of other histological types. J Ovarian Res. 2018;11(1):81. https://doi.org/10.1186/s13048-018-0458-0.; Au Yeung C.L., Co N.N., Tsuruga T. et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 2016;7:11150. https://doi.org/10.1038/ncomms11150.; Wang C., Wang J., Shen X. et al. LncRNA SPOCD1-AS from ovarian cancer extracellular vesicles remodels mesothelial cells to promote peritoneal metastasis via interacting with G3BP1. J Exp Clin Cancer Res. 2021;40(1):101. https://doi.org/10.1186/s13046-021-01899-6.; Cheng L., Zhang K., Qing Y. et al. Proteomic and lipidomic analysis of exosomes derived from ovarian cancer cells and ovarian surface epithelial cells. J Ovarian Res. 2020;13(1):9. https://doi.org/10.1186/s13048-020-0609-y.; Černe K., Kelhar N., Resnik N. et al. Characteristics of extracellular vesicles from a high-grade serous ovarian cancer cell line derived from a platinum-resistant patient as a potential tool for aiding the prediction of responses to chemotherapy. Pharmaceuticals (Basel). 2023;16(6):907. https://doi.org/10.3390/ph16060907.; Gao Q., Fang X., Chen Y. et al. Exosomal lncRNA UCA1 from cancer-associated fibroblasts enhances chemoresistance in vulvar squamous cell carcinoma cells. J Obstet Gynaecol Res. 2021;47(1):73–87. https://doi.org/10.1111/jog.14418.; https://www.gynecology.su/jour/article/view/2514

  2. 2
    Academic Journal

    Πηγή: Obstetrics, Gynecology and Reproduction; Online First ; Акушерство, Гинекология и Репродукция; Online First ; 2500-3194 ; 2313-7347

    Περιγραφή αρχείου: application/pdf

    Relation: https://www.gynecology.su/jour/article/view/2515/1358; Мерабишвили В.М., Бахидзе Е.В., Урманчеева А.Ф. и др. Состояние онкологической помощи в России: рак яичников, распространенность, качество учета, выживаемость больных (клинико-популяционное исследование). Вопросы онкологии. 2025;71(2):306–17. https://doi.org/10.37469/0507-3758-2025-71-2-306-317.; Гозман Е.С. Генетические маркеры трансформации пограничных опухолей яичников в высокодифференцированный рак яичников. Вестник Волгоградского государственного медицинского университета. 2021;18(4):24–9. https://doi.org/10.19163/1994-9480-2021-4(80)-24-29.; Matulonis U.A., Sood A.K., Fallowfield L. et al. Ovarian cancer. Nat Rev Dis Primers. 2016;2:16061. https://doi.org/10.1038/nrdp.2016.61.; Зароченцева Н.В., Джиджихия Л.К., Набиева В.Н., Джавахишвили М.Г. Значение генотипирования вируса папилломы человека в диагностике предраковых поражений шейки матки. Российский вестник акушера-гинеколога. 2021;21(5):30–40. https://doi.org/10.17116/rosakush20212105130.; Yasuda M. New clinicopathological concept of endometrial carcinoma with integration of histological features and molecular profiles. Pathol Int. 2024;74(10):557–73. https://doi.org/10.1111/pin.13471.; Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46. https://doi.org/10.1158/2159-8290.CD-21-1059.; Locasale J.W., Cantley L.C. Altered metabolism in cancer. BMC Biol. 2010;8:88. https://doi.org/10.1186/1741-7007-8-88.; Хлебкова Ю.С., Высоких М.Ю., Межевитинова Е.А. и др. Метаболическое репрограммирование клеток как фактор индукции и прогрессии предрака и рака шейки матки. Акушерство и гинекология. 2016;(4):26–35. https://doi.org/10.18565/aig.2016.4.26-35.; Pliszka M., Szablewski L. Glucose transporters as a target for anticancer therapy. Cancers (Basel). 2021;13(16):4184. https://doi.org/10.3390/cancers13164184.; Han L., Qu Q., Aydin D. et al. Structure and mechanism of the SGLT family of glucose transporters. Nature. 2022;601(7892):274–9. https://doi.org/10.1038/s41586-021-04211-w.; Радкевич Е.Р., Северина А.С., Шамхалова М.Ш., Шестакова М.В. Ингибиторы натрий-глюкозного котранспортера 2 типа как потенциальные противоонкогенные средства. Сахарный диабет. 2025;28(2):243–51. https://doi.org/10.14341/DM13224.; Tsunokake S., Iwabuchi E., Miki Y. et al. SGLT1 as an adverse prognostic factor in invasive ductal carcinoma of the breast. Breast Cancer Res Treat. 2023;201(3):499–513. https://doi.org/10.1007/s10549-023-07024-9.; Cantuaria G., Magalhaes A., Penalver M. et al. Expression of GLUT-1 glucose transporter in borderline and malignant epithelial tumors of the ovary. Gynecol Oncol. 2000;79(1):33–7. https://doi.org/10.1006/gyno.2000.5910.; Mendez L.E., Manci N., Cantuaria G. et al. Expression of glucose transporter-1 in cervical cancer and its precursors. Gynecol Oncol. 2002;86(2):138–43. https://doi.org/10.1006/gyno.2002.6745.; Khabaz M.N., Qureshi I.A., Al-Maghrabi J.A. GLUT 1 expression is a supportive mean in predicting prognosis and survival estimates of endometrial carcinoma. Ginekol Pol. 2019;90(10):582–8. https://doi.org/10.5603/GP.2019.0102.; Rudlowski C., Moser M., Becker A.J. et al. GLUT1 mRNA and protein expression in ovarian borderline tumors and cancer. Oncology. 2004;66(5):404–10. https://doi.org/10.1159/000079489.; Baczewska M., Supruniuk E., Bojczuk K. et al. Energy substrate transporters in high-grade ovarian cancer: gene expression and clinical implications. Int J Mol Sci. 2022;23(16):8968. https://doi.org/10.3390/ijms23168968.; Tsukioka M., Matsumoto Y., Noriyuki M. et al. Expression of glucose transporters in epithelial ovarian carcinoma: correlation with clinical characteristics and tumor angiogenesis. Oncol Rep. 2007;18(2):361–7.; Lai B., Xiao Y., Pu H. et al. Overexpression of SGLT1 is correlated with tumor development and poor prognosis of ovarian carcinoma. Arch Gynecol Obstet. 2012;285(5):1455–61. https://doi.org/10.1007/s00404-011-2166-5.; Шарафутдинова К.И., Шляпина В.С., Баева А.И. и др. Сахарный диабет и опухоли женской репродуктивной системы. Проблемы эндокринологии. 2023;69(3):103–10. https://doi.org/10.14341/probl13282.; Федорова М.С., Карпова И.Ю., Липатова А.В. и др. Ингибирование гексокиназы 2 приводит к снижению экспрессии ферментов гликолиза PFKP, BPGM и GPIв клеточной линии RKO. Вавиловский журнал генетики и селекции.2017;21(8):932–6.; Tan V.P., Miyamoto S. HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection. Autophagy. 2015;11(6):963–4. https://doi.org/10.1080/15548627.2015.1042195.; Campos M., Albrecht L.V. Hitting the sweet spot: how glucose metabolism is orchestrated in space and time by phosphofructokinase-1. Cancers (Basel). 2023;16(1):16. https://doi.org/10.3390/cancers16010016.; Wiese E.K., Hitosugi T. Tyrosine kinase signaling in cancer metabolism: PKM2 paradox in the Warburg effect. Front Cell Dev Biol. 2018;6:79. https://doi.org/10.3389/fcell.2018.00079.; Sharma D., Singh M., Rani R. Role of LDH in tumor glycolysis: regulation of LDHA by small molecules for cancer therapeutics. Semin Cancer Biol. 2022;87:184–95. https://doi.org/10.1016/j.semcancer.2022.11.007.; Yan S., Li Q., Li S. et al. The role of PFKFB3 in maintaining colorectal cancer cell proliferation and stemness. Mol Biol Rep. 2022;49(10):9877–91. https://doi.org/10.1007/s11033-022-07513-y.; Zheng N., Wei J., Wu D. et al. Master kinase PDK1 in tumorigenesis. Biochim Biophys Acta Rev Cancer. 2023;1878(6):188971. https://doi.org/10.1016/j.bbcan.2023.188971.; Zhou S., Li D., Xiao D. et al. Inhibition of PKM2 enhances sensitivity of olaparib to ovarian cancer cells and induces DNA damage. Int J Biol Sci. 2022;18(4):1555–68. https://doi.org/10.7150/ijbs.62947.; Abudula A., Rouzi N., Xu L. et al. Tissue-based metabolomics reveals potential biomarkers for cervical carcinoma and HPV infection. Bosn J Basic Med Sci. 2020;20(1):78–87. https://doi.org/10.17305/bjbms.2019.4359.; Lin Y., Meng F., Lu Z. et al. Knockdown of PKM2 suppresses tumor progression in human cervical cancer by modulating epithelial-mesenchymal transition via Wnt/β-catenin signaling. Cancer Manag Res. 2018;10:4191–202. https://doi.org/10.2147/CMAR.S178219.; Lai Y.J., Chou Y.C., Lin Y.J. et al. Pyruvate kinase M2 expression: a potential metabolic biomarker to differentiate endometrial precancer and cancer that is associated with poor outcomes in endometrial carcinoma. Int J Environ Res Public Health. 2019;16(23):4589. https://doi.org/10.3390/ijerph16234589.; Liu X., Zuo X., Sun X. et al. Hexokinase 2 promotes cell proliferation and tumor formation through the Wnt/β-catenin pathway-mediated cyclin D1/c-myc upregulation in epithelial ovarian cancer. J Cancer. 2022;13(8):2559–69. https://doi.org/10.7150/jca.71894.; Cui N., Li L., Feng Q. et al. Hexokinase 2 promotes cell growth and tumor formation through the Raf/MEK/ERK signaling pathway in cervical cancer. Front Oncol. 2020;10:581208. https://doi.org/10.3389/fonc.2020.581208.; Bolaños-Suárez V., Alfaro A., Espinosa A.M. et al. The mRNA and protein levels of the glycolytic enzymes lactate dehydrogenase A (LDHA) and phosphofructokinase platelet (PFKP) are good predictors of survival time, recurrence, and risk of death in cervical cancer patients. Cancer Med. 2023;12(14):15632–49. https://doi.org/10.1002/cam4.6123.; Cao M., Liu Z., You D. et al. TMT-based quantitative proteomic analysis of spheroid cells of endometrial cancer possessing cancer stem cell properties. Stem Cell Res Ther. 2023;14(1):119. https://doi.org/10.1186/s13287-023-03348-x.; Koukourakis M.I., Kontomanolis E., Giatromanolaki A. et al. Serum and tissue LDH levels in patients with breast/gynaecological cancer and benign diseases. Gynecol Obstet Invest. 2009;67(3):162–8. https://doi.org/10.1159/000183250.; Priego-Hernández V.D., Arizmendi-Izazaga A., Soto-Flores D.G. et al. Expression of HIF-1α and genes involved in glucose metabolism is increased in cervical cancer and HPV-16-positive cell lines. Pathogens. 2022;12(1):33. https://doi.org/10.3390/pathogens12010033.; Magar A.G., Morya V.K., Kwak M.K. et al. A molecular perspective on HIF-1α and angiogenic stimulator networks and their role in solid tumors: an update. Int J Mol Sci. 2024;25(6):3313. https://doi.org/10.3390/ijms25063313.; Daponte A., Ioannou M., Mylonis I. et al. Prognostic significance of Hypoxia-Inducible Factor 1 alpha (HIF-1 alpha) expression in serous ovarian cancer: an immunohistochemical study. BMC Cancer. 2008;8:335. https://doi.org/10.1186/1471-2407-8-335.; Wong C., Wellman T.L., Lounsbury K.M. VEGF and HIF-1alpha expression are increased in advanced stages of epithelial ovarian cancer. Gynecol Oncol. 2003;91(3):513–7. https://doi.org/10.1016/j.ygyno.2003.08.022.; Zhu C., Ding H., Yang J. et al. Downregulation of proline hydroxylase 2 and upregulation of hypoxia-inducible factor 1α are associated with endometrial cancer aggressiveness. Cancer Manag Res. 2019;11:9907–12. https://doi.org/10.2147/CMAR.S223421.; Li N., Li H., Wang Y. et al. Quantitative proteomics revealed energy metabolism pathway alterations in human epithelial ovarian carcinoma and their regulation by the antiparasite drug ivermectin: data interpretation in the context of 3P medicine. EPMA J. 2020;11(4):661–94. https://doi.org/10.1007/s13167-020-00224-z.; Yuan Y., Guo-Qing P., Yan T. et al. A study of PKM2, PFK-1, and ANT1 expressions in cervical biopsy tissues in China. Med Oncol. 2012;29(4):2904–10. https://doi.org/10.1007/s12032-011-0154-z.; Jiang Y.X., Siu M.K.Y., Wang J.J. et al. Regulates chemoresistance, metastasis and stemness via IAP proteins and the NF-κB signaling pathway in ovarian cancer. Front Oncol. 2022;12:748403. https://doi.org/10.3389/fonc.2022.748403.; Da Q., Huang .L, Huang C. et al. Glycolytic regulatory enzyme PFKFB3 as a prognostic and tumor microenvironment biomarker in human cancers. Aging (Albany NY). 2023;15(10):4533–59. https://doi.org/10.18632/aging.204758.; Shi L., Pan H., Liu Z. et al. Roles of PFKFB3 in cancer. Signal Transduct Target Ther. 2017;2:17044. https://doi.org/10.1038/sigtrans.2017.44.; Xiao Y., Jin L., Deng C. et al. Inhibition of PFKFB3 induces cell death and synergistically enhances chemosensitivity in endometrial cancer. Oncogene. 2021;40(8):1409–24. https://doi.org/10.1038/s41388-020-01621-4.; Yao S., Shang W., Huang L. et al. The oncogenic and prognostic role of PDK1 in the progression and metastasis of ovarian cancer. J Cancer. 2021;12(3):630–43. https://doi.org/10.7150/jca.47278.; Liu Y., Qiu S., Zheng X. et al. LINC00662 modulates cervical cancer cell proliferation, invasion, and apoptosis via sponging miR-103a-3p and upregulating PDK4. Mol Carcinog. 2021;60(6):365–76. https://doi.org/10.1002/mc.23294.; Sidorkiewicz I., Jóźwik M., Buczyńska A. et al. Identification and subsequent validation of transcriptomic signature associated with metabolic status in endometrial cancer. Sci Rep. 2023;13(1):13763. https://doi.org/10.1038/s41598-023-40994-w.; Zong W.X., Rabinowitz J.D., White E. Mitochondria and cancer. Mol Cell. 2016;61(5):667–76. https://doi.org/10.1016/j.molcel.2016.02.011.; Pirozzi C.J., Yan H. The implications of IDH mutations for cancer development and therapy. Nat Rev Clin Oncol. 2021;18(10):645–61. https://doi.org/10.1038/s41571-021-00521-0.; Schlichtholz B., Turyn J., Goyke E. et al. Enhanced citrate synthase activity in human pancreatic cancer. Pancreas. 2005;30(2):99–104. https://doi.org/10.1097/01.mpa.0000153326.69816.7d.; Chen L., Liu T., Zhou J. et al. Citrate synthase expression affects tumor phenotype and drug resistance in human ovarian carcinoma. PLoS One. 2014;9(12):e115708. https://doi.org/10.1371/journal.pone.0115708.; Cormio A., Guerra F., Cormio G. et al. The PGC-1alpha-dependent pathway of mitochondrial biogenesis is upregulated in type I endometrial cancer. Biochem Biophys Res Commun. 2009;390(4):1182–5. https://doi.org/10.1016/j.bbrc.2009.10.114.; Lin C.C., Cheng T.L., Tsai W.H. et al. Loss of the respiratory enzyme citrate synthase directly links the Warburg effect to tumor malignancy. Sci Rep. 2012;2:785. https://doi.org/10.1038/srep00785.; Wei Z., Ye S., Feng H. et al. Silybin suppresses ovarian cancer cell proliferation by inhibiting isocitrate dehydrogenase 1 activity. Cancer Sci. 2022;113(9):3032–43. https://doi.org/10.1111/cas.15470.; Zhan J., Yang .F, Ge C., Yu X. Multi-omics approaches identify necroptosis-related prognostic signature and associated regulatory axis in cervical cancer. Int J Gen Med. 2022;15:4937–48. https://doi.org/10.2147/IJGM.S366925.; Bai M., Yang L., Liao H. et al. Metformin sensitizes endometrial cancer cells to chemotherapy through IDH1-induced Nrf2 expression via an epigenetic mechanism. Oncogene. 2018;37(42):5666–81. https://doi.org/10.1038/s41388-018-0360-7.; Sen T., Sen N., Noordhuis M.G. et al. OGDHL is a modifier of AKT-dependent signaling and NF-κB function. PLoS One. 2012;7(11):e48770. https://doi.org/10.1371/journal.pone.0048770.; Qi H., Zhu D. Oncogenic role of copper-induced cell death-associated protein DLD in human cancer: a pan-cancer analysis and experimental verification. Oncol Lett. 2023;25(5):214. https://doi.org/10.3892/ol.2023.13800.; Yang H.C., Stern A., Chiu D.T. G6PD: A hub for metabolic reprogramming and redox signaling in cancer. Biomed J. 2021;44(3):285–92. https://doi.org/10.1016/j.bj.2020.08.001.; Bose S., Huang Q., Ma Y. et al. G6PD inhibition sensitizes ovarian cancer cells to oxidative stress in the metastatic omental microenvironment. Cell Rep. 2022;39(13):111012. https://doi.org/10.1016/j.celrep.2022.111012.; Feng Q., Li X., Sun W. et al. Targeting G6PD reverses paclitaxel resistance in ovarian cancer by suppressing GSTP1. Biochem Pharmacol. 2020;178:114092. https://doi.org/10.1016/j.bcp.2020.114092.; Yi H., Zheng X., Song J. et al. Exosomes mediated pentose phosphate pathway in ovarian cancer metastasis: a proteomics analysis. Int J Clin Exp Pathol. 2015;8(12):15719–28.; Cui J., Pan Y., Wang J. et al. MicroRNA-206 suppresses proliferation and predicts poor prognosis of HR-HPV-positive cervical cancer cells by targeting G6PD. Oncol Lett. 2018;16(5):5946–52. https://doi.org/10.3892/ol.2018.9326.; Chang Y.F., Yan G.J., Liu G.C. et al. HPV16 E6 promotes the progression of HPV infection-associated cervical cancer by upregulating glucose-6-phosphate dehydrogenase expression. Front Oncol. 2021;11:718781. https://doi.org/10.3389/fonc.2021.718781.; Liu B., Fu X., Du Y. et al. Pan-cancer analysis of G6PD carcinogenesis in human tumors. Carcinogenesis. 2023;44(6):525–34. https://doi.org/10.1093/carcin/bgad043.; Zheng W., Feng Q., Liu J. et al. Inhibition of 6-phosphogluconate dehydrogenase reverses cisplatin resistance in ovarian and lung cancer. Front Pharmacol. 2017;8:421. https://doi.org/10.3389/fphar.2017.00421.; Guo H., Xiang Z., Zhang Y., Sun D. Inhibiting 6-phosphogluconate dehydrogenase enhances chemotherapy efficacy in cervical cancer via AMPK-independent inhibition of RhoA and Rac1. Clin Transl Oncol. 2019;21(4):404–11. https://doi.org/10.1007/s12094-018-1937-x.; Krockenberger M., Honig A., Rieger L. et al. Transketolase-like 1 expression correlates with subtypes of ovarian cancer and the presence of distant metastases. Int J Gynecol Cancer. 2007;17(1):101–6. https://doi.org/10.1111/j.1525-1438.2007.00799.x.; Zhu Y., Qiu Y., Zhang X. TKTL1 participated in malignant progression of cervical cancer cells via regulating AKT signal mediated PFKFB3 and thus regulating glycolysis. Cancer Cell Int. 2021;21(1):678. https://doi.org/10.1186/s12935-021-02383-z.; Krockenberger M., Engel J.B., Schmidt M. et al. Expression of transketolase-like 1 protein (TKTL1) in human endometrial cancer. Anticancer Res. 2010;30(5):1653–9.; https://www.gynecology.su/jour/article/view/2515