Showing 1 - 20 results of 98 for search '"гетеропереход"', query time: 0.82s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
    Academic Journal

    Contributors: Optical measurements were conducted under State Assignment FWGW-2022-00005. The work was financially supported by the FSI (Grant 4235GS1/70543 as of 27.10.2021) and by the Ministry of Science and Higher Education of the Russian Federation (Project No. 075-15-2020-797 (13.1902.21.0024)). Electrical measurements were carried out on facilities of the VTAN Joint Use Center of the Novosibirsk State University. Part of optical measurements were conducted on equipment of the Joint Use Center for High-Resolution Spectroscopy of Gases and Condensed Media of the Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences. Films were deposited at the Siberian Center for Synchrotron and Terahertz Radiation Joint Use Center on the VEPP-4 – VEPP-2000 Complex Unique Research Installation of the Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences. The sputtering target was manufactured by Phildal Holding Co., Ltd., China. The Authors are grateful to E.D. Zhanaev and N.V. Dudchenko for chemical and thermal treatment of the specimens., Оптические измерения выполнены в рамках гос. задания FWGW-2022-00005. Работа выполнена при финансовой поддержке ФСИ (грант 4235ГС1/70543 от 27.10.2021), а также при поддержке Министерства науки и высшего образования Российской Федерации (проект № 075-15-2020-797 (13.1902.21.0024)). Электрические измерения выполнены с использованием оборудования ЦКП «ВТАН» НГУ. Оптические измерения были частично выполнены на оборудовании ЦКП «Высокоразрешающая спектроскопия газов и конденсированных сред» ИАиЭ СО РАН. Напыление пленок выполнено в ЦКП «СЦСТИ» на базе УНУ «Комплекс ВЭПП-4 – ВЭПП-2000» в ИЯФ СО РАН. Мишень для напыления была изготовлена Phildal Holding Co., Ltd., Китай. Авторы благодарят Э.Д. Жанаева и Н.В. Дудченко за химическую обработку и термообработку образцов.

    Source: Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering; Том 26, № 3 (2023); 234-247 ; Известия высших учебных заведений. Материалы электронной техники; Том 26, № 3 (2023); 234-247 ; 2413-6387 ; 1609-3577 ; 10.17073/1609-3577-2023-3

    File Description: application/pdf

    Relation: https://met.misis.ru/jour/article/view/529/441; Sun C., Wade M., Lee Y., Orcutt J.S., Alloatti L., Georgas M.S., Waterman A.S., Shainline J.M., Avizienis R.R., Lin S., Moss B.R., Kumar R., Pavanello F., Atabaki A.H., Cook H.M., Ou A.J., Leu J.C., Chen Y.-H., Asanović K., Ram R.J., Popović M.A., Stojanović V.M. Single-chip microprocessor that communicates directly using light. Nature. 2015; 528: 534—538. https://doi.org/10.1038/nature16454; Atabaki A.H., Moazeni S., Pavanello F., Gevorgyan H., Notaros J., Alloatti L., Wade M.T., Sun Ch., Kruger S.A., Al Qubaisi H.M.K., Wang I., Zhang B., Khilo A., Baiocco Ch.V., Popović M.A., Stojanović V.M., Rajeev J. Ram integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature. 2018; 556, 349—354. https://doi.org/10.1038/s41586-018-0028-z; Cornet Ch., Léger Y., Robert C. Integrated lasers on silicon. Elsevier Ltd.; 2016. 178 p. https://doi.org/10.1016/C2015-0-01237-0; Di L., Kurczveil G., Huang X., Zhang C., Srinivasan S., Huang Z., Seyedi M.A., Norris K., Fiorentino M., Bowers J.E., Beausoleil R.G. Heterogeneous silicon light sources for datacom applications. Optical Fiber Technology. 2018; 44: 43—52. https://doi.org/10.1016/j.yofte.2017.12.005; Norman J.C., Jung D., Wan Y., Bowers J.E. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics. 2018; 3: 030901. https://doi.org/10.1063/1.5021345; Jung D., Norman J., Wan Y., Liu S., Herrick R., Selvidge J., Mukherjee K., Gossard A.C., Bowers J.E. Recent advances in InAs quantum dot lasers grown on on-Axis (001) silicon by molecular beam epitaxy. Physica Status Solidi (A). 2019; 216(1): 1800602. https://doi.org/10.1002/pssa.201800602; Jung D., Herrick R., Norman J., Turnlund K., Jan C., Feng K., Gossard A.C, Bowers J.E. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si. Applied Physics Letters. 2018; 112(15): 153507. https://doi.org/10.1063/1.5026147; Mukherjee K., Selvidge J., Jung D., Norman J., Taylor A.A., Salmon M., Liu A.Y., Bowers J.E., Herrick R.W. Recombination-enhanced dislocation climb in InAs quantum dot lasers on silicon. Journal of Applied Physics. 2020; 128(2): 025703. https://doi.org/10.1063/1.5143606; Shang C., Hughes E., Wan Y., Dumont M., Koscica R., Selvidge J., Herrick R., Gossard A.C., Mukherjee K., Bowers J.E. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters. Optica. 2021; 8(5): 749—754. https://doi.org/10.1364/OPTICA.423360; Carnall W.T., Fields P.R., Rajnak K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. The Journal of Chemical Physics. 1968; 49(10): 4424—4442. http://dx.doi.org/10.1063/1.1669893; Gruber J.B., Henderson J.R., Muramoto M., Rajnak K., Conway J.G. Energy levels of single-crystal erbium oxide. The Journal of Chemical Physics. 1966; 45(2): 477—482. http://dx.doi.org/10.1063/1.1727592; Ennen H., Schneider J., Pomrenke G., Axmann A. 1.54 mkm luminescence of erbium implanted III-V semiconductors and silicon. Applied Physics Letters. 1983; 43(10): 943—945. http://dx.doi.org/10.1063/1.94190; Polman A. Erbium implanted thin film photonic materials. Journal of Applied Physics. 1997; 82(1): 1—39. https://doi.org/10.1063/1.366265; Kenyon A.J. Topical review: Erbium in silicon. Semiconductor Science and Technology. 2005; 20(12): R65—R84. https://doi.org/10.1088/0268-1242/20/12/R02; Coffa S., Franzò G., Priolo F. Mechanism and performance of forward and reverse bias electroluminescence at 1.54 μm from Er-doped Si diodes. Journal of Applied Physics. 1997; 81(6): 2784—2793. https://doi.org/10.1063/1.363935; Coffa S., Franzò G., Priolo F. High efficiency and fast modulation of Er-doped light emitting Si diodes. Applied Physics Letters. 1996; 69(14): 2077—2079. https://doi.org/10.1063/1.116885; Polman A., van den Hoven G.N., Custer J.S., Shin J.H., Serna R., Alkemade P.F.A. Erbium in crystal silicon: Optical activation, excitation, and concentration limits. Journal of Applied Physics. 1995; 77(3): 1256—1262. https://doi.org/10.1063/1.358927; Gusev O.B., Bresler M.S., Pak P.E., Yassievich I.N., Forcales M., Vinh N.Q., Gregorkiewicz T. Excitation cross section of erbium in semiconductor matrices under optical pumping. Physical Review B. 2001; 64(7): 075302. https://doi.org/10.1103/PhysRevB.64.075302; Priolo F., Franzo G., Coffa S., Carnera A. Excitation and nonradiative deexcitation processes of Er3+ in crystalline Si. Physical Review B. 1998; 57(8): 4443. https://doi.org/10.1103/PhysRevB.57.4443; Coffa S., Franz G., Priolo F., Polman A., Serna R. Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si. Physical Review B. 1994; 49(23): 16313. https://doi.org/10.1103/PhysRevB.49.16313; Bradley J.D.B., Pollnau M. Erbium-doped integrated waveguide amplifiers and lasers. Laser & Photonics Reviews. 2011; 5(3): 368—403. https://doi.org/10.1002/lpor.201000015; Wang S., Eckau A., Neufeld E., Carius R., Buchal Ch. Hot electron impact excitation cross-section of Er3+ and electroluminescence from erbium-implanted silicon metal-oxide-semiconductor tunnel diodes. Applied Physics Letters. 1997; 71(19): 2824—2826. https://doi.org/10.1063/1.120147; Krzyzanowska H., Ni K.S., Fu Y., Fauchet P.M. Electroluminescence from Er-doped SiO2/nc-Si multilayers under lateral carrier injection. Materials Science and Engineering: B. 2012; 177(17): 1547—1550. https://doi.org/10.1016/j.mseb.2011.12.032; Berencen Y., Illera S., Rebohle L., Ramirez J.M., Wutzler R., Cirera A., Hiller D., Rodríguez J.A., Skorupa W., Garrido B. Luminescence mechanism for Er3+ ions in a silicon-rich nitride host under electrical pumping. Journal of Physics D: Applied Physics. 2016; 49(8): 085106. https://doi.org/10.1088/0022-3727/49/8/085106; Zhu C., Lv C., Gao Z., Wang C., Li D., Ma X., Yang D. Multicolor and near-infrared electroluminescence from the light-emitting devices with rare-earth doped TiO2 films. Applied Physics Letters. 2015; 107(13): 131103. https://doi.org/10.1063/1.4932064; Yang Y., Li Y., Xiang L., Ma X., Yang D. Low-voltage driven ~1.54 μm electroluminescence from erbium-doped ZnO/p+-Si heterostructured devices: Energy transfer from ZnO host to erbium ions. Applied Physics Letters. 2013; 102(18): 181111. http://dx.doi.org/10.1063/1.4804626; Yang Y., Jin L., Ma X., Yang D. Low-voltage driven visible and infrared electroluminescence from light-emitting device based on Er-doped TiO2/p+-Si heterostructure. Applied Physics Letters. 2012; 100(3): 031103. http://dx.doi.org/10.1063/1.3678026; Kim H.K., Li C.C., Nykolak G., Becker P.C. Photoluminescence and electrical properties of erbium-doped indium oxide films prepared by RF sputtering. Journal of Applied Physics. 1994; 76(12): 8209—8211. https://doi.org/10.1063/1.357882; Xiao Q., Zhu H., Tu D., Ma E., Chen X. Near-infrared-to-near-infrared downshifting and near-infrared-to-visible upconverting luminescence of Er3+-doped In2O3 nanocrystals. The Journal of Physical Chemistry C. 2013; 117(20): 10834—10841. http://dx.doi.org/10.1021/jp4030552; Feklistov K.V., Lemzyakov A.G., Prosvirin I.P., Gismatulin A.A., Shklyaev A.A., Zhivodkov Y.A., Krivyakin G.K., Komonov A.I., Kozhukhov А.S., Spesivsev E.V., Gulyaev D.V., Abramkin D.S., Pugachev A.M., Esaev D.G., Sidorov G.Yu. Nanowired structure, optical properties and conduction band offset of RF magnetron-deposited n-Si/In2O3 : Er films. Materials Research Express. 2020; 7(12): 25903. https://doi.org/10.1088/2053-1591/abd06b; Tahar R.B.H., Ban T., Ohya Y., Takahashi Y. Tin doped indium oxide thin films: Electrical properties. Journal of Applied Physics. 1998; 83(5): 2631—2645. https://doi.org/10.1063/1.367025; Hamberg I., Granqvist C.G. Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows. Journal of Applied Physics. 1986; 60(11): R123—R159. https://doi.org/10.1063/1.337534; Hoffling B., Schleife A., Fuchs F., Rödl C., Bechstedt F. Band lineup between silicon and transparent conducting oxides. Applied Physics Letters. 2010; 97(3): 032116. https://doi.org/10.1063/1.3464562; Wang E.Y., Hsu L. Determination of electron affinity of In2O3 from its heterojunction photovoltaic properties. Journal of the Electrochemical Society. 1978; 125: 1328—1331. https://doi.org/10.1149/1.2131672; Zhang X., Zhang Q., Lu F. Energy band alignment of an In2O3 : Mo/Si heterostructure, Semiconductor Science and Technology. 2007; 22(8): 900—904. https://doi.org/10.1088/0268-1242/22/8/013; Weiher R.L. Electrical properties of single crystals of indium oxide. Journal of Applied Physics. 1962; 33(9): 2834—2839. https://doi.org/10.1063/1.1702560; Zhang D.H., Li C., Han S., Liu X.L., Tang T., Jin W., Zhou C.W. Electronic transport studies of single-crystalline In2O3 nanowires. Applied Physics Letters. 2003; 82(1): 112—114. https://doi.org/10.1063/1.1534938; Weiher R.L., Ley R.P. Optical properties of indium oxide. Journal of Applied Physics. 1966; 37(1): 299—302. http://dx.doi.org/10.1063/1.1707830; King P.D.C., Veal T.D., Fuchs F., Wang Ch.Y., Payne D.J., Bourlange A., Zhang H., Bell G.R., Cimalla V., Ambacher O., Egdell R.G., Bechstedt F., McConville C.F. Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3. Physical Review B. 2009; 79(20): 205211. https://doi.org/10.1103/PhysRevB.79.205211; Kern W., Puotinen D.A. Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA Review. 1970; 31: 187—206. URL: https://www.americanradiohistory.com/ARCHIVE-RCA/RCA-Review/RCA-Review-1970-Jun.pdf; Зи С. Физика полупроводниковых приборов. Пер. с англ. В 2-х кн. М:. Мир; 1984. Кн. 1. 456 с.; Lee M.S., Choi W.C., Kim E.K., Kim C.K., Min S.K. Characterization of the oxidized indium thin films with thermal oxidation. Thin Solid Films. 1996; 279(1-2): 1—3. https://doi.org/10.1016/0040-6090(96)08742-1; Liang C., Meng G., Lei Y., Phillipp F., Zhang L. Catalytic growth of semiconducting In2O3 nanofibers. Advanced Materials. 2001; 13(17): 1330—1333. https://doi.org/10.1002/1521-4095(200109)13:173.0.CO;2-6; Peng X., Meng G., Zhang J., Wang X., Wang Y., Wang C., Zhang L. Synthesis and photoluminescence of single-crystalline In2O3 nanowires. Journal of Materials Chemistry. 2002; (12): 1602—1605. https://doi.org/10.1039/B111315A; Mazzera M., Zha M., Calestani D., Zappettini A., Salviati G., Zanotti L. Low-temperature In2O3 nanowire luminescence properties as a function of oxidizing thermal treatments. Nanotechnology. 2007; 18(35): 355707. http://dx.doi.org/10.1088/0957-4484/18/35/355707; Kumar M., Singh V.N., Singh F., Lakshmi K.V., Mehta B.R., Singh J.P. On the origin of photoluminescence in indium oxide octahedron structures. Applied Physics Letters. 2008; 92(17): 171907. https://doi.org/10.1063/1.2910501; Wei Z.P., Guo D.L., Liu B., Chen R., Wong L.M., Yang W.F., Wang S.J., Sun H.D., Wu T. Ultraviolet light emission and excitonic fine structures in ultrathin single-crystalline indium oxide nanowires. Applied Physics Letters. 2010; 96(3): 031902. https://doi.org/10.1063/1.3284654; Amirhoseiny M., Hassan Z., Shashiong N. Synthesis of nanocrystalline In2O3 on different Si substrates at wet oxidation environment. Optik. 2013; 124(17): 2679—2681. https://doi.org/10.1016/j.ijleo.2012.08.073; https://met.misis.ru/jour/article/view/529

  5. 5
  6. 6
    Academic Journal

    Contributors: ELAKPI

    Source: Vìsnik Nacìonalʹnogo Tehnìčnogo Unìversitetu Ukraïni Kììvsʹkij Polìtehnìčnij Ìnstitut: Serìâ Radìotehnìka, Radìoaparatobuduvannâ, Iss 70 (2017)
    Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia; 70; 62-71
    Вестник НТУУ" КПИ ". Серия радиотехника Радиоаппаратостроение; 70; 62-71
    Вісник НТУУ "КПІ". Серія Радіотехніка, Радіоапаратобудування; 70; 62-71

    File Description: application/pdf

  7. 7
    Academic Journal

    Authors: Ganji, Jabbar

    Source: Electrical engineering & Electromechanics, Iss 6, Pp 47-52 (2017)
    Electrical Engineering & Electromechanics; № 6 (2017): Electrical Engineering & Electromechanics №6 2017; 47-52
    Электротехника и Электромеханика; № 6 (2017); 47-52
    Електротехніка і Електромеханіка; № 6 (2017): Електротехніка і Електромеханіка №6 2017; 47-52

    File Description: application/pdf

  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
    Academic Journal

    Source: Visnyk of V.N. Karazin Kharkiv National University, series “Radio Physics and Electronics”; Том 25, № 1116 (2016); 66-69 ; Вестник университета, серия «Радиофизика и электроника»; Том 25, № 1116 (2016); 66-69 ; Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Радіофізика та електроніка»; Том 25, № 1116 (2016); 66-69

    File Description: application/pdf

  13. 13
    Academic Journal

    Contributors: Академия Наук Узбекистана

    Source: Физическая инженерия поверхности; Том 12, № 2 (2014): Фізична інженерія поверхні; 197-201 ; Фізична інженерія поверхні; Том 12, № 2 (2014): Фізична інженерія поверхні; 197-201 ; 1999-8112 ; 1999-8074

    File Description: application/pdf

  14. 14
    Academic Journal
  15. 15
    Academic Journal
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
    Academic Journal

    Source: Visnyk of V.N. Karazin Kharkiv National University, series “Radio Physics and Electronics”; Том 24, № 1115 (2014); 91–94 ; Вестник университета, серия «Радиофизика и электроника»; Том 24, № 1115 (2014); 91–94 ; Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Радіофізика та електроніка»; Том 24, № 1115 (2014); 91–94

    File Description: application/pdf